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Abstract

Background: BBK32 is a surface expressed lipoprotein and fibronectin (Fn)-binding microbial surface component
recognizing adhesive matrix molecule (MSCRAMM) of Borrelia burgdorferi, the causative agent of Lyme disease. Previous
studies from our group showed that BBK32 is a virulence factor in experimental Lyme disease and located the Fn-binding
region to residues 21–205 of the lipoprotein.

Methodology/Principal Findings: Studies aimed at identifying interacting sites between BBK32 and Fn revealed an
interaction between the MSCRAMM and the Fn F3 modules. Further analysis of this interaction showed that BBK32 can
cause the aggregation of human plasma Fn in a similar concentration-dependent manner to that of anastellin, the
superfibronectin (sFn) inducing agent. The resulting Fn aggregates are conformationally distinct from plasma Fn as
indicated by a change in available thermolysin cleavage sites. Recombinant BBK32 and anastellin affect the structure of Fn
matrices formed by cultured fibroblasts and inhibit endothelial cell proliferation similarly. Within BBK32, we have located the
sFn-forming activity to a region between residues 160 and 175 which contains two sequence motifs that are also found in
anastellin. Synthetic peptides mimicking these motifs induce Fn aggregation, whereas a peptide with a scrambled sequence
motif was inactive, suggesting that these motifs represent the sFn-inducing sequence.

Conclusions/Significance: We conclude that BBK32 induces the formation of Fn aggregates that are indistinguishable from
those formed by anastellin. The results of this study provide evidence for how bacteria can target host proteins to
manipulate host cell activities.
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Introduction

Different microbial pathogens use diverse sets of virulence

factors to establish infections. In fact, the panels of virulence

factors employed are often organism and host species specific and

sometimes also disease specific. Despite this variation, bacterial

infectious disease processes appear to involve some common steps.

The microbial pathogen usually has to adhere to a tissue(s) in the

host in order to establish a colony, and to survive, the microbe has

to evade the host’s defense systems.

In this context of diversity it is remarkable that so many

pathogenic organisms appear to bind and adhere to fibronectin

(Fn) substrates. Fn is an abundant animal glycoprotein found in a

soluble form in most body fluids and deposited as part of the

insoluble extracellular matrix of most tissues. The protein is

composed of two 220 KDa polypeptides held together by disulfide

bonds at the C-terminal end. Each polypeptide is a mosaic protein

composed of three types of repeating modules: 12 type I modules

(F1), 2 type II modules (F2), 15–17 (dependent on alternative

splicing) type III modules (F3), and an alternatively spliced

variable sequence that is not homologous to other parts of Fn. F1

and F2 modules are stabilized by disulfide bonds, whereas F3

modules lack disulfide bonds and can reversibly partially unfold

[1,2].

Soluble Fn adopts a somewhat compact form that is stabilized

by intramolecular ionic interactions between specific modules.

These interactions occur primarily between the 1F1–5F1, the
2F3–3F3, and 12F3–14F3 segments [3]. In the extracellular matrix,

Fn takes on a more extended form and the protein is likely

engaged in multiple intra- and intermolecular interactions (for

review see [4]). The structural organizations of Fn matrices have

not been elucidated in detail; however, it is likely that the

incorporation of soluble Fn into a matrix involves a complex but

orderly breaking of intramolecular bonds in the compact soluble

Fn and the formation of new intra- and intermolecular

interactions. This process is facilitated by integrins and other

cellular components [5,6]. Recently Vakonakis, et al., suggested

that cell-generated tension on Fn, disrupts interactions between
1F3 and 2F3, creating a conformation of 1–2F3 that binds to the N-

terminal domain and initiates fibrillogenesis [7].
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Fn play key roles in basic physiological processes such as cell

proliferation, migration, differentiation, and survival by interacting

with a variety of extracellular macromolecules and cellular

receptors, primarily of the integrin family [8]. Integrins constitute

a family of dimeric cell surface receptors that recognize specific

extracellular matrix and cell bound ligands. Integrins a5b1, a4b1,

and avb3 are the primary Fn receptors.

Fn may occur in different aggregated forms. ‘‘Superfibronectin’’

(sFn) is a form of Fn aggregates that resembles Fn matrices, but

with distinct biological activities [9]. sFn is formed by mixing

plasma Fn with anastellin, a recombinant form of the C-terminal

two-thirds of the 1F3 Fn module. F3 modules are b-sandwiches

composed of a four-stranded b-sheet and a triple-stranded b-sheet.

In anastellin, strands A and B are removed, exposing the E and C

strands, which is perhaps responsible for anastellin’s self-

association and interaction with other Fn modules [10]. These

interactions lead to the formation of sFn. Ohashi and Erickson

suggested a model of sFn formation whereby anastellin binds and

partially unfolds F3 modules and prevents refolding, thus exposing

hydrophobic surfaces and b-sheet edges. The exposed elements

bind to similar exposed elements on other Fn modules, leading to a

specific aggregation [11]. sFn dramatically enhances cell adhesion

compared to plasma Fn when coated on a cell culture dish [9], and

it has been demonstrated that anastellin can inhibit angiogenesis.

This effect is believed to represent the basis for anastellin’s

observed anti-tumor activity in mouse models of human cancers

[12,13]. McKeown-Longo, et al. showed that anastellin added to

cultured cells becomes incorporated into the Fn matrix deposited

by the cells and induces a conformational rearrangement in the Fn

matrix that can be monitored by a specific monoclonal antibody.

Anastellin also effectively blocks serum-dependent proliferation of

cultured endothelial cells. This effect is not due to induced

apoptosis, but is caused by blocking the serum-dependent

activation of ERK [14].

More than 100 different Fn-binding microbial proteins have been

reported so far, although most of the Fn-microbial protein

interactions have not been characterized in detail. Previously, we

showed that the Fn-binding MSCRAMMs, FnBPA and FnBPB

from Staphylococcus aureus and Sfb1 from Streptococcus pyogenes, contain

a common motif that allows these proteins to bind to the N-terminal

domain (NTD) of Fn by a unique binding mechanism that we called

the tandem b-zipper. When these MSCRAMMs target soluble Fn,

the compact conformation of the host protein undergoes a change

resulting in a more open structure, where binding sites for the a5b1

integrin are exposed (Liang, et al., in preparation). Thus,

staphylococci or streptococci recruiting Fn to their surfaces via

these MSCRAMMs are coated with activated Fn that can lead to

a5b1 integrin-dependent host cell invasion.

Fn-binding MSCRAMMs can also bind to other domains in Fn.

A motif targeting the gelatin binding domain (GBD) in Fn has

been identified in Sfb1. ShdA of Salmonella enterica serotype

Typhimurium appears to target the F3 module, 13F3 (which

makes up part of the heparin-2-binding domain of Fn) [15]. The

binding motif in ShdA has not been clearly defined. Furthermore,

the biological consequences of these interactions are still unclear.

We have unsuccessfully searched many of the identified Fn-

binding MSCRAMMs for the presence of the motifs identified

from FnBPA, FnBPB, and Sfb1 that target the Fn NTD or GBD.

An exception is BBK32 from Borrelia burgdorferi. BBK32, a 47 kDa

lipoprotein, was originally identified as a Fn-binding MSCRAMM

by probing lysates of spirochete with Fn in Western ligand blots

[16]. It was localized to the surface of the spirochete and the

attachment of B. burgdorferi to Fn substrates was inhibited by the

addition of soluble recombinant BBK32 protein suggesting that

BBK32 is a Fn-binding adhesin on B. burgdorferi sensu stricto [16].

Orthologous genes are found in the closely related species, B.

garinii and B. afzelii [17]. Expression of BBK32 at the site of

experimental infection in mice increases until day 7 and then

declines, but bbk32 gene expression can be detected in the skin,

heart, spleen, joints, and bladder at least 30 days post challenge,

indicating that the lipoprotein is expressed by the spirochete as it

disseminates to different tissues in the host [18].

The N-terminus of BBK32 contains a signal peptide followed by

a ‘‘lipobox’’ and an extended intrinsically disordered segment

(residues 21–205) that contains the Fn-binding sites [19]. This

segment contains a sequence motif that resembles the motifs in

FnbpA. In fact, BBK32(147–205) binds to the N-terminal type I

modules found in Fn by the tandem b-zipper mechanism [20]. In

addition, we identified a motif resembling the GBD-binding

sequence in Sfb1 [20].

In further analysis of the binding specificity, we found that the

MSCRAMM not only binds to the NTD F1 modules [19,20] and

the GBD (manuscript in preparation), but also the 1–2F3, and 3F3

modules. This observation prompted us to examine if BBK32, like

anastellin can induce conformational changes in soluble Fn that can

lead to aggregation of the glycoprotein. Here we report that the

BBK32-F3 interaction induces an ordered aggregation of soluble Fn

that exposes thermolysin cleavage sites that are cryptic in soluble Fn.

Recombinant BBK32 has specific biological activities in that it can

affect the structure of Fn matrices formed by cultured fibroblasts

and effectively inhibit endothelial cell proliferation. Furthermore,

we have identified two specific amino acid sequence motifs found in

BBK32 that can induce Fn aggregation. Thus, we conclude that a

specific motif in BBK32 can target F3 modules in Fn and induce the

formation of ordered Fn aggregates.

Results

BBK32 binds to 1–3F3 of Fn
We previously reported that the Fn-binding activity of BBK32 is

located to an intrinsically disordered segment of the protein

corresponding to residues 21–205 [19] and that a motif

corresponding to residues 147–205 binds to the 1F1–5F1 N-

terminal segment of Fn by the tandem b-zipper mechanism

[19,20]. Experiments designed to further define the MSCRAMM

binding sites in Fn by probing a thermolysin digest of Fn with

rBBK32 (21–205) in Western ligand blots to determine the protein-

protein interaction, indicated that the MSCRAMM binds more

strongly to the 56 kDa fragment than to the 43 kDa gelatin

binding fragment (data not shown). Since the only difference

between these two Fn fragments is the inclusion of 1F3 in the

56 kDa fragment, this result suggests that BBK32 (21–205) may

interact with the 1F3 module. We, therefore, generated recombi-

nant forms of 1F3, 1–2F3, and 3F3 and examined the binding of

BBK32 to these Fn modules in ELISA-type binding assays.

BBK32 bound all the recombinant F3 modules in a concentration

dependent manner. The binding to the F3 module was specific for

BBK32 as the D3 fragment of S. aureus FnbpA, which binds
1F1–5F1, did not to bind the F3 modules (Fig. 1). We calculated

half-maximal binding concentrations of 76.9 nM, 353 nM, and

188.1 nM for the binding of rBBK32 (21–205) to the 1F3, 1–2F3, and
3F3 respectively, indicating that the MSCRAMM has a high

affinity for the immobilized F3 modules.

BBK32 aggregates plasma Fn in a concentration
dependent manner

The interaction of BBK32 with 1F3, 1–2F3, and 3F3 is

particularly interesting since anastellin, an inducer of sFn, also

Bacteria Modify Fibronectin
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binds to these modules [21]. This similarity raises the possibility that

BBK32 could induce a form of Fn aggregation. To test this

possibility we incubated 1 mM of purified plasma Fn with increasing

concentrations of rBBK32 (21–205), anastellin, or the FnbpA D3

fragment. BBK32 and anastellin, but not the D3 protein induced Fn

aggregation that could be followed by the increase in absorbance at

600 nm (Fig. 2a). Fn aggregation was dependent on the concen-

tration of the inducer, and anastellin and rBBK32 (21–205) showed

very similar activity with measurable aggregation initiated at 20 mM

of the inducer. Aggregation of Fn was also observed with full length

BBK32, which includes the C-terminal globular domain (residues

21–354) (Fig. 2b). rBBK32 (21–354) was more active and induced

aggregation of Fn at lower concentrations than rBBK32 (21–205).

However, since the longer form of BBK32 is more susceptible to

degradation, we used rBBK32 (21–205) to further characterize the

BBK32-dependent Fn aggregation.

Initial experiments showed that addition of a detergent, Triton X-

100, inhibited Fn aggregation by BBK32 (not shown) as was

previously reported for anastellin induced Fn aggregation [11]. When

plasma Fn is induced to aggregate by anastellin the protein apparently

undergoes conformational changes. These changes involve exposure

of cryptic thermolysin cleavage sites which result in unique fragments

generated by enzymatic digestion [11]. To determine if BBK32 elicits

a similar effect, we digested purified plasma Fn and Fn aggregates

induced by anastellin or rBBK32 (21–205) with thermolysin and

fractionated the resulting peptides by SDS-PAGE. As seen in

figure 3, digestion of Fn aggregates induced by anastellin or

BBK32 resulted in very similar fragment profiles. Furthermore,

some of the generated peptides are uniquely found in the

rBBK32(21–205)/Fn or anastellin/Fn digests and are not present

among the peptides obtained from digested purified plasma Fn.

The bands indicated by arrows in the SDS-PAGE (and

Figure 1. BBK32 (21–205) binds F3 modules. Binding to (a) 1F3 (b) 1–2F3 and (c) 3F3 was assessed using ELISA-type assays. F3 modules were
immobilized in microtiter wells followed by blocking with ovalbumin. BBK32 (21–205) or FnbpA peptide D3 was added to wells in increasing
concentrations. Anti-BBK32 antibody followed by HRP conjugated anti-rabbit antibody for BBK32 (21–205), and anti-FnbpA followed by HRP
conjugated anti-rabbit antibody were used to demonstrate binding.
doi:10.1371/journal.pone.0005412.g001

Figure 2. BBK32 (21–205) and BBK32 (21–354) aggregate plasma Fn.
(a) BBK32 (21–205), FnbpA peptide D3, and anastellin (b) or BBK32 (21–354)

and BBK32 (21–205) were titrated into 1 mM purified plasma Fn and
the optical density at 600 nm was measured.
doi:10.1371/journal.pone.0005412.g002
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equivalent sites from the plasma Fn lanes) were excised and subjected

to N-terminal sequencing. The sequences obtained, SSPVVID,

AVEENQE, and ITETIP, were located at the C-terminus of 13F3,

the middle of 3F3, and near the N-terminus of 1F3 respectively

(Fig. 3b). N-terminal sequencing of the material recovered from the

corresponding space from the plasma Fn only digest did not detect

these sequences. Taken together, these results suggest that

aggregation of plasma Fn by BBK32 or anastellin involves similar

types of conformational changes in the glycoprotein and that these

conformational changes are not limited to the 1–3F3 region but

extend towards the C-terminus of the protein.

BBK32 affects the structural organization of Fn matrix
assembly

The addition of Fn-binding MSCRAMMs or anastellin to

fibroblast cultures results in the incorporation of the exogenous

proteins into the extracellular matrix formed by the cultured cells.

Figure 3. BBK32 (21–205) induces a conformational change in plasma Fn. (a) Purified plasma Fn and Fn aggregates induced by anastellin or
BBK32 (21–205) were digested with thermolysin. The digested products were fractionated by SDS-PAGE and peptides that were only found in BBK32 (21–205)

/Fn (lane 3) or anastellin/Fn (lane 2) digests and not present among the peptides obtained from purified plasma Fn (lane 1) were excised and
identified by N-terminal sequencing. The sequences obtained, SSPVVID, AVEENQE, and ITETIP, were located to the end of 13F3, middle of 3F3,
and the start of 1F3, respectively for both BBK32/Fn and anastellin/Fn. Pre-stained protein standards with indicated Mw are shown. (b)
Schematic of Fn. Stars denote cryptic cleavage sites in Fn after aggregation due to both BBK32 and anastellin.
doi:10.1371/journal.pone.0005412.g003
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BBK32, anastellin, and FnbpA peptide D3 co-localize with Fn in

the extracellular matrix of normal human dermal fibroblasts (data

not shown).

The interaction of anastellin and Fn results in conformational

changes in cellular Fn that can be monitored using a monoclonal

antibody specific to the alternatively spliced extra domain A (EDA).

EDA is only expressed in cellular Fn and is upregulated during

embryogenesis, wound healing, and tumor progression. Monoclo-

nal antibody IST 9, which targets residues 39PEDGIHELFP48

found in the C-C’ loop of EDA [22,23], does not recognize cellular

Fn in the presence of anastellin [24]. Binding of anastellin to Fn

appears to induce a conformational change in EDA resulting in the

loss of the IST 9 epitope. As seen in figure 4, the addition of

anastellin (5 mM) to cultured NHDFs results in markedly reduced

immunostaining with IST 9. Addition of rBBK32(21–205) (5 mM) also

results in a reduction of immunostaining with IST 9 (Fig. 4). The D3

fragment of FnbpA was used as a control. IST 9 staining of D3

treated cells was no different from the staining observed for the no

treatment control (Fig. 4). Polyclonal anti-Fn and monoclonal IST 1

(not shown), which recognizes an epitope in 12F3, were used to

demonstrate the presence of Fn in BBK32 or anastellin treated

matrices. The marked reduction in immunostaining with IST 9

indicates that BBK32 may alter the conformation of cellular Fn in a

manner similar to that seen with anastellin.

BBK32 inhibits the proliferation of cultured endothelial
cells

The ability of anastellin to inhibit endothelial cell proliferation

is one of its most prominent activities [13,14,25]. Since BBK32

behaves like anastellin in its interaction with Fn, we examined

the ability of BBK32 to affect proliferation of human umbilical

vein endothelial cells (Fig. 5). As before, we used anastellin and

the D3 fragment of FnbpA as controls. The results show that

BBK32 inhibited the proliferation of endothelial cells in a

concentration dependent manner as observed for anastellin.

Surprisingly, BBK32 was reproducibly more potent at inhibiting

endothelial cell proliferation than anastellin. The decrease in

proliferation was observed at 24 and 48 hours (data not shown),

but was more pronounced following 72 hours of static culture.

The FnbpA peptide D3 only marginally affected the proliferation

of cells.

The inhibition of endothelial cell proliferation was apparently

not due to apoptosis since Annexin V assays were negative (not

shown). Ambesi et al. demonstrated that anastellin inhibits

endothelial cell proliferation by causing G1 arrest [14]. Since

BBK32 does not induce apoptosis and there is no evidence of cell

death, it is tempting to speculate that the BBK32-dependent

inhibition of endothelial cell proliferation may also be due to cell

cycle arrest.

Figure 4. BBK32 (21–205) effects on Fn matrix assembled by NHDFs. Cells were incubated for 48 hours and then incubated with 5 mM
BBK32 (21–205), 5 mM anastellin, or 5 mM FnbpA peptide D3. Treated cells were incubated for 20 hours and probed with Alexa Fluor 488-anti-Fn and
monoclonal antibody IST 9. Images were taken using LSM 510 Confocal Microscope, objective 63X/1.4 oil. Bar = 10 mm.
doi:10.1371/journal.pone.0005412.g004
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Locating the sFn-inducing site in BBK32
Since the Fn-binding region of BBK32 corresponding to

residues 21–205 has a disordered structure it is reasonable to

assume that a linear sequence is responsible for the sFn inducing

activity. To locate this hypothetical motif, we first examined the

activity of shorter recombinant fragments. Using ELISA-type

solid phase binding assays, we identified a F3-binding site to a

region between BBK32 residues 146 and 205 (data not shown).

We then synthesized and examined the activity of a panel of

peptides covering the segment between residues 146 and 202

(Table 1).

sBBK32(153–175) aggregated plasma Fn in a concentration-

dependent manner and was essentially as active as anastellin, whereas

the other two peptides (sBBK32(146–166) and sBBK32 (175–202)) had

minimal activity (Fig. 6a). The addition of 5 mM BBK32 (153–175)

resulted in a reduction of immunostaining with IST 9. On the other

hand, BBK32 peptides 146–166, 153–166, and 175–202 did not

affect monoclonal antibody IST 9 recognition of EDA (Fig. 6b).

Addition of the BBK32 peptide 153–175 resulted in inhibition of

endothelial cell proliferation (Fig. 6c). In fact, this peptide was

consistently more active than anastellin or BBK32 (21–205). Peptide

175–202 had a minimal effect on HUVEC proliferation.

Taken together our data suggest that the sFn-inducing

activity in BBK32 is located to a site between residues 160–

175.

A conserved sequence motif in BBK32 and anastellin
induces ordered Fn aggregation

Alignment of the 160–175 segment of BBK32 and anastellin

revealed two distinct regions of weak sequence similarity (Fig. 7).

In order to further delineate the specific BBK32 motif capable of

aggregating Fn, we examined three additional synthetic peptides

(residues 160–175, 160–168, and 168–175) that correspond to the

intact or split motif conserved between anastellin and BBK32.

Synthetic BBK32 peptides 160–186, 160–175, 160–167, and 168–

175 all caused Fn to aggregate as measured by optical density at

600 nm. Peptide 160–175 was the most effective aggregation

inducer (Fig. 8), but both sBBK32 (160–167) and sBBK32 (168–175)

induced Fn aggregation in our assay. In addition, a scramble

peptide including the entire active motif (residues 160–186) is

unable to aggregate Fn. NMR data indicate that in anastellin, the

two active motifs are separated by 28 amino acids, but when the

protein is folded, the two sequences are in close proximity to each

other (Fig. 7). One of the active motifs in anastellin is found on a b-

strand that is not exposed in the 1F3 module (Fig. 7), whereas the

other motif is found in a short loop.

Figure 5. BBK32 (21–205) inhibits the proliferation of HUVECs. Cells were seeded onto tissue culture plates in full media and allowed to adhere
for two hours. After two hours, BBK32, anastellin, and FnbpA peptide D3 were added in increasing concentrations (in triplicate) to the wells. Cells
were then incubated for 72 hours at 37uC, 5% CO2. After 72 hours, cells were washed, trypsinized, and counted (three counts/well, three wells/dose)
using a hemacytometer.
doi:10.1371/journal.pone.0005412.g005

Table 1. Panel of synthetic BBK32 peptides used in experiments.

Construct Residues Aggregate Fn
Inhibit
Proliferation

rBBK32 (145–205) EEPIESNEIDLTIDSDLRPKSSLQGIAGSNSISYTDEIEEEDYDQYYLDEYDEEDEEEDYD Yes Yes

sBBK32 (146–166) EPIESNEIDLTIDSDLRPKSS No Yes

sBBK32 (153–175) IDLTIDSDLRPKSSLQGIAGSNS Yes Yes

sBBK32 (175–202) SISYTDEIEEEDYDQYYLDEYDEEDEEE No No

sBBK32 (160–186) DLRPKSSLQGIAGSNSISYTDEIEEED Yes Yes

sBBK32 (160–

186)scramble

GSELYESDISPENKIGQSDISRDTELA No No

sBBK32 (153–166) IDLTIDSDLRPKSS No No

sBBK32 (160–175) DLRPKSSLQGIAGSNS Yes Yes

sBBK32 (160–167) DLRPKSSL Yes Not Tested

sBBK32 (168–175) QGIAGSNS Yes Not Tested

doi:10.1371/journal.pone.0005412.t001
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Figure 6. BBK32 (153–175) aggregates plasma Fn. (a) BBK32 (21–205), BBK32 (146–166), BBK32 (153–175), and BBK32 (175–202) were titrated into 1 mM
purified plasma Fn and the optical density at 600 nm was measured. (b) BBK32 (153–175) is the minimal amino acid sequence required to affect Fn matrices
assembled by NHDFs. Cells were allowed to grow for 48 hours and then were incubated with 5 mM BBK32 (153–166), BBK32 (146–166), BBK32 (153–166), and
BBK32 (175–202). Treated cells were incubated for 20 hours and probed with Alexa Fluor 488-anti-Fn and monoclonal antibody IST 9. Images
were taken using LSM 510 Confocal Microscope, objective 63X/1.4 oil. Bar = 10 mm. Staining with monoclonal antibody IST 9 indicates that
only the BBK32 peptide containing residues 153–175 changes the conformation of Fn matrices. (c) BBK32 (153–175) is the minimal amino acid
sequence required to inhibit HUVEC proliferation. Cells were seeded onto tissue culture plates in full media and allowed to adhere for two
hours. After two hours, BBK32 (21–205), BBK32 (153–175), BBK32 (175–202), and anastellin were added in increasing concentrations (in triplicate) to
the wells. Cells were then incubated for 72 hours at 37uC, 5% CO2. After 72 hours, cells were washed, trypsinized, and counted (three counts/
well, three wells/dose) using a hemacytometer.
doi:10.1371/journal.pone.0005412.g006

Figure 7. Amino acid sequence alignment of BBK32(153–175) and anastellin demonstrates weak homology. (A) NMR structure of
anastellin demonstrating homologous amino acids and (B) NMR structure of 1F3.
doi:10.1371/journal.pone.0005412.g007
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Discussion

The B. burgdorferi lipoprotein BBK32 was previously shown to

bind to the N-terminal 1F1–5F1 segment of Fn through a tandem

b-zipper mechanism [19,20]. We now demonstrate that a

recombinant form of BBK32 (21–205) also binds to Fn F3 modules

and can induce an ordered Fn aggregation that resembles the

formation of sFn induced by anastellin. This aggregation probably

is a consequence of conformational changes induced in Fn upon

BBK32 or anastellin binding. Aggregates of plasma Fn induced by

either BBK32 or anastellin expose similar thermolysin cleavage

sites. Both proteins affect the structure of cellular Fn in deposited

matrices by cultured fibroblasts as monitored by the disappearance

of the epitope for the monoclonal antibody IST9. Furthermore,

both BBK32 and anastellin can inhibit the proliferation of cultured

endothelial cells. Thus, BBK32 and anastellin appear to modulate

the conformation of Fn in similar ways and have similar biological

activities. The ability to induce ordered Fn aggregation is not a

property seen for all Fn-binding MSCRAMMs. A segment of the

staphylococcal Fn-binding MSCRAMM FnbpA did not show

these effects. The FnbpA D3 segment contains a well defined
4F1–5F1 binding motif, but does not bind to F3 modules nor does

it induce Fn aggregation.

The Fn-binding activity of BBK32 was previously located to an

intrinsically disordered segment of the lipoprotein corresponding

to residues 21–205. The sequence 147–205, found within the

segment, binds the Fn NTD and resembles the NTD-binding

motifs identified in FnbpA of S. aureus and Sfb1 of S. pyogenes.

BBK32 also includes a putative gelatin binding domain (GBD)-

binding motif corresponding to residues 120–147 [20] that is

similar to a motif in Sfb1 that has GBD-binding activity

[26,27,28]. Now, we have identified a F3 binding motif in the

BBK32 Fn-binding segment. This F3-binding motif is located

within residues 147–205. It is interesting to note that the NTD-

binding motif in BBK32 also is located to residues 147–205.

Residues 165–182 contain the 2F13F1 binding motif and residues

146–162 contain the 4F15F1 binding motif [20]. Soluble Fn is

stabilized by intramolecular ionic interactions between specific

modules. These interactions occur among the 1F1–5F1, the
2F3–3F3, and the 12F3–14F3 segments [3]. Binding to the NTD

might cause a conformational change in the F3 modules that could

then be stabilized by a BBK32-F3 module interaction leading to

Fn aggregation.

The F3-binding motif from BBK32 is also present in anastellin.

The residues in BBK32 that appear to comprise the sFn-inducing

motif have weak sequence homology to a sequence found in

anastellin (Fig. 8). Recombinant anastellin and BBK32 are

structurally different. Anastellin represents the C-terminal two-

thirds of the Fn 1F3 module, and has a defined structure with two

b-sheets. When both proteins are aligned the motif appears to be

divided, however, when anastellin is properly folded, the residues

are in close proximity and are available for Fn interactions (Fig. 8).

The active sFn-inducing motif in anastellin has not yet been

elucidated, however, residues QLISI (weak homology to the

QGIAG sequence in BBK32 (168–175)), are only exposed in

anastellin and not in the complete 1F3 module. The RPKNSV

sequence identified in anastellin is in a short loop region of the

protein where it could have a restricted flexibility in the intact F3

module. In anastellin, the 1F3 module is truncated. This

truncation might lead to a partial unfolding which might release

the structural constraints of the fold. BLAST [29] searches using

the intact or divided F3-binding motifs as probes reveal a number

of microbial and mammalian proteins containing related motifs

(data not shown). Some of the identified proteins are known to

bind Fn. These include the microbial proteins Efb from

Staphylococcus aureus [30] and Sfb1 Streptococcus pyogenes [31] and a

segment in human type I collagen which induces Fn fibrillogenesis

[32].

We have shown that full length BBK32 (residues 21–354) is

active and can induce sFn formation. It should be pointed out that

this is the first native protein shown to have sFn-inducing activity.

Anastellin is an artificial, recombinant fragment that is probably

not present in vivo. Although it is yet unknown whether intact

BBK32 expressed on the surface of B. burgdorferi induces sFn, we

can speculate about potential biological consequences of BBK32-

induced-sFn formation. The ability of BBK32 to inhibit

endothelial cell proliferation, which may be a function of sFn,

may ultimately facilitate the hematogenous spread of the

spirochetes that are initially locally deposited at the tick bite site.

During this process the spirochetes have to cross the endothelial

lining twice, once to enter the blood stream and once to exit.

Elegant studies by Norman, et al., demonstrated, using intravital

microscopy, that a non-infectious strain of B. burgdorferi lacking

BBK32, among other lipoproteins (VlsE, OspF, Erpl, and ErpK),

had fewer transient interactions, dragging interactions, and

stationary adhesions per minute with the endothelium in a live

murine infection model. When the non-infectious strain of B.

burgdorferi was complemented with BBK32, the numbers of

interactions per minute were restored to the same levels of the

infectious strain [33]. This indicates that BBK32 plays an

important role in B. burgdorferi-endothelium interactions. The

results of this study correlate well with earlier studies that

Figure 8. BBK32 (160–175) aggregates plasma Fn. BBK32 (160–175), BBK32 (160–167), BBK32 (168–175), BBK32 (160–186), and BBK32 (160–186)scramble were
titrated into 1 mM purified plasma Fn and the optical density at 600 nm was measured.
doi:10.1371/journal.pone.0005412.g008
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demonstrated endothelial cell attachment and internalization of B.

burgdorferi in vitro [34,35,36,37,38]. In addition, in a mouse model of

Lyme disease, B. burgdorferi mutant strains containing bbk32 gene

deletions have an attenuated infectivity when assessed at twenty-

one days post infection [39], demonstrating that BBK32 is a

virulence factor in borrelioses.

It is also intriguing that BBK32 induces a conformational

change in tissue Fn that can be monitored by the loss of the

epitope recognized by the monoclonal antibody IST 9. This

epitope has been located to the EDA module (specifically residues
39PEDGIHELFP48) that also harbors binding sites for the a4b1

and a9b1 integrins [40]. Thus, it is possible that binding of BBK32

to Fn may regulate Fn’s interactions with these integrins, which in

turn may benefit the spirochetes. The effects of BBK32 on Fn

interactions with different integrins are currently being investigat-

ed in our laboratory.

Materials and Methods

Proteins
The anastellin construct was generously provided by Dr. Paula

McKeown-Longo (Albany Medical College). A recombinant protein

(amino acids: NAPQPSH….LISIQQ) with a C-terminal His-tag

was produced in bacteria and purified [9,24,25]. Recombinant

BBK32 (21–205) was expressed and purified as described [19].

Recombinant (r) F3 modules (amino acids: 1F3: SGPVE….DFTTT,
1–2F3: SGPVE …. TSQTT, and 3F3: APDAP …. QETTG) were

expressed with N-terminal His-tags and purified by standard Ni-

NTA and ion-exchange chromatography. FnbpA peptide D3

(HGFN….LPKV), synthetic (s) BBK32 (146–166), sBBK32 (153–166),

sBBK32 (153–175), sBBK32 (175–202), sBBK32 (160–186), and

sBBK32 (160–186)scramble were synthesized and purified by HPLC

using previously described methods [41]. sBBK32 peptides 160–

175, 160–167, and 168–175 were synthesized and purified to at

least 98% by BioMatik Corporation (Cambridge, ON, Canada).

Molecular weights were determined by mass spectrometry (Tufts

Core Facility, Boston, MA). Plasma Fn was affinity purified

from human plasma (Gulf Coast Regional Blood Center

Houston, TX) as described previously [42]. Protein concentra-

tions were calculated using absorbance at 280 nm.

ELISA-type binding assay
Binding of BBK32 to F3 modules was tested by coating 1 mg of

recombinant 1F3, 1–2F3, and 3F3 modules in 50 ml of 50 mM Tris-

HCl, 150 mM NaCl, pH 7.5 (TBS) per well in Immulon 4HBX

microtiter plates (Dynatech Laboratories, Chantilly, VA) and

incubating overnight at 4uC. The next day, the wells were washed

with 200 ml TBS, 0.05% Tween 20, pH 7.4 (TBST) and blocked

with 200 ml TBST containing 2% ovalbumin (Sigma, St. Louis,

MO) for one hour at room temperature. The wells were then

washed and rBBK32 (21–205) or peptide D3 from FnbpA was added

to the wells in increasing concentrations. Plates were incubated for

one hour at room temperature. After washing with TBST,

primary antibodies (rabbit IgG anti-BBK32 or rabbit IgG anti-

FnbpA, produced by Rockland, Gilbertsville, PA) were added to

each well at a concentration of 0.48 mg/ml. Plates were incubated

for one hour at room temperature. Following washing with TBST,

a 1:3000 dilution of HRP-conjugated goat-anti-rabbit antibodies

(BioRad, Hercules, CA) was added to each well. Plates were

incubated for one hour at room temperature and then washed

with TBST. Color was developed by adding SigmaFast
TM

OPD

(Sigma) to each well and incubating at room temperature for

10 minutes. Absorbance was measured at 450 nm using a Thermo

Max microplate reader (Molecular Devices, Sunnyvale, CA). Half-

maximal binding was assessed using GraphPad Prism 4.

Fn aggregation assay
rBBK32 (21–354), rBBK32 (21–205), sBBK32 (146–166), sBBK32 (153–175),

sBBK32 (175–202), sBBK32 (160–167), sBBK32 (160–175), sBBK32 (168–175),

sBBK32 (160–186), sBBK32 (160–186)scramble, FnbpA peptide D3,

anastellin, and purified plasma Fn were centrifuged at

14,000 rpm for 15 minutes and then filtered through 0.22 mm

PES syringe filters (Nalgene, Rochester, NY). Following

filtration, BBK32, FnbpA peptide D3, and anastellin were

titrated into 1 mM purified plasma Fn in TBS. After the

addition of each aliquot, the Fn/protein mixture was carefully

mixed five times with a 200 ml pipette and optical density at

600 nm was measured using a BioPhotometer (Eppendorf, New

York, NY) after 10 seconds.

Proteolytic digestion of Fn aggregates
BBK32, anastellin, and plasma Fn were dialyzed into thermolysin

digestion buffer (25 mM Tris, 0.5 mM EDTA, pH 8, 50 mM

NaCl, and 2.5 mM CaCl2). 20 mM BBK32 or 20 mM anastellin was

added to 1 mM plasma Fn. Solutions were mixed and aggregates

were allowed to form for one hour at room temperature. After one

hour incubation, 5 mg/ml thermolysin (Sigma) was added to the

BBK32/Fn, the anastellin/Fn, and to plasma Fn. The solutions

were incubated at room temperature with end-over-end mixing for

2 hours. Digestion was stopped after two hours with the addition of

EDTA to a final concentration of 5 mM. Samples were then run on

4–20% gradient SDS-PAGE gels under non-reducing conditions.

Protein fragments were transferred to PVDF membranes (Millipore,

Billerica, MA) and stained with 0.25% Coomassie Brilliant blue-250

in 40% methanol until bands were visible. Excess stain was removed

with 40% methanol and bands that were present in BBK32/Fn and

anastellin/Fn, but not in plasma Fn lanes, were excised and

analyzed by N-terminal sequencing using Edman degradation

(Protein Sequencing Division, Tufts University Core Facility,

Boston, MA).

BBK32 effects on Fn matrix assembled by normal human
dermal fibroblasts

46104 adult normal human dermal fibroblasts (NHDFs)

(Cambrex, East Rutherford, NJ) were seeded onto glass coverslips

in 24 well Costar tissue culture plates in fibroblast growth media-2

(FGM-2) (Cambrex). Cells were incubated for 48 hours and then

rBBK32 (21–205), sBBK32 (146–166), sBBK32 (153–175), sBBK32 (175–202),

anastellin, or FnbpA peptide D3 was added to a final concentration

of 5 mM in FGM-2. Treated cells were incubated for 20 hours at

37uC, 5% CO2. After incubation, cells were washed with

Dulbecco’s PBS (DPBS) (Gibco, Invitrogen, Carlsbad, CA) and

fixed with 2% paraformaldehyde for 30 minutes at room

temperature. Following washing with DPBS, cells were blocked

with 1% BSA for one hour at room temperature. Cells were then

probed with Alexa Fluor 488-anti-Fn, and monoclonal antibodies

IST-9 (cellular Fn) (abcam, Cambridge, UK) or combinations of

antibodies at a dilution of 1:3000 for one hour at room temperature.

After incubation, cells were washed extensively with DPBS and

coverslips were mounted using Gel/Mount (biømeda, Foster City,

CA) onto glass slides and images were taken using a LSM 510

Confocal Microscope (Zeiss).

Endothelial cell proliferation assay
16104 human umbilical vein endothelial cells (HUVECs)

(Cambrex) were seeded into Costar 24 well tissue culture plates
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in endothelial growth media-2 (EGM-2) (Cambrex) and allowed to

adhere for two hours. After two hours, rBBK32 (21–354), rBBK32

(21–205), sBBK32 (146–166), sBBK32 (153–175), sBBK32 (175–202),

anastellin, and FnbpA peptide D3 were added in a dose dependent

manner to the wells. Cells were incubated for 72 hours at 37uC,

5% CO2. After 72 hours, wells were washed with PBS and cells

were trypsinized with 0.5% trypsin/EDTA (Cambrex). Trypsin-

ized cells were collected in microcentrifuge tubes and trypsin/

EDTA was neutralized with EGM-2. Cells were counted from

each well (three counts/well, three wells/dose) using a hemacy-

tometer.
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