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Abstract

Background: Barn owls integrate spatial information across frequency channels to localize sounds in space.

Methodology/Principal Findings: We presented barn owls with synchronous sounds that contained different bands of
frequencies (3–5 kHz and 7–9 kHz) from different locations in space. When the owls were confronted with the conflicting
localization cues from two synchronous sounds of equal level, their orienting responses were dominated by one of the
sounds: they oriented toward the location of the low frequency sound when the sources were separated in azimuth; in
contrast, they oriented toward the location of the high frequency sound when the sources were separated in elevation. We
identified neural correlates of this behavioral effect in the optic tectum (OT, superior colliculus in mammals), which contains
a map of auditory space and is involved in generating orienting movements to sounds. We found that low frequency cues
dominate the representation of sound azimuth in the OT space map, whereas high frequency cues dominate the
representation of sound elevation.

Conclusions/Significance: We argue that the dominance hierarchy of localization cues reflects several factors: 1) the relative
amplitude of the sound providing the cue, 2) the resolution with which the auditory system measures the value of a cue,
and 3) the spatial ambiguity in interpreting the cue. These same factors may contribute to the relative weighting of sound
localization cues in other species, including humans.
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Introduction

The central auditory system infers the location of a sound

source in space by evaluating and combining a variety of cues. The

dominant localization cues are binaural cues, based on interaural

level differences (ILD) and interaural timing differences (ITD), the

latter based on measurements of interaural phase differences (IPD)

[1]. Because the correspondence between values of ITD and ILD

and locations in space varies with the frequency of the sound, the

auditory system measures these cues in frequency-specific channels

and evaluates them in a frequency-specific manner. The

information provided by these cues is combined to create a

representation of the most likely location of the acoustic stimulus.

Human psychophysical studies, in which localization cues from

different frequencies are put into conflict, demonstrate that these

frequency-specific sound localization cues are weighted differen-

tially in determining the location of a sound source. For example,

when humans are presented with simultaneous low frequency

(500 Hz, 1 kHz or 2 kHz) and high frequency (4 kHz) sounds

from different locations, the high frequency sound is grouped

perceptually with the low frequency sound (because the sounds are

synchronized [2]), and the combined stimulus is lateralized near

the position of the low frequency source [3]. In other experiments,

low frequency sounds have been shown to alter the lateralization

of synchronous high frequency sounds, but not vice versa [4,5].

These results indicate that the human auditory system follows

the rule that low frequency localization cues dominate over high

frequency cues when localizing a sound source. The basis for the

dominance of low over high frequency cues is thought to be

related to the relative spatial resolution provided by each cue. The

discriminability index (d’), measured psychophysically as the ability

to judge whether a sound originates from the left or right of the

midline, predicts the relative dominance of localization cues when

different frequency components containing conflicting cues are

presented simultaneously [5,6].

We looked for evidence of an analogous dominance hierarchy

among sound localization cues in barn owls, and we explored

underlying factors that could account for their relative dominance.

Owls exploit the same binaural cues for localizing sounds as do

humans. However, the human auditory system is only able to

measure IPDs for frequencies up to about 1.3 kHz [7,8] whereas,

the barn owl auditory system measures IPD cues up to about

8 kHz [9]. In addition, the barn owl’s external ears are

asymmetrical which causes the left ear to be more sensitive to

high frequency sounds (.3 kHz) from below and the right ear to

be more sensitive to high frequency sounds from above [10]. The

ear asymmetry causes the ILDs of frequencies above 3 kHz to vary

with the elevation of a sound source. Thus, each frequency above

3 kHz provides two binaural cues: an IPD cue that varies with

azimuth and an ILD cue that varies primarily with elevation [11].
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Hence, for barn owls it is not obvious how sounds will be

integrated when low and high frequency cues conflict.

Using an approach similar to that of previous human

psychophysical studies [3,5], we tested the relative dominance of

sound localization cues by presenting owls with simultaneous

sounds from different locations. The human auditory system uses

temporal coincidence as a strong cue to signify that sound

components arise from a single object [12]. By presenting owls

with synchronous sounds of different frequencies from different

locations, we were able to observe the dynamic resolution of

contradictory spatial cues as the central auditory system created a

neural representation of the inferred location of the stimuli.

Materials and Methods

Animals
Adult barn owls were housed in flight aviaries. Birds were cared

for in accordance with the US National Institutes of Health Guide

for the Care and Use of Laboratory Animals. All procedures were

approved by the Stanford University Administrative Panel on

Laboratory Animal Care (APLAC).

Surgeries
Owls were anesthetized with 1% halothane mixed with nitrous

oxide and oxygen (45:55). A small metal fastener was attached to the

rear of the skull and recording chambers (1 cm diameter) were

implanted over the optic tectum on both sides, based on stereotaxic

coordinates, with dental acrylic. A local analgesic (bupivicaine HCl)

was administered to all wounds following surgery.

Behavioral Experiments
Three owls were used for behavioral testing. During training and

testing sessions, an owl was placed on a perch in the center of a

darkened sound attenuating chamber. The chamber was equipped

with remotely-controlled movable speakers mounted on a narrow,

horizontal semicircular track of radius 92 cm. The track held two

speakers (Audax TM025F1) mounted on a bar that were separated

in space by 30u, either in azimuth (horizontal bar) or elevation

(vertical bar). Sound bursts consisted of either low (3–5 kHz) or high

(7–9 kHz) frequency narrowband noise, 250 ms in duration, with

5 ms rise and fall times. Bandpass filtering was performed digitally

using the ‘‘ellip’’ function in Matlab; stopband attenuation was

50 dB. Sound pressure levels (dBA scale), measured at the center of

the chamber with the owl removed, were equal (within61 dB) across

frequencies. Head positions were tracked using a head-mounted

monitoring device (miniBIRD 500, Ascension Technologies).

During an initial training period, an owl learned to first fixate a

zeroing light and then orient its head towards the source of a

subsequent sound, which was either the low or high frequency

sound. Sound levels were randomly interleaved across a range of

10–60 dB above behavioral threshold measured previously for

each owl. The location of the sound source was varied randomly

across the frontal 640u in azimuth and elevation. The owl was

rewarded with a piece of meat for orienting toward the sound with

a short latency head movement (,500 ms).

During subsequent test sessions, the owl was presented either

with one sound alone (as before), or else with two simultaneous

sounds (one low and one high frequency narrowband sound) from

different locations. When only one sound was presented, the owl

was rewarded only when it turned toward the sound source. When

simultaneous sounds were presented, the owl was rewarded for any

short latency head movement following the onset of the sounds

(,500 ms). When both sounds were presented, they were

separated either in azimuth or in elevation by 30u. When the

sounds were separated in azimuth, the elevation was positioned

randomly at either +20u, 0u, or 220u; when the sounds were

separated in elevation, the azimuth was positioned randomly at

either L20u, 0u, or R20u. Each sound was presented at each

relative location with equal probability, and sound levels roved

randomly from 10–60 dB above behavioral threshold. Single and

paired stimuli were randomly interleaved. The data reported in

this paper were collected during these test sessions. We collected

20–30 orientation movements for each stimulus configuration

from each owl.

HRTF measurements
To replicate dichotically the frequency-dependent timing and

level content of sounds coming from different spatial positions,

HRTFs were recorded from 7 owls, using a method similar to that

described by Keller et al. [11]. Briefly, each owl was secured in the

center of the sound attenuating chamber using the head fastener,

and ketamine (0.1 ml/hr) and vallium (0.025 ml/hr) were admin-

istered throughout the session. Probetubes (1.5 cm long) attached to

microphones (Knowles FG-23652-P16) were inserted into the ears.

The tip of each probetube was placed 1–2 mm from the eardrum

and the probetube was attached to the edge of the ear canal with

superglue. Broadband sounds (2–11 kHz) from a free-field speaker

were presented from positions that spanned the frontal hemisphere

in 5u increments. For each speaker position, the signal from each

microphone was digitally recorded. The HRTF was calculated for

each ear and for each location of the speaker by dividing the Fourier

transform of the recorded sound waveform by the Fourier transform

of the presented sound waveform. The HRTFs were converted into

finite impulse response (FIR) filters, or head-related impulse

responses (HRIRs) with a linear-phase FIR filter design using

least-squares error minimization [13]. We corrected the HRIRs to

account for the filtering properties of the speaker, chamber,

probetube, microphone, and earphones (Etymotic ER-1, used for

dichotic stimulus presentation) by measuring the appropriate

transfer functions (see below), and creating inverse FIRs to cancel

out their effects. Corrected HRIRs were then used to filter sound

waveforms to simulate free field conditions. The phase angle and

amplitude from these HRTFs corresponded to the IPD and ILD as

a function of frequency.

Electrophysiological Experiments
Eleven adult barn owls were used for electrophysiological

experiments. During a recording session, an owl was suspended in

a prone position with its head stabilized using the mounted

fastener. Nitrous oxide and oxygen (45:55) were administered

continuously so that owls remained in a passive state. Sounds

bursts, consisting of low (3–5 kHz) and/or high (7–9 kHz)

frequency narrowband noise, 50 ms in duration, with 5 ms rise

and fall times, were filtered with head-related transfer functions

(HRTFs) from a typical barn owl and were presented dichotically

through earphones (Etymotic ER-1). HRTFs from different owls

are highly consistent across the frontal region of space that was

tested [11,14]. The HRTFs from this owl were chosen because the

owl was of average size and its HRTFs closely followed the

relationship between ITD and auditory azimuth of the population

average. Differences in ILD across the measured HRTFs were on

the order of a few decibels. Multiunit and single-unit responses were

isolated from the deep layers (layers 11–13) of the OT with insulated

tungsten microelectrodes (6–13 MV). The identification of the

tectal layers was based on distinct unit properties that have been

linked to these layers based on electrode track reconstructions [15].

Site selection was based on two properties: 1) robust responses to

broadband (2–10 kHz) search stimuli, and 2) neural thresholds to

Hierarchy of Auditory Cues
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the low and high frequency narrowband stimuli that differed by no

more than 20 dB. Spike times were stored using Tucker-Davis

(TDT) hardware (RA-16) controlled by customized MATLAB

(Mathworks) software. Auditory stimuli were filtered to match those

used in the behavioral experiments. Sound levels were set relative to

the minimum threshold for the recording site. Each stimulus set was

presented 15–25 times in a randomly interleaved manner.

Data Analysis
The receptive field (RF) center for each site was defined as the

position of the weighted average (center of mass) of responses in

azimuth and elevation. The RF center measured with the low

frequency narrowband sound is referred to as the ‘‘low frequency

center’’, and the RF center measured with the high frequency

narrowband sound is referred to as the ‘‘high frequency center’’.

When deriving population responses to the sounds, before

averaging across sites, responses were centered based on the

azimuth and elevation of the RF center measured with broadband

sounds (2–10 kHz). The low frequency sound was presented 30u to

the right of the high frequency sound for 22 sites, and 30u to the

left of the high frequency sound for 24 sites. For this second group

of sites, the responses were reversed around the center position so

that responses across the two groups could be directly compared.

For sounds separated in elevation, the low frequency sound was

presented 30u above the high frequency sound for 12 sites, and 30u
below the high frequency sound for 11 sites. For this second group

of sites, for plotting purposes the responses were reversed around

the center position so that responses across the two groups could

be directly compared. Before averaging across sites, the response

strength at each site was normalized to the maximum response,

averaged across time, to either sound presented alone.

Results

Behavioral responses to two simultaneous sounds
separated in space

Owls were trained to respond to free-field low frequency (3–

5 kHz) and high frequency (7–9 kHz) narrowband sounds

presented alone. Then, they were tested with trials in which low

and high frequency sounds were presented simultaneously from

different locations, interleaved with trials in which the low and

high frequency sounds were presented alone. When paired sounds

were presented, the sources were separated in space by 30u either

in azimuth or in elevation.

The responses of all three owls were similar. Data from Owl L

are shown in Fig. 1A,B. Responses to single sound sources (either

low or high frequency) were consistent and stereotyped. The owls

responded at short latency (interquartile range = 190–281 ms) with

a rapid orientation of the head toward the location of the source.

Final orientations consistently undershot the location of the source

by errors of 2–5u (mean error for each condition and owl),

depending on the source location and the owl.

When the owls were presented with both low and high

frequency sounds simultaneously and at equal levels, localization

was dominated by the location of the low frequency sound in

azimuth and by the location of the high frequency sound in

elevation (Fig. 1). The direction of the head turn was highly

predictable and the latencies were short (interquartile

range = 214–256 ms). When the sources were separated in

azimuth, the owls oriented in the direction of the location of the

low frequency source, regardless of whether it was to the left or to

the right (Fig. 1A, open circles; p,1025 for each owl; 2-tailed t-

test; null hypothesis that the mean response was zero). In contrast,

when the same stimuli were separated in elevation, the owls

oriented in the direction of the high frequency source, regardless of

whether it was above or below the horizon (Fig. 1B, open circles;

p,1025 for each owl; 2-tailed t-test; null hypothesis that the mean

response was zero). Significant differences in orientation latencies

were not observed for single and multiple sounds.

The robustness of frequency-dependent localization dominance

to changes in the relative levels of the two sounds was tested for

azimuthal separations in two owls (Fig. 2). When the low and high

frequency sounds were presented at equal levels, the owls oriented

toward the location of the low frequency sound: the endpoints of

the orienting movements did not differ statistically from those

generated in response to the low frequency sound alone (Fig. 2, top

histograms; p.0.05, 2-tailed t-test). On interleaved trials, the

relative levels of the high and low frequency sounds were altered

randomly in 10 dB intervals. As the relative level of the high

frequency sound increased, the probability of the owl orientating

toward the high frequency sound increased. This effect was more

pronounced for Owl L than for Owl D (Fig. 2). Increasing the

relative level of the high frequency sound also increased the

variance of the responses for both owls. When the level of the high

frequency sound had been increased by 15 dB and the level of the

low frequency sound decreased by 15 dB (difference = 30 dB;

Fig. 2, bottom histograms), Owl D still maintained an orientation

bias towards the location of the low frequency sound (p,0.001, 2-

tailed t-test, null hypothesis that the mean response was zero),

whereas Owl L no longer displayed a statistically significant bias in

either direction (p..05, 2-tailed t-test).

Neural responses to sounds separated in azimuth
We recorded neural activity in the OT space map in response to

the same low and high frequency narrowband sounds that were

used in the behavioral experiments. Auditory neurons in the OT

are sharply tuned for space, broadly tuned for frequency, and their

spatial tuning is predicted by their tuning to frequency-specific

IPDs and ILDs [16,17].

For these experiments, the owls were sedated and the sounds

were presented in virtual space (through earphones; Materials and

Methods) to permit rapid interleaving of stimuli from various

locations. As in the behavioral experiments, either the low or the

high frequency sound was presented alone, or both sounds were

presented together with a fixed spatial separation (in virtual space)

of 30u in azimuth or elevation. The stimuli were positioned relative

to the center of the recording site’s RF, and different positions

were randomly interleaved. This method of sampling of stimulus

space allowed us to infer the distribution of responses across the

OT space map to the two stimuli separated in space by 30u.
The responses of the site shown in Fig. 3 were representative of

the sites that we sampled (sites that responded well to both the high

and the low frequency sounds; Materials and Methods). In all of

these experiments, the low and high frequency sounds were

presented at sound levels that were equal before being filtered by

the transfer functions of the ears, thereby mimicking the stimulus

conditions in the behavioral experiment. The site illustrated in

Fig. 3 exhibited sharp spatial tuning to either the low or the high

frequency narrowband sound when presented alone. The site

responded at a latency of 14 ms with a burst of spikes that lasted

about 8 ms, followed by a brief decline in firing rate, and then a

sustained discharge. Both the phasic and sustained components of

the neural response were tuned for the azimuth of the stimulus.

The site responded most strongly to either a low frequency sound

(Fig. 3A, top raster) or a high frequency sound (Fig. 3A, middle

raster) at the RF center (azimuth = 0u). When both sounds were

presented together, the site responded at the beginning of the

stimulus when either sound was positioned at the RF center

Hierarchy of Auditory Cues
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(Fig. 3A, bottom raster; 3B, upper plot, black curve). Soon after

stimulus onset, however, the pattern of the response changed: the

site continued to respond only when the low frequency sound was

in the RF (Fig. 3A, bottom, blue arrowhead; 3B, lower plot, black

curve). Thus, when the low and high frequency sounds were

presented together from different azimuths, the early response to

the location of the high frequency sound was suppressed by the

presence of the low frequency sound (p,1023, two-tailed t-test for

most effective high frequency sound position). In contrast, the

response to the low frequency sound was not significantly changed

by the presence of the high frequency sound (p.0.05, two-tailed

t-test for most effective low frequency sound position).

Figure 1. Endpoints of head orienting movements in response to two spatially separated sounds. In A and C, acoustic stimuli were
separated in azimuth; in B and D, stimuli were separated in elevation. A. Data from one owl (Owl L) when sounds were presented either alone or
both sounds were presented together, separated in azimuth by 30u and at an elevation of +20u. Top: Azimuth of the high frequency sound was L15u;
azimuth of the low frequency sound was R15u. Bottom: Azimuth of the high frequency sound was R15u; azimuth of the low frequency sound was
L15u. Blue asterisks represent endpoints of head movements towards the low frequency sound alone; red crosses towards the high frequency sound
alone; black circles towards both sounds together. The black cross represents the position of the zeroing visual stimulus; the colored crosses
represent the position of the low (blue) and high (red) frequency sound. B. Data from Owl L when sounds were presented either alone or both
sounds were presented together, separated in elevation by 30u and at an azimuth of 0u. Top: elevation of the high frequency sound was 215u;
elevation of the low frequency sound was +15u. Bottom: elevation of the high frequency sound was +15u; elevation of the low frequency sound was
215u. C. Average endpoints of the head orienting movements for each of the 3 owls towards each sound alone, and towards both sounds together
when the sounds were separated by 30u in azimuth. Sound elevation was either 220u, 0u, or +20u (all conditions randomly interleaved and all data are
included in this plot). In the plot, the low frequency sound location is represented by R15u (blue dashed line), and the high frequency location by L15u
(red dashed line), although in the experiments both relative positions were tested with equal frequency. Data from the different relative stimulus
locations were combined because no statistical difference was observed in responses to sounds either to the right or left of the midline (two-tailed t-
test, p..05). Error bars represent STD. 0u corresponds to the position of the visual target for the initial fixation. Each symbol represents a different owl:
# is Owl B; % is Owl D; n is Owl L. D. Average endpoints for each of the 3 owls towards each sound alone, and towards both sounds together when
the sounds were separated by 30u in elevation. Sound azimuth was either 220u, 0u, or +20u (all conditions randomly interleaved). The low frequency
sound location is represented by +15u (blue dashed line), and the high frequency location by 215u (red dashed line), although in the experiments
both relative positions were tested with equal frequency. Errorbars represent STD. Data from the different relative stimulus locations were combined
because no statistical difference was observed in responses to sounds either above or below the visual plane (two-tailed t-test, p..05). Number of
head movements reported for each owl: Owl B (200), Owl D (404), Owl L (480). We combined data from the relative orientations because no statistical
difference was observed in orienting to sounds to the right and the left of the midline (two-tailed t-test, p..05).
doi:10.1371/journal.pone.0010396.g001
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The average response across the population of sampled sites

(n = 46) is summarized in Fig. 4. Across the population, responses

to the low and high frequency sounds presented alone were tuned

for source azimuth. In response to the low frequency sound alone,

units responded most strongly when the stimulus was centered in

the RF (Fig. 4A, top panel) and did not respond when the stimulus

was more than 25u to the side of the RF center. Similarly, in

response to the high frequency sound alone, the units responded

most strongly when the stimulus was centered in the RF (Fig. 4A,

middle panel), but they also responded, though at a much lower

level, when the source was as much as 45u to the side of the RF

center (vertical spread of activity in Fig. 4A, middle panel),

reflecting a broader average RF for the high than the low

frequency stimulus (mean width at half-max: high = 42u614u,
low = 32u612u; p,0.01, two-tailed t-test). In addition, the average

response to the high frequency sound alone was 48% stronger than

that to the low frequency sound alone. This difference in response

strength reflected a greater response gain for the high than for the

low frequency sound, as verified directly at a subset of sites (Fig. 5).

When the low and high frequency sounds were presented

simultaneously from different azimuths, the locations of both the

low and the high frequency sounds were represented strongly at

sound onset, but soon after, the location of the low frequency

sound came to dominate the representation (Fig. 4A, bottom

panel). The time-course of the population response (Fig. 4B) was

used to define ‘‘early’’ (0–20 ms) and ‘‘late’’ response time periods

(20–50 ms). The transition from the representation of both

locations to a preferential representation of the location of the

low frequency sound occurred during the early phasic response.

The dynamics of the transition was analyzed by plotting the

weighted average of the population response with 1 ms resolution

(Fig. 4C). These data indicate that a rapid shift in the relative

representations of the two locations occurred between 12 and

16 ms after sound onset, during which time the representation

shifted from a representation centered at the location of the high

frequency sound to a representation centered at the location of the

low frequency sound.

An analysis of the average activity patterns across the

population of recording sites during the early and late phases of

the response are shown in Fig. 4D,E. When both sounds were

presented simultaneously (Fig. 4D, black curve), the strength of the

early response to the two locations was not significantly different

(two tailed t-test comparing responses to most effective stimulus

position, p = 0.46), even though the response to the high frequency

sound alone (Fig. 4D, red curve) was substantially greater than the

response to the low frequency sound alone (Fig. 4D, blue curve;

p,0.005, two tailed t-test comparing responses to most effective

stimulus position). The response to the high frequency sound was

suppressed by the presence of the low frequency sound (Fig. 4D;

red versus black curve; p,1023, two-tailed t-test for most effective

high frequency sound position), whereas the response to the low

frequency sound was enhanced by the presence of the high

frequency sound (Fig. 4D; blue versus black curve; p,0.05, two-

tailed t-test for most effective low frequency sound position). The

opposite effects of the low and high frequency sounds were even

more pronounced during the sustained late phase of the response

(Fig. 4E, right side). During the late phase, the location of the low

frequency sound was more strongly represented than the location

Figure 2. Effect of relative sound level on head orienting movements to simultaneous sounds separated in azimuth. Histograms of
endpoints of head orienting movements for Owl D (left column) and Owl L (right column), representing response to all sound elevations. Either the
sounds were equal level (1st row), or the level of the high frequency sound was greater than that of the low frequency sound by 10 dB (2nd row),
20 dB (3rd row), or 30 dB (4th row). In the plot, the low frequency sound location is represented by R15u (blue solid line), and the high frequency
location is represented by L15u (red solid line), although in the experiments both relative positions were tested equally often. The dashed lines
represent the average orientation to each sound presented alone (blue to the low frequency and red to the high frequency). Downward arrows
indicate population averages.
doi:10.1371/journal.pone.0010396.g002
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of the high frequency sound (Fig. 4E, right side, black curve; two-

tailed t-test comparing responses to most effective stimulus

position, p,0.01), even though the response gain to the low

frequency sound alone was substantially less than that to the high

frequency sound alone during this period (p,0.005, two tailed

t-test comparing responses to most effective stimulus position).

Additionally, for both the early and late phases of the population

responses, the response to the low frequency sound was enhanced

by the added presence of the high frequency sound (Fig. 4D,E,

blue versus black curves; p,0.05, two-tailed t-test for most effective

low frequency sound position). In contrast, the response to the

high frequency sound was suppressed by the added presence of the

low frequency sound (Fig. 4D,E, red versus black curves; p,1023,

two-tailed t-test for most effective high frequency sound position).

To quantify the shift towards the representation of the low

frequency sound’s location, we compared for each site the center

of mass of the responses to both sounds together with the predicted

center of mass based on adding the responses to each sound alone

(Fig. 4F,G). This analysis demonstrated a shift in the representa-

tion of the two sounds that favored the representation of the low

frequency location, and the magnitude of the shift was significantly

greater during the late phase of the response (early shift: 561u; late

shift: 1162u; p,1023; two-tailed t-test).

Neural responses to sounds separated in elevation
OT responses were tuned for stimulus elevation, as well as for

azimuth (23 out of 23 sites displayed statistically significant tuning

in elevation for the high frequency sound; 18 out of 23 displayed

statistically significant tuning for the low frequency; 1-way

ANOVA, p,.05). The population average activity revealed that

tuning in elevation was much sharper for the high frequency sound

alone than for the low frequency sound alone (Fig. 6C,D). When

the low and high frequency sounds were presented simultaneously

from different elevations, the locations of both sounds were

represented in the early response immediately after sound onset,

but the location of the high frequency sound dominated the

representation in the late response (Fig. 6A,B). Responses to the

high frequency sound alone were enhanced by the presence of the

low frequency sound (Fig. 6D, left side; red versus black curve,

p,1023 for two tailed t-test comparing late responses to most

effective stimulus position). In contrast, responses to the low

frequency sound alone were suppressed by the presence of the high

frequency sound when the low frequency sound was located near

the RF center (Fig. 6D, blue versus black curve, p,.01 for two

tailed t-test comparing late responses for low frequency sound at

5u). Consequently, late responses to both sounds centered on the

location of the high frequency sound.

Effect of relative sound level on the neural
representation of location

The effect of changing the relative levels of the low and high

frequency sounds was tested at a subset of sites (n = 31). To enable

a comparison with the behavioral data (Fig. 2), this test was done

with the sources separated in azimuth.

Figure 3. Neural responses at a sample site to individual sounds alone and to paired sounds separated in azimuth. The stimuli were
positioned relative to the broadband RF center. A. Raster plots representing responses to the low frequency sound alone (top raster), the high
frequency sound alone (middle raster), or both sounds presented together (bottom raster). When both sounds were presented together, the high
and low frequency sounds were separated in virtual space by 30u. The position of the low frequency sound is written in blue type on the y-axis, and
the position of the high frequency sound is in red type on the y-axis. The values of the low and the high stimuli differed by 30u, reflecting the spatial
displacement between the two stimuli. Sound onset = 0 ms; upward arrow indicates 20 ms, the demarcation between early and late responses. Red
arrowheads indicate high frequency center; blue arrowheads, low frequency center. B. Same data as in A, but displayed as tuning curves representing
average response rates plotted separately for the early (top; 0–20 ms) and late (bottom; 20–50 ms) time period. Red curves represent responses to
the high frequency sound alone, blue curves to the low frequency sound alone, and black curves to both sounds together. The position of the low
frequency sound is written in blue type on the x-axis, and the position of the high frequency sound is in red type on the x-axis.
doi:10.1371/journal.pone.0010396.g003
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Increasing the relative level of a sound increased the relative

strength of the representation of its location when both sounds

were presented together (Fig. 7). Nevertheless, the location of the

low frequency sound continued to be represented differentially

strongly, particularly during the late phase of the response, across

the range of relative levels tested (Fig. 7, bottom row, black curve).

Discussion

When low (3–5 kHz) and high (7–9 kHz) frequency sounds of

equal level occur simultaneously but originate from different

locations, owls behave as though the sounds come from a single

location. When the sound sources are separated in azimuth, owls

tend to orient to the location of the low frequency sound; when

they are separated in elevation, they tend to orient to the location

of the high frequency sound. Thus, low frequency sounds

dominate localization in azimuth, whereas high frequency sounds

dominate localization in elevation.

The pattern of neural activity in the OT space map can explain

these remarkable behavioral results. In response to two simulta-

neous low and high frequency sounds of approximately equal

levels, the space map briefly represents the locations of both

sounds, then shifts rapidly to a representation that heavily favors

the dominant sound (the low frequency sound for sounds

separated in azimuth and the high frequency sound for sounds

separated in elevation) (Figs. 4,6). Thus, in response to spatially

discrepant simultaneous sounds, the auditory space map rapidly

and automatically suppresses the spatial representation of the

subordinate stimulus and maintains the spatial representation of

the dominant stimulus. The frequency-dependence of this effect

indicates that the underlying mechanism must operate before the

level of the OT, which receives inputs that are already broadly

tuned to frequency. In the midbrain pathway that leads to the OT,

the likely site is the ICX, where information converges across

frequencies to create a map of space [18].

The dominance of the low frequency sound over the high

frequency sound, observed for sounds separated in azimuth, was

not due to low frequency masking of high frequency information.

Low frequency spectral masking refers to the ability of a lower

frequency sound to disrupt perception of a higher frequency

sound. Our data cannot be explained by spectral masking because

the frequency of the stimulus that dominated sound localization

depended on whether the stimuli were separated in azimuth or

elevation. Low frequency masking would predict low frequency

dominance regardless of the direction of the spatial separation.

Most of the data are based on recordings from multiple units. It

is likely that some units in the multiunit recordings were

Figure 4. Summary of neural responses to individual sounds alone and paired sounds separated in azimuth. A. Population averaged
responses as a function of stimulus azimuth and time post-stimulus onset (n = 46). Upper panel: responses to the low frequency sound (3–5 kHz).;
middle panel: responses to the high frequency sound (7–9 kHz); lower panel: responses to both sounds together. Arrow on time axis demarcates the
division between the early and late time period used in panels D and E. B. Normalized post-stimulus time histogram, averaged across all stimulus
conditions plotted in A. C. Weighted average of responses to both sounds together as a function of time (from bottom panel of A). Solid circles:
statistically shifted from 0 (p,.05; bootstrapped t-test); open circles: not significantly shifted from 0 (p..05; bootstrapped t-test). Leftward shifts:
weighted average favors the high frequency location; Rightward shifts: weighted average favors the low frequency location. D. Same data as 4A, but
displayed as tuning curves for the early time period (0–20 ms). E. Same data as 4A, but displayed as tuning curves for the late time period (20–50 ms).
F. Histogram of the shift of the weighted average of the responses to both sounds together, relative to the weighted average of the additive
prediction (the sum of the responses to each sound alone) for each recorded site for the early time period (0–20 ms). Positive values of shift represent
a shift towards the low frequency location. G. Same as F, but for the late time period (20–50 ms).
doi:10.1371/journal.pone.0010396.g004

Figure 5. Neural response as a function of average binaural
level for the low and high frequency sound. Population averaged
neural responses (n = 31) to the low (blue) or high (red) frequency
sound for the late time period (20–50 ms). Responses at each site were
aligned relative to the threshold for each sound and normalized by the
maximum response to either sound.
doi:10.1371/journal.pone.0010396.g005
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Figure 6. Summary of neural responses to individual sounds alone and to paired sounds separated in elevation. A. Population
averaged responses as a function of stimulus elevation and time post-stimulus onset to each sound by itself and to both sounds together (n = 23).
Arrow on time axis demarcates the division between the early and late time period used in panels C and D. B. Weighted average of responses to both
sounds together as a function of time (from bottom panel of A). Solid circles: statistically shifted from 0 toward the high frequency location (p,.05;
bootstrapped t-test); open circles: not significantly shifted from 0 (p..05; bootstrapped t-test). C. Same data as 6A, but displayed as tuning curves for
the early time period (0–20 ms). D. Same data as in 6A, but displayed as tuning curves for the late time period (20–50 ms).
doi:10.1371/journal.pone.0010396.g006

Figure 7. The effect of relative sound level on the representation of sound location. Population averages of the early (top row) and late
(bottom row) responses to each sound alone and both sounds together for sounds separated by 30u in azimuth. Red curves: responses to the high
frequency sound; blue curves: responses to the low frequency sound; black curves: responses to both sounds together. The relative sound levels for
the high and low frequency sounds are indicated above each corresponding row of tuning curves. Error bars indicate standard errors. Neural
responses were normalized by the maximum response to either sound alone during the depicted time range, rather than across the entire time range
as in Figs. 4,6 (Early: 0–20 ms; Late: 20–50 ms).
doi:10.1371/journal.pone.0010396.g007
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responding more to the high frequency stimulus and others to the

low frequency stimulus. This likelihood notwithstanding, unit

responses to high frequency sounds were suppressed by the

presence of a low frequency sound for azimuth separations, and

unit responses to low frequency sounds were suppressed by the

presence of a high frequency sound for elevation separations.

Multiunit recordings increase confidence that this remarkable

phenomenon is a general property of the entire population of

tectal units.

The stimulus location that owls orient toward behaviorally

corresponds to the location represented in the space map .16 ms

after sound onset (Figs. 4C and 6B). The transition from an initial

representation of both stimuli to a differential representation of

just one stimulus progresses during the first 8 ms of the neural

response in the OT (Fig. 4C). This implies that the owl’s decision

of where to orient, if based on OT activity, is determined by the

pattern of neural activity more than 16 ms after sound onset, at

least when the representation of stimulus location is shifting

dynamically (Fig. 4C) due to conflicting spatial cues.

When the level of the subordinate sound is much greater than

that of the dominant sound, the owl’s orientation responses to the

paired stimuli become variable and, in some cases, bimodally

distributed (Fig. 2). Neural recordings from the OT space map

exhibit a similar pattern. The bimodal distribution of late neural

responses when the level of the high frequency sound is much

greater than that of the low frequency sound (Fig. 7, lower right),

indicates that when the relative level of the subordinate sound

increases sufficiently, the representation of the location of the

subordinate sound increases.

A multiplicative rule can explain localization cue
dominance

A multiplicative rule for input integration would enhance

responses when cues are mutually consistent and would suppress

responses when cues are mutually contradictory. A multiplicative

rule has been shown previously to operate in the ICX, the

processing step before the OT [19,20]. A multiplicative rule,

applied to the neural population data (Figs. 4 and 6), can account

qualitatively for the dominance of low frequency cues in azimuth

as well as for the dominance of high frequency cues in elevation. In

azimuth, the low frequency sound drives no responses when the

stimulus is more than 25u to the side of the RF center (Fig. 4D,E;

L30u). According to a multiplicative rule, an absence of low

frequency input would cancel the effect of the high frequency

input, as observed in responses to both sounds together (Fig. 4D,E;

black curve). In contrast, the high frequency sound continues to

drive responses when the stimulus is located 25u or more to the

side of the RF center (Fig. 4D,E; R30u). According to a

multiplicative rule, the continued high frequency input would

enhance responses to the low frequency sound, as observed.

Similarly, the data from the individual site shown in Fig. 3 are

consistent with a multiplicative rule operating on sub-threshold

inputs [19,20] that exhibit the same spatial patterns as those of the

population data.

A multiplicative rule could also account for the dominance of

high frequency cues when sounds are separated in elevation

(Fig. 6D). The high frequency stimulus did not drive responses

when the sound was located 30u or more above or below the RF

center (Fig. 6D, +30u). According to a multiplicative rule, an

absence of high frequency input would cancel responses to the low

frequency input, as observed. In contrast, the low frequency sound

continued to drive responses when the stimulus was more than 30u
from the RF center (Fig. 6D, 230u), and this continued drive

would enhance responses to the high frequency sound, as

observed.

Relative weighting of low and high frequency cues
The information that is provided by a localization cue depends

on its spatial resolution and on the spatial ambiguity in

interpreting the cue. The spatial resolution of a cue depends both

on the rate at which the cue’s value changes with source location

and on the ability of the auditory system to discriminate those

values. The spatial ambiguity in interpreting cue values arises

because most cue values are produced by sounds from many

different locations.

We propose that, for localizing sounds in elevation, high

frequency cues dominate over low frequency cues because of the

superior spatial resolution of the high frequency cues and the

higher neural gain afforded to high frequency channels. In

elevation, the acoustic data show a 3-fold higher rate of change of

the ILD cue (dB/deg) for the high frequency sound than for the

low frequency sound (Fig. 8, left panels). In addition, in the

brainstem nucleus that measures ILD, frequencies above 5 kHz

are over-represented and the ILD sensitivity of neurons tuned to

frequencies above 5 kHz is greater than that of neurons tuned to

lower frequencies [21]. These factors are consistent with the

sharper elevational tuning for the high frequency sound relative to

the low frequency sound that we observed (Fig. 6). Another factor

that favors the representation of the high frequency sound is that,

on average, the high frequency sound drives nearly twice as many

spikes as does the low frequency sound when each sound is

presented alone (Fig. 5). The stronger response to the high

frequency inputs may reflect the fact that only the higher

frequencies contain high-resolution information about the eleva-

tion of the source. Since barn owls are aerial predators,

information about the elevation of an auditory stimulus is essential

to targeting prey.

In contrast, both high spatial resolution and low spatial

ambiguity favor the low frequency cues when localizing in

azimuth. The rate of change of the high frequency IPD cue

(radians/deg) is twice as large as that for the low frequency cue

Figure 8. Acoustic spatial cues generated by the low and high
frequency sounds. ILD (left) and IPD (right), averaged across 8 owls,
for the low frequency (3–5 kHz) and high frequency (7–9 kHz) sounds
as a function of the elevation and azimuth of the speaker. IPD and ILD
were averaged across the frequency range of each sound.
doi:10.1371/journal.pone.0010396.g008
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(Fig. 8, right panels). However, the capacity of the auditory system

to encode IPD declines sharply with increasing frequency [22]. We

found that the average azimuthal tuning for the high frequency

sound was actually less sharp than that for the low frequency

sound (width at half-max: high = 42u614u, low = 32u612u;
Fig. 4D,E), implying that the decline in the auditory system’s

capacity to encode IPD at high frequencies is more severe than the

increase in the rate of change in IPD with sound azimuth.

Moreover, the interpretation of the high frequency IPD cue is

ambiguous even in frontal space, since equivalent IPD values

correspond to different azimuths separated by about 50u (Fig. 8,

matching colors). We propose, therefore, that for sound localiza-

tion in azimuth, low frequency cues dominate over high frequency

cues, because of their superior spatial resolution and low spatial

ambiguity.

The amplitude of the sound that provides the cue is another

factor that influences the contribution of a cue in the determina-

tion of stimulus location. As the relative level of a frequency band

increases, the neural representation of the sound’s location

becomes progressively more influenced by the spatial information

provided by that frequency band (Fig. 7). This neurophysiological

effect could explain the shift in the distribution of behavioral

responses that was observed when the amplitude of the

subordinate (high frequency) sound was increased to well beyond

that of the dominant sound (Fig. 2).

In summary, the data indicate that when inferring the location

of a sound source, the auditory system weights the information

provided by different cues based on their relative spatial

resolution, spatial ambiguity, and the relative amplitude of the

sound that provided the cue.

The representation of multiple sound sources
In this study, we used multiple sound sources to create

discrepant spatial cues. Previous studies have used multiple sounds

for similar purposes. One group of studies employed the

‘‘precedence effect’’ whereby in response to slightly asynchronous

sounds from different locations the auditory system attributes the

location from the later sound to the location of the earlier sound.

In this case, the auditory system groups the sounds, and

differentially weights the spatial cues provided by the earlier

sound [23]. Neurophysiological studies have revealed a strong

suppression in the representation of the second sound in the

auditory space map [24,25,26].

In other studies, paired, simultaneous sounds with identical

waveforms were presented from different locations to produce a

‘‘phantom image’’ in the auditory space map that was located in

between the locations of the two individual sounds [27]. This

example of the ‘‘stereo effect’’ is due to acoustic interactions and

not to neural processing.

Studies most similar to ours involved presenting owls with

simultaneous sounds from different locations, but with overlapping

frequency spectra [28]. Unlike in the stereo experiments, the

waveform microstructure differed between the two sounds in these

experiments. Under these conditions, the owl’s auditory system

represents the locations of both stimuli. This is because the

auditory system evaluates IPD and ILD cues on a millisecond

time-scale and, when there are two sources, the relative amplitudes

of each frequency component for each source varies on this time-

scale. As a result, for any given frequency at any moment in time,

one source tends to be represented preferentially and, over time,

both sounds are represented. This suggests that the flickering of

the represented IPD value and ILD value between two sets of

values within frequency channels on a millisecond time-scale is a

reliable indicator of the presence of two sources at different

locations. In our study, we used non-overlapping frequency bands,

thereby eliminating this within-frequency indicator of multiple

sources. In the absence of this indicator, spatial information from

simultaneous sounds may be integrated according to the rules for

cue dominance revealed in this study.

Comparison with human psychophysics
When humans are presented with simultaneous sounds with

non-overlapping spectra from different azimuths, localization is

biased towards the location of the low frequency sound, an effect

that is reminiscent of the effect we observed in barn owls. In

humans, the results indicate that sound localization cues are

weighted differentially according to the spatial resolution provided

by each cue: the discriminability index (d’) of each cue was

sufficient to quantitatively predict the rules of integration. In

addition, spatial ambiguity may also influence the relative

weightings of cues in humans, although the contribution of this

factor has not been tested. For humans, spatial ambiguity is not a

factor for interpreting IPD because our auditory system does not

measure IPDs for frequencies high enough to produce the same

IPD value from different azimuths [1,7]. Spatial ambiguity is a

factor, however, for interpreting ILD cues. ILD cues follow

complex spatial patterns, and the complexity of the spatial pattern

increases with frequency [29]. If spatial ambiguity contributes to

the dominance hierarchy of cues for deriving sound source

location in humans, as it appears to in owls, then lower frequencies

should continue to dominate the localization of higher frequencies

even above 4 kHz, for which ILD cues are most important for

human localization. A similarity in the rules for the dominance

hierarchy of sound localization cues in humans and owls suggests

that, in both species, the auditory system infers the location of a

sound by weighting differentially the highest resolution and least

ambiguous cues.
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