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Abstract

Background: The inability to produce insulin endogenously precipitates the clinical symptoms of type 1 diabetes mellitus.
However, the dynamic trajectory of beta cell destruction following onset remains unclear. Using model-based inference, the
severity of beta cell destruction at onset decreases with age where, on average, a 40% reduction in beta cell mass was
sufficient to precipitate clinical symptoms at 20 years of age. While plasma C-peptide provides a surrogate measure of
endogenous insulin production post-onset, it is unclear as to whether plasma C-peptide represents changes in beta cell
mass or beta cell function. The objective of this paper was to determine the relationship between beta cell mass and
endogenous insulin production post-onset.

Methods and Findings: Model-based inference was used to compare direct measures of beta cell mass in 102 patients
against contemporary measures of plasma C-peptide obtained from three studies that collectively followed 834 patients
post-onset of clinical symptoms. An empirical Bayesian approach was used to establish the level of confidence associated
with the model prediction. Age-corrected estimates of beta cell mass that were inferred from a series of landmark
pancreatic autopsy studies significantly correlate (p.0.9995) with contemporary measures of plasma C-peptide levels
following onset.

Conclusions: Given the correlation between beta cell mass and plasma C-peptide following onset, plasma C-peptide may
provide a surrogate measure of beta cell mass in humans. The clinical relevance of this study is that therapeutic strategies
that provide an increase in plasma C-peptide over the predicted value for an individual may actually improve beta cell mass.
The model predictions may establish a standard historical ‘‘control’’ group - a prior in a Bayesian context - for clinical trials.

Citation: Klinke DJ II (2011) Age-Corrected Beta Cell Mass Following Onset of Type 1 Diabetes Mellitus Correlates with Plasma C-Peptide in Humans. PLoS
ONE 6(11): e26873. doi:10.1371/journal.pone.0026873

Editor: Jose A. L. Calbet, University of Las Palmas de Gran Canaria, Spain

Received June 6, 2011; Accepted October 5, 2011; Published November 2, 2011

Copyright: � 2011 David J. Klinke II. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grants from the National Science Foundation CAREER 1053490, the National Cancer Institute R15CA132124, and the
National Institute of Allergy and Infectious Diseases R56AI076221. The content is solely the responsibility of the author and does not necessarily represent the
official views of the National Science Foundation, the National Cancer Institute, the National Institute of Allergy and Infectious Diseases, or the National Institutes
of Health. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The author has declared that no competing interests exist.

* E-mail: david.klinke@mail.wvu.edu

Introduction

The regulation of human metabolism is a complicated process

that has evolved to match the intermittent nature of the availability

of metabolic substrates with the constant energetic requirements

for life [1]. The dysregulation of this process may manifest itself in

multiple ways, including clinical presentation with the symptoms

of diabetes. The societal burden of diabetes is significant through

increased health care costs and reduced human productivity [2–4].

Conservative estimates predict that the number of people with

diabetes will more than double between 2000 and 2030 [5].

Reducing the overall impact of this disease requires an improved

understanding of the aetiology of diabetes.

Understanding the aetiology of type 1 diabetes mellitus is

challenging due to the inability to observe directly the events in the

human pancreas that lead to the onset of hyperglycemia [6]. While

a reduction in endogenous insulin production precipitates the

onset of hyperglycemia, it is commonly stated that the onset of

hyperglycemia occurs when 80–95% of an individual’s beta cells

are destroyed [7,8]. However, this common wisdom is based

largely on a small number of biopsy studies from individuals with

recent disease onset who died soon after diabetes onset (e.g.,

[9–11]). One might infer from this common wisdom that the

ability to enhance beta cell function or preserve the remaining beta

cells would have a limited therapeutic potential [12]. As a result,

the research effort has focused on developing prognostic tools for

identifying individual, who will develop type 1 diabetes, prior to

onset. Given the clinical importance of this question, the objective

of a recent study [13] was to test the common wisdom for the

pathophysiology of type 1 diabetes mellitus against the histopath-

ological evidence.

A meta-analysis was used to extract and assess the significance

of embedded trends within these landmark studies. The data

reported in these landmark studies provide measurements of the
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remaining beta cells (i.e. beta cell mass) at the time of death.

Patients included in these studies died between 0 and 117 months

following diagnosis. While beta cell mass or endogenous insulin

production are not measured directly following onset, plasma C-

peptide is used as a surrogate measure of endogenous insulin

production [16–18]. The measurement of C-peptide in a cohort of

patients with type 1 diabetes has been shown to vary non-linearly

with time following onset. These measurements suggest that

endogenous insulin production increases following onset of type 1

diabetes and then slowly declines in the subsequent years.

Therefore, inferring the beta cell mass at onset must control for

this variability in the time of beta cell mass measurement. By

limiting the analysis to a subset of patients who died within three

weeks following diagnosis, the percent reduction in beta cell mass

at onset is not fixed but varies with age [13]. This trend suggests

that, in a 20-year old individual, as little as a 40% reduction in

beta cell mass is sufficient to precipitate clinical symptoms of type 1

diabetes. As this trend is at odds with the existing model for the

natural history of the disease [19], a mathematical model, which

was created based upon physiological considerations, explains this

behavior [13]. Here, this physiology-based mathematical model

was used to predict the change - relative to age-corrected non-

diabetic controls - in beta cell mass post-onset in the entire cohort

of patients reported in these landmark studies. While changes in

plasma C-peptide may be due to either a reduction in beta cell

function or a reduction in beta cell mass, the recovery in plasma

C-peptide following onset is interpreted commonly as a recovery

in beta cell function due to therapy. To test this common

interpretation, the model predictions were used to assess whether,

following onset, the dynamics of beta cell mass correlate with the

dynamics of plasma C-peptide measurements obtained in a cohort

of more contemporary patients.

Results and Discussion

Growth of the human body is a dynamic non-linear process

where different parts of the body grow at different rates. Of

particular relevance to type 1 diabetes mellitus, body weight

changes [20] at a different rate than beta cell mass [11], as shown

in Figure 1. One possible explanation for the observed reduction

in beta cell mass at onset could be attributed to the dynamic

imbalance between the number of beta cells and the insulin

requirements for a growing body. A mathematical model was

created to test whether this explanation provides a better

representation of the data.

The rate of change in insulin in the body can be represented as

a dynamic balance between the source of insulin, which is

proportional to beta cell mass, and sinks for insulin, which are

proportional to body weight:

Rate of change in insulin~Source{Sinks: ð1Þ

This relationship can be expressed in terms of a differential

equation:

dNI

dt
~a:BCMMIN (t){kd

:CI
:BWt(t)

r
, ð2Þ

where NI is the number of insulin molecules in the body; a is the

maximum rate of insulin release per beta cell mass (BCM), in units

of molecules:time{1:BCM{1; BCMMIN (t) is the minimum

required beta cell mass to maintain euglycemia; kd is the rate

constant for insulin clearance from the body, in units of time{1;

CI is the plasma concentration of insulin, in units of

molecules:volume{1; BWt(t) is the body weight, in units of kg,

that changes with age, t (see Figure 1); and r is the average density

of the human body, in units of kg:volume{1. Under fasting

conditions, the source and sinks are exactly balanced such that the

rate of change of insulin is equal to zero (i.e., dNI=dt~0). Under

fasting conditions, terms in equation 2 can be rearranged to solve

for BCMMIN (t):

BCMMIN (t)~
kd
:CI

:BWt(age)

r:a
: ð3Þ

By defining K to be equal to (kd
:CI )=(r:a), equation 3

simplifies to

BCMMIN (t)~K :BWt(t), ð4Þ

which implies that the minimum required beta cell mass is

proportional to dynamic changes in body weight, shown by the

solid curve in Figure 1.

The total beta cell mass (BCMTotal(t)) was represented as the

product of the beta cell density in the pancreas times the total

weight (volume) of the pancreas, shown as a dotted line in Figure 1.

This provides an estimate of the change in beta cell mass as a

function of age in normal individuals. In addition, the total beta

cell mass can be represented as the sum of the minimum beta cell

mass (BCMMIN ) and excess, or reserve capacity, beta cell mass

(BCMExcess(t)):

BCMTotal(t)~BCMExcess(t)zBCMMIN (t): ð5Þ

Equation 5 can be rearranged, combined with equation 4, and

divided by the total beta cell mass to define the normalized excess

Figure 1. The growth rates for beta cell mass and total body
weight exhibit different dynamic trends based upon age. The
age-associated changes in total beta cell mass (dotted line) corresponds
to the product of the dynamic trends in beta cell density [11] and
volume of the pancreas [11]. The change in body weight (solid line) as a
function of age is an average value from male and female growth charts
[20]. A similar figure appears in [13] but is included here for continuity.
doi:10.1371/journal.pone.0026873.g001

b-Cell Mass Correlates with Plasma C-Peptide
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beta cell mass (EBCM(t)):

EBCM(t)~
BCMTotal(t){K:BWt(t)

BCMTotal(t)
:100: ð6Þ

This mathematical model was used to predict the ‘‘excess’’ beta

cell mass (EBCM) as a function of age t by capturing the dynamic

balance between changes in body weight and beta cell mass. The

‘‘excess’’ beta cell mass corresponds to the reduction in beta cell

mass that is required before hyperglycemia occurs. EBCM

corresponds to the ratio of insulin-deficient islets to the total

number of islets observed in the transected pancreas reported in

recent onset patients [9–11], as the size of the pancreas in recent

onset patients was unchanged relative to normal controls [13].

The resulting model prediction for EBCM as a function of age is

shown in Figure 2 (solid line). The observed reduction in beta cell

mass in pancreata obtained from the subset of recent onset patients

(i.e., died within three weeks of diagnosis) are shown for com-

parison. The parameter K was estimated to be 499 units of BCM

kg{1 (95% C.I. = 458 to 605) [13]. The EBCM relationship

exhibits a similar dependence with age, as the youngest patients

exhibited an 85% reduction in beta cell mass while only a 40%

reduction was observed by the age of 20. In other words, the beta

cell mass initially grows at a faster rate relative to the whole body.

The beta cell mass plateaus while the overall body weight steadily

increases through 20 years of age. The net result of the different

growth dynamics is that the ‘‘excess’’ beta cell mass declines with

age. In addition, the mathematical model provides a prediction of

the beta cell mass required to maintain glucose homeostasis as a

function of the patient’s age t. In the following paragraphs, we will

use these predictions of the minimum required beta cell mass to

interpret plasma C-peptide levels following onset.

Comparison of beta cell mass to plasma C-peptide levels
The steady state (i.e., fasting) concentration of insulin in the

body can be obtained by rearranging Equation 3:

CI~
r:a:BCMMIN (t)

kd
:BWt(t)

: ð7Þ

This relationship implies that steady state levels of insulin can be

maintained when the BCMTotal is greater than BCMMIN by

reducing the insulin production per cell (a). Conversely, CI will

decrease below fasting levels when the BCMTotal is less than

BCMMIN , as an increase in a can not be used to compensate for a

reduction in beta cell mass. To compare our model against the

plasma C-peptide data, we implicitly make a couple of

assumptions. First, an equivalent expression for Eqn 7 can be

developed for plasma C-peptide such that the observed level of

plasma C-peptide is proportional to the predicted concentration of

insulin (i.e., CC{peptide~c:CI , where c is a proportionality

constant that does not change with disease state). Second, kd for

plasma C-peptide does not depend on C-peptide concentration or

disease state. In addition, the model was originally developed using

data limited to recent onset patients (i.e., died within three weeks

of diagnosis). This was done so that the predicted value for EBCM

should match the observed changes in insulin positive islets, i.e.,

predicted EBCM minus observed EBCM should equal zero.

When considering the entire cohort, the age of the individual was

used to predict a EBCM using the corresponding values for BWt
and BCMTotal . The comparison between plasma C-peptide levels

and the predicted EBCM minus observed EBCM are both shown

as a function of time following diagnosis in Figure 3.

A predicted EBCM greater than the observed EBCM suggests

that there are less insulin deficient islets than would be expected to

maintain euglycemia given the age of the individual (i.e.,

BCMTotal is greater than BCMMIN ) and suggests a recovery of

beta cell mass following onset. A predicted EBCM less than the

observed EBCM suggests that there is a further decline in beta cell

mass (i.e., BCMTotal is less than BCMMIN ). The trend in the post-

mortem studies suggests a slight rise in the 10 weeks following

diagnosis followed by a progressive decline in beta cell mass. The

observed plasma C-peptide levels show a similar dynamic trend.

To establish whether changes in plasma C-peptide levels and

excess beta cell mass exhibit a statistically significant correlation,

values for plasma C-peptide levels and the predicted minus

observed excess beta cell mass obtained at the same time following

diagnosis were plotted against each other. Linear regression was

used to establish whether these two estimates of beta cell function

exhibit a positive correlation. An empirical Bayesian approach was

used to establish the statistical significance of the correlation (i.e.,

the slope is greater than 0 with greater than 95% confidence) [22].

A summary of the Markov Chain Monte Carlo results are shown

in Figure 4. These results indicate that the three Markov Chains:

1) are independent, 2) randomly sample the same region of

parameter space, 3) provide estimates of the slope and intercept

that are correlated and can not be uniquely determined, and 4)

predict that the slope is greater than zero despite the correlation.

The positive correlation between plasma C-peptide and the

difference between predicted and observed EBCM is shown in

Figure 5. As illustrated by the posterior distribution in the slope

parameter (see Figure 4B), the probability that these two quantities

exhibit a positive correlation (i.e., the slope of the dotted line is

greater than zero) is greater than 99.95%. These results also

suggest that there is a regrowth of beta cell mass following the

onset of clinical symptoms.

The use of models to aid in understanding system behavior is a

central theme in science that transcends disciplinary boundaries

[23]. In this meta-analysis of the extent of beta cell destruction in

Figure 2. Comparison between the predicted and measured
excess beta cell mass in recent onset patients. The measured
reduction in beta cell mass in 60 patients, under 20 years of age, that
died within three weeks of diagnosis of type 1 diabetes mellitus (circles
[13]) is compared against the excess beta cell mass predicted by the
physiology-based mathematical model (Equation 6 - solid curve) and a
trendline obtained by linear regression (dotted line). A similar figure
appears in [13] but is included here for continuity.
doi:10.1371/journal.pone.0026873.g002

b-Cell Mass Correlates with Plasma C-Peptide
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patients with type 1 diabetes, two competing theories were

represented as mathematical models. The first model corresponds

to the prevailing theory that the degree of beta cell reduction at

onset is a fixed value. The second model, the physiological model,

corresponds to the idea that the observed reduction is a result of a

dynamic balance between beta cell mass and body weight.

Previously we show that the physiological model exhibits better

predictive accuracy, given the available data and the similar

complexity between the models, as each model contains a single

adjustable parameter [13]. In this work, the simplified physiological

model was used to show that age-corrected changes in beta cell mass

correlated with changes in endogenous insulin production following

diagnosis, as an external validation of the model [21]. A correlation

between endogenous insulin production and beta cell mass has been

previously shown in animal models [24,25] and in humans following

pancreatectomy [26,27] and islet transplantation [28,29]. To my

knowledge, this is the first analysis of data obtained during the

natural history of type 1 diabetes. Given the correlation between

age-corrected beta cell mass and plasma C-peptide following onset,

plasma C-peptide may provide a surrogate measure of beta cell

mass in humans that is adjusted for age. This work also suggests that

therapeutic strategies that provide an increase in plasma C-peptide

greater than the observed range in values for a given time following

diagnosis may actually improve beta cell mass. Longitudinal studies

that measure beta cell mass and body size in patients may be used in

the future to validate these predictions.

In summary, this physiological model suggests that clinical

presentation of the disease is not attributed solely to the

destruction of beta cell mass but is the result of a dynamic

imbalance between the production of insulin (i.e., beta cell mass)

and the size of the system (i.e., body weight). The correlation

between the model predictions and the reported changes in plasma

C-peptide suggests two points. First, the methods that were used in

these landmark studies exhibit a certain degree of accuracy in

estimating beta cell mass. By considering the trends in the data, we

are able to correct for the imprecision of the assays used. This

implies a subtle but important point. Inference of knowledge from

data is limited by the signal-to-noise ratio of the assay used to

measure a biological state (e.g., [30]). Common metrics used

to assess how well an interpretation (i.e., a model) describes

data, such as a coefficient of correlation (i.e., R2), lump the

reproducibility of an assay (i.e., the noise) together with model

inadequacy (i.e., the difference between the model and the

underlying biological signal). Conclusions drawn from studies that

evaluate the predictive potential of different biological metrics and

that do not distinguish between the underlying sources of variation

are fundamentally flawed (e.g., [27]). By using an empirical

Bayesian approach, we are able establish a level of confidence in

the biological interpretation of the data that is independent of the

underlying noise in the system. Second, the similar dynamic trends

suggest that the natural history of the disease is similar across these

studies. In part, this similarity reflects the difficulty in changing the

natural history therapeutically [14]. This dynamic trajectory in

plasma C-peptide may provide a standard historical ‘‘control’’

group for non-placebo-controlled trials, as suggested in a recent

editorial [15]. From a Bayesian perspective, this dynamic

Figure 3. Dynamic change in residual beta cell mass corresponds to the dynamic change in plasma C-peptide following onset of
type 1 diabetes. The difference between predicted and observed excess beta cell mass (right axis: x) and plasma C-peptide (left axis: square [17],
circle [18], n- children initially negative for autoantibodies at diagnosis and during follow-up [16], and ,- children positive for at least one
autoantibody [16]) shown as a function of time following clinical diagnosis of type 1 diabetes. Plasma C-peptide levels are reported as a mean + SE. A
9-point moving average of the difference in excess beta cell mass is shown for comparison (dotted line). The dynamic change in observed beta cell
mass was obtained from pancreata obtained from patients with type 1 diabetes [9–11]. The predicted beta cell mass is an estimate of the minimum
beta cell mass required to maintain glucose homeostasis.
doi:10.1371/journal.pone.0026873.g003

b-Cell Mass Correlates with Plasma C-Peptide
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trajectory, expressed in the form of a mathematical model, provides

prior knowledge - inferred from the clinical data obtained from 936

patients spread across multiple continents and 40+ years - for

interpreting new data. The distribution in these trajectories provides

a context for establishing a level of belief in whether a therapeutic

agent provides a significant clinical benefit. In silico model-based

inference may be particularly helpful for screening multiple

promising candidates in small non-placebo-controlled trials. Ther-

apeutic candidates that demonstrate a significant clinical benefit,

given the prior, may then be tested in larger double-blind placebo-

controlled trials, the current gold standard for FDA approval. Such a

staged strategy may reduce the overall cost and time associated with

approval and, ultimately, improve clinical outcomes.

Methods

In silico model-based inference was used to establish whether

changes in beta cell mass correlated with changes in endogenous

insulin production in individuals diagnosed with type 1 diabetes. Beta

cell mass was estimated from three landmark histopathology studies

that report insulin positive cells in pancreatic biopsies from patients

exhibiting symptoms of Type 1 diabetes mellitus [9–11]. Endogenous

insulin production was estimated from plasma C-peptide levels

measured in patients with type 1 diabetes [16–18]. An empirical

Bayesian approach [22] was used to establish a level of confidence

associated with the correlation between beta cell mass and plasma C-

peptide levels. The age-associated changes in total beta cell mass

(dotted line) was interpolated using the product of two cubic splines

that were fit to the dynamic trend in beta cell density [11] and to the

age-associated change in volume of the pancreas [11]. The change in

body weight (solid line) as a function of age was interpolated using a

cubic spline that was fit to the average value from male and female

growth charts [20]. Additional details regarding how the data was

analyzed are described in the following paragraphs.

Islet Histopathology Study Selection
Changes in beta cell mass in patients with type 1 diabetes were

obtained from a series of histopathology studies, which reported

insulin positive cells in pancreatic biopsies from patients exhibiting

symptoms of Type 1 diabetes mellitus. Three studies were

identified where histopathologies of the endocrine pancreas were

quantitatively reported for a group of young patients. All of the

patients were under the age of 25 and had died from primarily

diabetic ketoacidosis [9–11]. In total, 102 unique histopathology

results were included from these three studies.

C-peptide Study Selection
C-peptide is a protein that assists in the synthesis of insulin by

the beta cells and is released in the secretory granules in a 1:1

Figure 4. Markov Chain Monte Carlo summary plots for the model parameters. (A) The trace of slope and intercept parameters is shown as
a function of MCMC step. The traces for three parallel chains are shown in different colors: Chain 1 (Green), Chain 2 (Black), and Chain 3 (Red) (B)
Projection of the marginalized posterior probability density for the slope and intercept given the available data. Each point in the scatter plot
represents an individual step obtained from three parallel Markov Chains each containing 100,000 MCMC steps. The density of points is represented
by the color (yellow - highest density; blue - lowest density) and estimated using kernel density estimation. The correlation coefficient of the
parameters derived from all three Markov chains is shown above the diagonal.
doi:10.1371/journal.pone.0026873.g004
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molar ratio with insulin. In the presence of exogenous insulin,

plasma C-peptide is used as a surrogate measure of endogenous

insulin production following onset of type 1 diabetes. Three studies

were identified where longitudinal studies were used to report the

plasma C-peptide levels as a function of time following diagnosis

for type 1 diabetes [16–18]. Two studies report fasting plasma C-

peptide levels [17,18] while the third reports random measure-

ments [16]. In addition, one study stratified the reported plasma

C-peptide levels into two groups: individuals that tested positive

for at least one islet cell specific autoantibody (e.g., islet cell

antibodies (ICA), insulin autoantibodies (IAA), and glutamic acid

decarboxylase (GAD65A)) and individuals that were negative for

autoantibody expression [16]. The presence of islet cell specific

autoantibodies was a requirement for inclusion in Chaillous et al.,

while in Pozzilli et al. all of the results were reported together

irrespective of autoantibody status. The results are reported as a

mean + standard error. In total, the results for 834 patients were

included from these three studies, as summarized in Table 1.

Statistical Analysis of Age-Corrected Reduction in Beta
Cell Mass Compared to Plasma C-peptide Levels

We hypothesized that a decrease or an increase in beta cell mass

relative to the expected beta cell mass for the age of an individual

should correspond to changes in plasma C-peptide levels. The

plasma C-peptide levels are reported as aggregate values at a given

time point following diagnosis. In contrast, observations of beta

cell mass are reported for single individuals at their corresponding

time of death following diagnosis. To establish a fair comparison,

an average value for the predicted minus observed excess beta cell

mass was estimated using a nine-point moving average and

centered at the time following diagnosis (dotted line in Figure 3).

The uncertainty in the average value was also estimated using a

nine-point moving standard deviation.

An empirical Bayesian approach was used to establish the level

of confidence associated with the correlation coefficient between

these two estimates of beta cell function (i.e., the linear regression

slope), given the available data [22]. The data was weighted based

upon the sample size. A Markov chain Monte Carlo algorithm was

used to estimate the posterior distribution in the slope and

intercept of the linear regression line. An initial unbiased Gaussian

prior distribution was used to propose new steps in the Markov

chain. The prior distribution was scaled to achieve an acceptance

fraction of 0.4. The Gelman-Rubin potential scale reduction factor

was used to estimate convergence of three independent Markov

chains to the posterior distribution [31]. Posterior estimates of the

slope were obtained from the converged segments of the three

independent chains. Each of the chains contained greater than

100,000 steps following convergence. A p-value of greater than

0.95 was considered significant (i.e., greater than 95% of the steps

in the converged Markov chains exhibited a slope greater than 0).

Author Contributions

Conceived and designed the experiments: DJK. Performed the experi-

ments: DJK. Analyzed the data: DJK. Contributed reagents/materials/

analysis tools: DJK. Wrote the paper: DJK.

References

1. Frayn KN (2003) Metabolic Regulation A Human Perspective. Malden, MA:

Blackwell Publishing.

2. Barcelo A, Aedo C, Rajpathak S, Robles S (2003) The cost of diabetes in latin

america and the caribbean. Bulletin of the World Health Organization 81:

19–27.

3. American Diabetes Association (2008) Economic costs of diabetes in the u.s. in

2007. Diabetes Care 31: 596–615.

4. Jonsson B (2002) Revealing the cost of type ii diabetes in europe. Diabetologia

45: S5–12.

5. Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of

diabetes - estimates for the year 2000 and projections for 2030. Diabetes Care

27: 1047–1053.

6. Goke B (2010) What are the potential benefits of clinical b-cell imaging in

diabetes mellitus? Curr Pharma Design 16: 1547–1549.

7. Gale EA (2002) Can we change the course of beta-cell destruction in type 1

diabetes? NEnglJ Med 346: 1740–1742.

8. Daaboul J, Schatz D (2003) Overview of prevention and intervention trials for

type 1 diabetes. Rev Endocr Metab Disord 4: 317–323.

9. Foulis AK, Liddle CN, Farquharson MA, Richmond JA, Weir RS (1986) The

histopathology of the pancreas in type 1 (insulin-dependent) diabetes mellitus: a

25-year review of deaths in patients under 20 years of age in the united kingdom.

Diabetologia 29: 267–274.

10. Foulis AK, FarquharsonMA, Hardman R (1987) Aberrant expression of class ii

major histocompatibility complex molecules by b cells and hyperexpression of

class i major histocompatibility complex molecules by insulin containing islets in

type 1 (insulin-dependent) diabetes mellitus. Diabetologia 30: 333–343.

11. Gepts W (1965) Pathologic anatomy of the pancreas in juvenile diabetes mellitus.

Diabetes 14: 619–633.

Figure 5. Correlation between residual beta cell mass and
plasma C-peptide following onset of type 1 diabetes. Reported
plasma C-peptide values (y-values) are shown against the moving
average value, shown in Figure 3, for the difference between predicted
and observed excess beta cell mass (x-values) at the same time. The
dotted line highlights the linear trend (p.0.9995 that the slope of the
line is greater than zero). The standard deviations in plasma C-peptide
and excess beta cell mass are represented by size of the crosses.
doi:10.1371/journal.pone.0026873.g005

Table 1. Summary statistics for the studies that report plasma
C-peptide levels.

Study Age Study N Autoantibody

Range Duration Status

Komulainen et al. [16] 0.8–14.9 yrs 24 months 769 732 AA+/37 AA-

Pozzilli et al. [17] ,15 yrs 12 months 24 –

Chaillous et al. [18] 7–40 yrs 12 months 41 all AA+

doi:10.1371/journal.pone.0026873.t001

b-Cell Mass Correlates with Plasma C-Peptide

PLoS ONE | www.plosone.org 6 November 2011 | Volume 6 | Issue 11 | e26873



12. Sherry NA, Tsai EB, Herold KC (2005) Natural history of b-cell function in type

1 diabetes. Diabetes 54: 32.

13. Klinke DJ (2008) Extent of beta cell destruction is important but insufficient to

predict the onset of type 1 diabetes mellitus. PLoS ONE 3: 1374.

14. Herold KC, Bluestone JA (2011) Type 1 diabetes immunotherapy: is the glass

half empty or half full? Sci Transl Med 3: 95fs1.

15. Atkinson MA (2011) It’s time to consider changing the rules: the rationale for

rethinking control groups in clinical trials aimed at reversing type 1 diabetes.

Diabetes 60: 361–363.

16. Komulainen J, Knip M, Lounamaa R, Vahasalo P, Karjalainen J, et al. (1997)

Poor beta-cell function after the clinical manifestation of type 1 diabetes in

children initially positive for islet cell specific autoantibodies. the childhood

diabetes in finland study group. Diabet Med 14: 532–537.

17. Pozzilli P, Pitocco D, Visalli N, Cavallo MG, Buzzetti R, et al. (2000) No effect

of oral insulin on residual beta-cell function in recent-onset type i diabetes (the

imdiab vii). imdiab group. Diabetologia 43: 1000–1004.
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