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Abstract

Plant-based polyphenols (i.e., phytochemicals) have been used as treatments for human ailments for centuries. The
mechanisms of action of these plant-derived compounds are now a major area of investigation. Thousands of
phytochemicals have been isolated, and a large number of them have shown protective activities or effects in different
disease models. Using conventional approaches to select the best single or group of best chemicals for studying the
effectiveness in treating or preventing disease is extremely challenging. We have developed and used computational-based
methodologies that provide efficient and inexpensive tools to gain further understanding of the anticancer and therapeutic
effects exerted by phytochemicals. Computational methods involving virtual screening, shape and pharmacophore analysis
and molecular docking have been used to select chemicals that target a particular protein or enzyme and to determine
potential protein targets for well-characterized as well as for novel phytochemicals.
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Introduction

The consumption of fruits and vegetables has long been

believed to decrease the risk of developing various types of human

cancers [1]. A major class of compounds within foods that possess

these activities are the polyphenols [2]. The phenylpropanoid

metabolic pathways of plants generate these polyphenolic com-

pounds from thousands of secondary plant metabolites [3].

Flavonoids are the most common family of polyphenolic

compounds with up to 8,000 individual compounds identified

[4]. Flavonoids found in vegetables, cereals, legumes, fruits, and

beverages such as wine, teas, and coffees can be subdivided into 14

different categories based on chemical structure. These categories

include the chalcones, dihydrochalcones, aurones, flavones,

flavonols, dihydroflavonols, flavanones, flavanols, flavandiols,

anthocyanidins, isoflavonoids, biflavonoids, and proanthocyani-

dins [5].

The anticarcinogenic potential of a variety of well-characterized

flavonoids has been well documented [1]. Isoflavonoids, such as

anthraquinones, chalcones, and prenylflavonoids, are all capable

of promoting estrogenic activity in mammals [6]. They have also

been shown to possess anticancer properties [7]. Genistein, for

example, a major member of the isoflavonoid family derived from

soybeans [7], specifically inhibits the epidermal growth factor

receptor (EGFR) tyrosine kinase activity, which plays an important

role in cell proliferation and transformation [8]. New findings

continue to be reported related to these compounds. Resveratrol, a

polyphenol found in red wine, is known to possess antioxidant

activities as well as anticancer activities explained by its inhibition

of the cyclooxygenase proteins [9]. Recently, we reported that

resveratrol can suppress leukotriene A4 hydrolase (LTA4H) activity

[10], which is over-expressed in lung and colon cancer cells [11].

Flavonoids are promiscuous in that they can suppress the

growth of many different types of cancer cells through a variety of

mechanisms. This nonspecificity is compounded by the fact that

thousands of flavonoids exist and therefore their study has

provided a very rich area of research. Only a few cases of

computational work focusing on flavonoids exist [12,13,14]. Using

conventional methods to select the best single or group of best

chemicals for identifying compounds that are effective in on

treating or preventing a disease like cancer is difficult. Compu-

tational strategies for determining protein targets of flavonoids

have not yet received a great deal of attention. Over the last 3

years, our laboratory has utilized computational strategies that

include virtual screening, shape similarity-screening, and molec-

ular docking to identify potential protein targets of flavonoids and

other phytochemicals [15]. These computational-based method-

ologies have provided efficient and inexpensive tools to gain

further understanding of the anticancer and therapeutic effects

exerted by polyphenols. Herein we present our process for

combining those computational strategies with experimental

methodologies for validating specific flavonoids and their respec-

tive protein targets.
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Materials and Methods

Virtual Screening
Virtual screening is a computational technique used in drug

discovery research in recent years and it has become an

important step in the drug discovery process. The screening

involves the identification and compilation of relevant chemical

structures from large chemical libraries. The chemicals identified

are those most likely to bind to a protein target, typically a

protein receptor selected by using various computer programs

or identified experimentally. Virtual screening by molecular

docking is the major computational method employed in drug

discovery for ‘‘hit’’ identification [16]. The primary methodol-

ogy used is structure-based virtual screening, which involves

docking of thousands of candidate ligands into a protein target

followed by scoring the protein-ligand binding interaction to

estimate the binding energy of the ligand [17]. Structure-based

virtual screening requires the 3D structure of the ligands. The

ZINC (i.e., an acronym for ‘‘ZINC is not commercial’’)

Database contains over 13 million purchasable compounds in

3D docking format that are freely available for virtual screening

[18]. From this huge database, smaller and more specific high-

quality libraries can be built for targeted virtual screening [19].

Another available database containing 2D forms of molecules is

the National Institute of Health’s PubChem online database

comprising over 27 million unique structures (http://pubchem.

ncbi.nlm.nih.gov/). In our laboratory, we have created a smaller

flavonoid compound database of 2,620 compounds, including

aurones, chalcones, flavones, flavanones, isoflavones, biflavo-

noids, anthocyanidins, dihydrochalcones and proanthocyanidins.

These flavonoid compounds were collected and compiled from

the NCI PubChem database using structure based searching.

This database was used in the screening for potential inhibitors

targeting a number of cancer-related proteins, including p90

ribosomal S6 kinase 2 (RSK2), cyclin dependent kinase (Cdk),

mitogen-activated protein kinase kinase 1 (MEK1), epidermal

growth factor receptor (EGFR) and phosphatidylinositol 3-

kinase/protein kinase B (PI3-K/PKB).

The Ras/extracellular signal-regulated kinase (ERK) pathway

regulates cell proliferation, survival, growth and motility and

tumorigenesis [20]. RSK2, a member of the p90RSK family, is a

direct substrate kinase of ERKs and is an important direct effector

for transcriptional activation of downstream target transcription

factors. Furthermore, RSK2 is reportedly involved in prostate

cancer cell proliferation [21] and c-fos–dependent osteosarcoma

development [22]. RSK2 protein abundance is increased in many

human cancer cell lines and in various human skin tumors,

including melanomas and squamous cell carcinomas [23].

Therefore, identifying a selective RSK2 inhibitor is extremely

important for chemoprevention or therapeutic drug development.

Therefore, herein we used RSK2 as an example to demonstrate

how computational strategies and experimental methodologies can

be combined effectively to identify selective flavonoid inhibitors.

To date, a number of potential RSK2 inhibitors have been

reported, including eriodictyol [24] and kaempferol [23,25,26],

two flavonoid compounds and SL0101, a synthesized compound

not found in plants [27]. These flavonoids are ubiquitously found

in fruits and vegetables as well as popular beverages, including

wine, tea, and coffee and exhibit antioxidant, antitumor, and anti-

inflammatory effects [28].

Our laboratory has solved and reported the crystal structures of

the C-terminal and N-terminal kinase domains of RSK2 [29,30].

The N-terminal kinase domain was bound with ANP at the ATP

binding site. Thus, this structure (PDB ID:3G51) was downloaded

from the PDB Bank for virtual screening studies. Crystal structures

or homology models of the target protein to which a small

molecule will be docked are downloaded from the Protein

Databank (PDB). Waters, metals, and ligands are then stripped

from the structure and hydrogens and atom charges are added to

the structures using the protein preparation module in Schrödin-

ger’s Maestro v9.2 GUI. An ATP binding site-based pocket was

generated within a 30-Å3 grid. The 2D structure database of

flavonoids was converted to a 3D structure database using the

LigPrep module of the Schrödinger Suite of software.

High throughput virtual screening (HTVS) and docking are

usually performed first because they are intended for the rapid

screening of large numbers of ligands followed by standard and

extra precision (SP and XP) docking. Here, for our flavonoid

database, only SP and XP docking were performed because of the

smaller number of ligands involved. All compounds were docked

flexibly and a top-20 list of compounds was generated and

organized based on the docking score (i.e., lower score is best). A

list of the top-6 ranked compounds was compiled (Table 1) and

kaempferol (Fig. 1A) and quercetin (Fig. 1B) were purchased for

experimental validation. Kaempferol and quercetin are natural

flavonols found in apples, onions and other plants.

Shape-Similarity Screening Method
The theory of shape-similarity screening is derived from the idea

that molecules possessing similar shapes and electrostatic capabil-

ities might exhibit analogous biological activity. The method

involves consideration of the atomistic and spatial characteristics

of the target molecule. The pharmacophore and physical features

of the molecule are quantitatively compared with a library of

compounds. When searching for potential target proteins, the

compound library used is composed of crystallized ligands

extracted from the most recent version of the PDB [31]. The

ligand conformation in the crystal structure is used because

Table 1. Results of virtual screening for RSK2 inhibitors.

Compound Name Docking Score (kcal/mol) Activity Validation

Pedalitin 210.20 *

Quercetin 3-sulfate 29.93 *

Quercetin 29.40 Yes

5-Hydroxy-49-methoxy-7-methylflavone 29.28 *

Kaempferol 28.86 Yes

3,39-di-O-ethylquercetin 28.50 *

*, Not commercially available.
doi:10.1371/journal.pone.0038261.t001

Computational Strategies Finding Protein Targets
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the atoms are oriented in a manner optimized for binding to the

protein. Any available database can be used when searching for

similar compounds.

The PHASE [32] module of Schrödinger’s molecular modeling

software package is one program that can perform this type of

shape-similarity search [33]. The atom type information is

included for consideration of not only shape similarity but also

to align potential pharmacophore points between the queries and

targets. The cutoff to be used for the results takes the top aligned

structure for each molecule returned and all conformers possessing

a Tanimoto similarity coefficient below 0.7 are deleted [34,35].

The smaller flavonoid compound database that we created and the

latest version of the PDB, which contains more than 500,000

protein structures complexed with ligands, were used for shape-

similarity screening. We also created a specific kinase database of

about 4,000 structures complexed with ligands that we collected

from the PDB for screening kinase targets separately.

Our previous studies showed that myricetin (Fig. 1C), a

flavonoid found in many grapes, berries, fruits, vegetables, herbs,

as well as other plants, and one of the phenolic compounds present

in red wine, exhibits potent anticancer and chemopreventive

effects, especially on UVB-induced skin cancer [36], but its

molecular mechanisms and targets are unclear. Thus, to identify

off-target protein affected by myricetin, shape-similarity screening

was performed using the PDB ligand database and our special

kinase database.

Figure 1. Chemical structures. (A) Chemical structure of kaempferol; (B) Chemical structure of quercetin. (C) Chemical structure of myricetin. (D)
Chemical structure of LY294002. (E) Chemical structure of isorhamnetin.
doi:10.1371/journal.pone.0038261.g001

Computational Strategies Finding Protein Targets
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We also attempted to identify novel inhibitors targeting PI3-K,

which is a well known kinase involved in cellular functions such as

growth, proliferation, differentiation, motility, survival and intra-

cellular trafficking, all of which are associated with cancer

development. Wortmannin and LY294002 are broad inhibitors

that target all PI3-K family members. LY294002 (Fig. 1D) is a

morpholine derivative of quercetin and although its IC50 is about

500-fold higher than that of wortmannin, it is still widely used in

cell biology as a specific PI3-K inhibitor because of its stability in

solution [37]. We therefore used the structure of LY294002 to

carry out the screening for potential PI3-K inhibitors in our

flavonoid database using the PHASE module of the Schrödinger

Suite 2011. To perform the screening, myricetin and LY294002

were first prepared separately using the LigPrep module of the

Schrödinger Suite 2011 under the OPLS_2005 force field and a

specifying pH value of 7.0. Then shape-similarity screening was

carried out using PHASE.

Molecular Docking Method
Molecular docking has become a standard tool in computa-

tional biology for predicting the binding orientation of small

molecule drug candidates with their protein targets in order to

predict the affinity and activity of the small molecule. Thus,

molecular docking plays an important role in the rational design of

drugs. GLIDE from the Schrödinger Suite 2011 [38] is one of the

programs used in our laboratory to perform docking.

Different protocols for docking are attempted before determin-

ing the correct set of parameters to be used for docking. The

correct re-docking of the ligand that was crystallized with the

target protein is typically used as validation of the chosen

parameters. When more than one crystal structure of a target

protein is available, cross-docking is performed to determine which

crystal structure is most suitable for docking [39].

In our laboratory, we had found that isorhamnetin (Fig. 1E), an

O-methylated flavonol in herbal medicinal plants such as red

turnip, goldenrod, mustard leaf and gross Hippophaer hamnoides L.,

could inhibit the kinase activity of MEK1 or PI3-K and the

inhibition was due to isorhamnetin’s direct binding with these

kinases [40]. Molecular docking was used to further study the

binding of isorhamnetin with MEK1. First an X-ray structure of

the human MEK1 in a complex with ligand and MgATP (PDB

1S9J) with a 2.4 Å resolution was downloaded from the PDB. The

protein was prepared for docking using the Protein Preparation

Wizard. All crystallographic waters were deleted and a 30-Å3 grid

was generated based on the ATP noncompetitive ligand (BBM)

binding site of the protein receptor. MacroModel was used to

build and energetically minimize isorhamnetin to create the most

energetically favorable conformation needed for docking studies.

Several standard procedures included in Schrödinger’s GLIDE

docking protocols were performed. Procedures included docking

with standard precision (SP) or extra precision (XP) in GLIDE,

and the more CPU-intensive Induced-Fit Docking (IFD) method

with the default parameters were conducted with SP and XP

Figure 2. Quercetin binds with RSK2 and inhibits RSK2 activity in vitro. (A) Quercetin binds at the ATP pocket of RSK2 most likely in an ATP-
competitive manner. (B) RSK2 binds with quercetin. A lysate prepared from JB6 C41 cells or commercially available active RSK2 was incubated with
Sepharose 4B-quercetin beads or with Sepharose 4B beads alone, and the pulled down proteins were analyzed by Western blot. (C) Quercetin binds
with either the NTD or the CTD of RSK2. To identify the RSK2 domain that binds with quercetin, RSK2 proteins, as indicated, were incubated with
Sepharose 4B-quercetin beads or with Sepharose 4B beads alone. The pulled down proteins were analyzed by Western blot. (D) Active RSK2 (10 ng)
was combined with GST-NFAT3-261-365 (2 mg), 10 mM unlabeled ATP, 10 mCi [c-32P]ATP, and different doses of quercetin (0–50 mM). An in vitro
kinase assay was performed and the32P-labeled phosphorylated NFAT3 was visualized by autoradiography. Band density was quantified using the
Image J software program (NIH) and the band intensity of active RSK2 and GST-NFAT3-261-365 (100%) was compared.
doi:10.1371/journal.pone.0038261.g002

Table 2. Potential kinase targets of myricetin.

Protein PDB ID Ligand Code
Shape Similarity
Score Reported Inhibitor

Average Similarity
Score Hits

Pim-1 2O3P QUE 0.90 yes 0.82 8**

2O63 MYC 0.88 yes

2O64 MYU 0.86 yes

GSK-3b 3DU8 553 0.83 yes 0.79 5**

1Q41 IXM 0.80 yes

3ZRL ZRL 0.78 yes

PI3-K* 3PRZ 3RZ 0.81 yes 0.77 6**

3DPD 41A 0.79 yes

3PS6 3PS 0.78 yes

Cdk2 1E1V CMG 0.83 yes 0.76 16**

1H0W 207 0.82 yes

1E1X NW1 0.80 yes

Raf* 3PPJ FOI 0.73 yes 0.72 2

3C4C 324 0.71 yes

MEK1* 3EQH ADP 0.71 yes 0.71 1

*, Protein targets that been validated in our laboratory.
**, Only the top 3 hits are shown here.
doi:10.1371/journal.pone.0038261.t002
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docking. All these docking procedures allowed ligand docking

flexibility and a total of 20 top ranked structures were analyzed

using the IFD method.

Results

Virtual Screening
Based on our virtual screening results for RSK2, quercetin and

kaempferol have binding scores of 29.40 kcal/mol and

28.86 kcal/mol, respectively, with RSK2 (Table 1). These scores

are a very good indication of binding compared with 27.73 kcal/

mol for SL0101, a well-known RSK2 inhibitor. Our docking

model shows quercetin binding in an ATP-competitive manner

within the ATP banding site of RSK2 (Fig. 2A), indicating that

quercetin might also be a potential inhibitor of RSK2. To examine

our hypothesis, we conjugated quercetin with Sepharose 4B beads

and conducted an in vitro pull-down assay using a whole cell lysate

or an active RSK2 protein (200 ng; Fig. 2B). The results showed

that the RSK2 protein bound with Sepharose 4B-quercetin beads

but not with Sepharose 4B beads alone (Fig. 2B). Furthermore, we

conducted a pull-down assay with Sepharose 4B-quercetin beads

and several bacterially-expressed His-tagged RSK2 protein

fragments, including His-RSK2-1-740, His-RSK2-1-373, His-

RSK2-328-740, and His-RSK2-399-740. Western blot results

indicated that both the NTD and CTD of RSK2 bound with

Sepharose 4B-quercetin beads (Fig. 2C). To confirm the results of

the virtual screening that identified quercetin as a potential RSK2

inhibitor, we conducted an in vitro kinase assay. Results indicated

that quercetin inhibited RSK2 activity in a dose-dependent

manner (Fig. 2D). We previously used an in vitro kinase assay, an

anchorage-independent cell transformation assay and a pull-down

assay with Sepharose 4B-kaempferol beads to show that

kaempferol binds with the NTD of RSK2 and inhibits RSK2

activity in vitro and ex vivo [23,26,31].

Shape-Similarity Screening. In our study, the shape-

similarity screening was performed using Schrödinger’s PHASE

module to examine the database comprised of protein complexes

with ligands and the specific kinase database. Myricetin, a

flavonoid found in grapes, berries, fruits, vegetables, herbs, as

well as other plants, and a phenolic compounds present in red

wine, was determined to target many potential kinases (Table 2).

The data indicate six different kinase/ligand complexes with an

average score of shape-similarity with myricetin greater than 0.7.

The ligand with the greatest similarity to myricetin is QUE or

quercetin (Fig. 1B), which is bound with Pim-1 (PDB ID: 2O3P).

The similarity score is 0.90 and quercetin is a reported inhibitor of

Pim-1 [41]. A total of 8 Pim-1 structures were ‘‘hit’’ by myricetin

with a similarity score of greater than 0.7 (only the top 3 hits are

shown in Table 2). Almost all the ‘‘hit’’ ligands are reported

inhibitors of their targeted kinase and have a similarity score of

greater than 0.7. Thus, we believe that these related kinases might

be possible targets of myricetin and that myricetin might

potentially inhibit their activity. Our previous studies indicated

that myricetin could inhibit the activity of PI3-K, MEK1 and Raf

[36,42,43].

To find potential flavonoid inhibitors of PI3-K, LY294002, a

broad PI3-K inhibitor, was chosen to use as the query structure

and shape-similarity screening was performed using our flavonoid

database and the PHASE module. Similarity coefficients below

0.75 were deleted and 6 of the top ranked candidate compounds

are listed (Table 3). We have previously validated myricetin [42]

and isorhamnetin [40] as direct inhibitors of PI3-K.

Molecular Docking
To examine the molecular mechanism of the inhibition of

MEK1 by isorhamnetin and to understand how isorhamnetin

interacts with MEK1, we docked isorhamnetin in silico to the ATP-

noncompetitive binding pocket of MEK1 using several protocols

in the Schrödinger Suite of software. By studying all the models

returned, we found that isorhamnetin formed some favorable

connections and docked nicely within the MEK1 ATP-noncom-

petitive binding site. Some important hydrogen bonds were

formed between isorhamnetin and the backbone of MEK1,

including Val127 in the ATP-noncompetitive binding site and

Ser212 in the activation loop. Isorhamnetin also formed hydro-

phobic interactions with the side chain at Ile99, Phe129, Ile141,

Phe209 and Leu118 (Fig. 3A,B). These results would render

MEK1 catalytically inactive by stabilizing the inactive conforma-

tion of the activation loop. Note that some images were generated

with the UCSF Chimera program [44].

Discussion

Thousands of individual flavonoid compounds exist in various

vegetables, fruits, and other plants. Flavonoids, such as catechins

found in strawberries and green and black teas, kaempferol from

brussel sprouts and apples, and quercetin from beans, onions and

apples, are believed to exert anti-inflammatory and anticancer

activities. For example, all of these compounds reportedly might

reduce the risk of developing lung cancer [45]. Flavonoids inhibit

many different types of cancers through a variety of mechanisms

and thousands of flavonoids exist, which makes the screening of

their potential anticancer effects and identification of their specific

protein targets extremely challenging using conventional ap-

proaches. Fortunately, the development of computational simula-

tion techniques and other computational strategies has simplified

and streamlined the overall process. Virtual screening can easily

generate results from all flavonoid compounds that can bind with

and affect the activity of a specific protein target. Shape-screening

can assist in finding potential ‘‘off-target’’ proteins of a specific

flavonoid compound. Molecular docking methods can provide a

better indication of how a compound interacts with its protein

target and influence the activity of the targeted protein. These

three processes can lead to the rapid discovery of potential lead

compounds for anticancer treatment and chemoprevention.

In recent years, with the help of the Blue Gene/L [46,47]

supercomputer from IBM, our laboratory has studied the

effectiveness and mechanisms of several lead flavonoid com-

pounds in cancer chemoprevention and treatment by using

computational simulation strategies. These compounds include

kaempferol [23], isorhamnetin [40], 6,7,49-trihydroxyisoflavone

[48], eriodictyol [24], 7,39,49-trihydroxyisoflavone [49], quercetin

[50], EGCG [51], [6]-gingerol [52], myricetin [36], coffee

Table 3. Sixflavonoid candidate inhibitors for PI3-K.

Compound Name Shape Similarity Score Validation

Mitoflaxone 0.84 *

Dimeflin 0.83 *

Isowogonin 0.76 *

Kumatakenin 0.76 *

Myricetin 0.75 Yes

Isorhamnetin 0.75 Yes

*, Not commercially available.
doi:10.1371/journal.pone.0038261.t003

Computational Strategies Finding Protein Targets

PLoS ONE | www.plosone.org 6 May 2012 | Volume 7 | Issue 5 | e38261



Figure 3. Modeling of isorhamnetin binding with MEK1. (A) Isorhamnetin binds to an ATP-noncompetitive pocket of MEK1. The box indicates
an enlarged view. Hydrogen bonds are formed between isorhamnetin and the backbone of MEK1 (Val127 in the ATP-noncompetitive binding site
and Ser212 in the activation loop). (B) Ligand interaction diagram of the MEK1 and isorhamnetin complex. Residues are represented as colored
spheres, labeled with the residue’s name and number. The colors indicate the residue type (green = hydrophobic; blue = polar). The solid pink line
shows the hydrogen bond between the ligand and the receptor. Hydrophobic interactions are formed with the side chain at Ile99, Phe129, Ile141,
Phe209 and Leu118.
doi:10.1371/journal.pone.0038261.g003
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phenolic phytochemicals [53], caffeic acid [54] and delphinidin

[55]. All these compounds exert their inhibitory effect on specific

proteins, including RSK2, PI-3K, MEK1, Pin-1 and Fyn, which

are highly expressed or overactivated in some cancers such as

skin and colon cancer.

To identify the potential targets of a variety of flavonoid

compounds and to carefully study their mechanism of action, we

created a flavonoid database of 2,620 compounds. We are

continuing to enlarge the database by adding more and more

flavonoid compounds. Based on this database, we have obtained

results for every compound and its potential off-target proteins by

using shape-similarity screening. We have more than 4.1 million

records for all kinds of protein targets and 374,000 records for the

specific kinase targets. These results can be easily queried by

compound identification or by protein type. We have also

screened for lead compounds targeting several specific kinase

targets related to skin cancer, colon cancer and lung cancer using

virtual screening and will use these results for further mechanistic

studies in cancer chemoprevention and therapy.
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