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Abstract

Benzyl isothiocyanate (BITC), a constituent of edible cruciferous vegetables, decreases viability of cancer cells by causing
apoptosis but the mechanism of cell death is not fully understood. The present study was undertaken to determine the role
of Bcl-2 family proteins in BITC-induced apoptosis using MDA-MB-231 (breast), MCF-7 (breast), and HCT-116 (colon) human
cancer cells. The B-cell lymphoma 2 interacting mediator of cell death (Bim) protein was dispensable for proapoptotic
response to BITC in MCF-7 and MDA-MB-231 cells as judged by RNA interference studies. Instead, the BITC-treated MCF-7
and MDA-MB-231 cells exhibited upregulation of p53 upregulated modulator of apoptosis (PUMA) protein. The BITC-
mediated induction of PUMA was relatively more pronounced in MCF-7 cells due to the presence of wild-type p53
compared with MDA-MB-231 with mutant p53. The BITC-induced apoptosis was partially but significantly attenuated by
RNA interference of PUMA in MCF-7 cells. The PUMA knockout variant of HCT-116 cells exhibited significant resistance
towards BITC-induced apoptosis compared with wild-type HCT-116 cells. Attenuation of BITC-induced apoptosis in PUMA
knockout HCT-116 cells was accompanied by enhanced G2/M phase cell cycle arrest due to induction of p21 and down
regulation of cyclin-dependent kinase 1 protein. The BITC treatment caused a decrease in protein levels of Bcl-xL (MCF-7
and MDA-MB-231 cells) and Bcl-2 (MCF-7 cells). Ectopic expression of Bcl-xL in MCF-7 and MDA-MB-231 cells and that of Bcl-
2 in MCF-7 cells conferred protection against proapoptotic response to BITC. Interestingly, the BITC-treated MDA-MB-231
cells exhibited induction of Bcl-2 protein expression, and RNA interference of Bcl-2 in this cell line resulted in augmentation
of BITC-induced apoptosis. The BITC-mediated inhibition of MDA-MB-231 xenograft growth in vivo was associated with the
induction of PUMA protein in the tumor. In conclusion, the results of the present study indicate that Bim-independent
apoptosis by BITC in cancer cells is mediated by PUMA.
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Introduction

Bioactive compounds from dietary sources continue to draw

attention for possible use to prevent breast cancer [1–3], which is a

leading cause of cancer-related mortality in American women [4].

Cruciferous vegetable constituent benzyl isothiocyanate (BITC) is

one such compound with compelling preclinical evidence for

preventive efficacy against breast cancer in experimental rodents.

Mammary cancer prevention using BITC was first demonstrated

by Wattenberg in a rat model of chemically-induced cancer [5].

BITC administration prior to the carcinogen challenge inhibited

7,12-dimethylbenz[a]anthracene-induced mammary tumor devel-

opment in female Sprague-Dawley rats [5]. Studies from our

laboratory have revealed that BITC administration in the diet

confers significant protection against mammary cancer develop-

ment in MMTV-neu transgenic mice [6]. The BITC-mediated

inhibition of breast cancer xenograft growth in vivo has also been

documented [7,8].

We have shown previously that BITC-mediated prevention of

mammary cancer development in MMTV-neu mice is associated

with inhibition of cell proliferation and increased apoptosis [6]. In

agreement with our findings [6], BITC-mediated inhibition of 4T1

murine breast cancer xenograft growth in BALB/c mice was

accompanied by increased apoptosis [8]. In cellular models of

human breast cancer (MDA-MB-231 and MCF-7), BITC

treatment causes G2/M phase cell cycle arrest and apoptosis

induction [9–12]. A spontaneously immortalized and non-

tumorigenic human mammary epithelial cell line (MCF-10A),

originally isolated from a fibrocystic breast disease, is signifi-

cantly more resistant to BITC-induced apoptosis compared

with breast cancer cells [11]. The mechanism by which BITC

causes cell death is not fully understood, but proapoptotic

response to this agent in human breast cancer cells is inti-

mately linked to production of reactive oxygen species (ROS)

because of inhibition of complex III of the mitochondrial

respiratory chain [12]. Activation of caspases and suppression of

X-linked inhibitor of apoptosis protein are other mechanistic

events associated with BITC-induced apoptosis in breast

cancer cells [11–13]. We have also observed other novel

pharmacological responses for BITC, including inhibition of

oncogenic actions of leptin and suppression of epithelial-mesen-

chymal transition [14,15].
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Mitochondria-mediated apoptosis downstream of ROS produc-

tion and upstream of caspase activation is regulated by Bcl-2

family proteins, which function to either inhibit (e.g., Bcl-2, Bcl-xL

etc.) or facilitate (e.g., Bak, Bax, and Bim) apoptosis [16–20]. We

have already established that SV40 immortalized mouse embry-

onic fibroblasts derived from Bax and Bak double knockout mice

are significantly more resistant to BITC-induced apoptosis

compared with those derived from the wild-type mice [11].

However, the role of other members of the Bcl-2 family pro-

teins in regulation of BITC-induced apoptosis remains elusive.

The present study logically extends our previous findings [11–13]

to systematically investigate the role of B-cell lymphoma 2

interacting mediator of cell death (Bim), p53 upregulated

modulator of apoptosis (PUMA), Bcl-xL, and Bcl-2 proteins in

regulation of BITC-induced apoptosis using MCF-7 (breast),

MDA-MB-231 (breast), and HCT-116 (colon) human cancer cells

as a model.

Results

Bim is dispensable for BITC-induced apoptosis in MCF-7
and MDA-MB-231 cells

The c-Jun N-terminal kinase (JNK) is often implicated in

ROS-dependent apoptosis by different stimuli, including certain

natural agents [21–24]. The JNK activation results in phosphor-

ylation of the BH3-only protein Bim leading to activation of

multidomain proapoptotic protein Bax [25,26]. Our previous

studies have indicated that BITC treatment causes ROS/JNK-

dependent activation of Bax in breast cancer cells [12]. Thus,

it was logical to test whether BITC-induced apoptosis was

mediated by Bim. The BITC-induced apoptosis, as judged by

analysis of histone-associated DNA fragment release into the

cytosol, was not attenuated by RNA interference of Bim in

either MCF-7 or MDA-MB-231 cells (results not shown).

These results indicated that Bim protein was dispensable for

proapoptotic response to BITC at least in MCF-7 and MDA-MB-

231 cells.

BITC treatment increases PUMA protein expression in
MCF-7 and MDA-MB-231 cells

PUMA is another BH3-only member of the Bcl-2 family that

facilitates apoptosis by different stimuli [20]. For example, PUMA

has been shown to indirectly activate Bax in the absence of Bim

and Bid [27]. There was a marked increase in the levels of PUMA

protein after treatment with BITC in both MCF-7 and MDA-MB-

231 cells (Fig. 1A). However, this response was relatively more

pronounced in the wild-type p53 expressing MCF-7 cells than in

the MDA-MB-231 cells, which express mutant p53 (Fig. 1A).

Immunofluorescence microscopy confirmed BITC-mediated in-

duction of PUMA in MCF-7 cells (Fig. 1B). Because BITC-

mediated induction of PUMA was relatively more pronounced in

MCF-7 cells, we used this cell line for functional assays involving

RNA interference. Level of PUMA protein was decreased by

.90% upon transient transfection of MCF-7 cells with the

PUMA-targeted small interfering RNA (siRNA) in comparison

with cells transfected with a control siRNA (Fig. 1C). Furthermore,

the BITC-mediated induction of PUMA was fully abolished by its

knockdown. Moreover, knockdown of PUMA protein conferred

partial but statistically significant protection against BITC-

mediated increase in histone-associated DNA fragment release

into the cytosol (Fig. 1D). These results indicated that PUMA

induction potentially contributed to BITC-induced apoptosis in

MCF-7 cells.

Next, we questioned if PUMA-dependence of BITC-induced

apoptosis was unique to the MCF-7 cells. We used wild-type and

PUMA knockout variant of HCT-116 cells to address this

question. As can be seen in Fig. 2A, level of PUMA protein was

modestly increased after 24 h treatment of wild-type HCT-116

cells with 5 mM BITC. The BITC treatment resulted in a dose-

dependent and significant increase in histone-associated DNA

fragment release into the cytosol over DMSO-treated control in

wild-type HCT-116 cells (Fig. 2B). The PUMA knockout HCT-

116 cells were relatively more resistant to BITC-induced apoptosis

compared with wild-type cells (Fig. 2B). Representative micro-

scopic images depicting apoptotic cells with condensed and

fragmented DNA in wild-type HCT-116 cells after 24 h treatment

with DMSO (control) and 5 mM BITC are shown in Fig. 2C

(apoptotic nuclei are marked with arrows). In agreement with

results shown in Fig. 2B, PUMA knockout HCT-116 cells were

significantly more resistant to BITC-induced apoptosis in

comparison with wild-type HCT-116 cells at least at the 5 mM

concentration (Fig. 2D). Collectively, these results indicated that

PUMA-dependence of BITC-induced apoptosis was not a cell

line-specific response.

PUMA deficiency increases BITC-mediated G2/M phase
cell cycle arrest in HCT-116 cells

We have shown previously that BITC treatment causes G2/M

phase cell cycle arrest in breast cancer cells [11]. We designed

experiments using wild-type and PUMA knockout HCT-116 cells

to determine if PUMA deficiency affected BITC-mediated cell

cycle arrest. Fig. 3A shows representative flow histograms for cell

cycle distribution in wild-type and PUMA knockout HCT-116

cells after 24 h treatment with DMSO (control) or 5 mM BITC. As

can be seen in Fig. 3B, BITC treatment resulted in a significant

increase in fraction of sub-diploid (apoptotic) cells in both wild-

type and PUMA knockout HCT-116 cells. Consistent with data

shown in Fig. 2 (B,D), the BITC-mediated enrichment of sub-

diploid fraction was relatively more pronounced in the wild-type

HCT-116 cells than in its PUMA knockout variant (Fig. 3B).

Furthermore, the BITC-induced G2/M phase cell cycle arrest was

relatively more pronounced in the PUMA knockout cells

compared with wild-type HCT-116 cells (Fig. 3C). The BITC-

treated PUMA knockout cells exhibited an increase in protein

level of p21, but this effect was not evident in the wild-type HCT-

116 cells (Fig. 3D). Finally, BITC treatment caused a modest

increase in protein level of cyclin-dependent kinase 1 (cdk1) (30–

50% increase over DMSO-treated control) in wild-type HCT-116

cells (Fig. 3D). In contrast, expression of cdk1 protein was

decreased markedly upon treatment of PUMA knockout HCT-

116 cells with BITC (Fig. 3D). These results indicated that

attenuation of BITC-induced apoptosis in PUMA knockout HCT-

116 cells was accompanied by an increase in G2/M phase cell

cycle arrest due to induction of p21 and downregulation of cdk1

protein.

BITC treatment decreases levels of Bcl-xL and Bcl-2
proteins in MCF-7 cells

The PUMA protein serves to activate Bax by relieving

inhibition by the anti-apoptotic Bcl-2 family members, including

Bcl-2, Bcl-xL, and Mcl-1 [20]. We have shown previously that

BITC-induced apoptosis in MCF-7 and MDA-MB-231 cells is

associated with suppression of Bcl-xL and/or Bcl-2 [11]. However,

functional studies to test the role of these proteins in the context of

BITC-induced apoptosis in breast cancer cells are lacking. As

shown in Fig. 4A, BITC treatment resulted in suppression of both

PUMA Regulates BITC-Induced Apoptosis
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Bcl-xL and Bcl-2 protein levels in MCF-7 cells. Ectopic expression

of Bcl-xL through transient transfection in MCF-7 cells (Fig. 4B)

conferred partial but statistically significant protection against

BITC-induced apoptosis (Fig. 4C). Similarly, Bcl-2 overexpressing

MCF-7 cells (Fig. 4D) were significantly more resistant to BITC-

mediated enrichment of histone-associated DNA fragment release

into the cytosol compared with cells transiently transfected with

the empty vector (Fig. 4E). These results indicated that BITC-

induced apoptosis in MCF-7 cells was caused by downregulation

of both Bcl-xL and Bcl-2 proteins.

Opposing effect of BITC on Bcl-xL and Bcl-2 protein levels
in MDA-MB-231 cells

Similar to MCF-7 cells (Fig. 4A), BITC treatment caused a

decrease in protein level of Bcl-xL in MDA-MB-231 cells

especially at the 5 mM concentration (Fig. 5A). To the contrary,

BITC-treated MDA-MB-231 cells exhibited a marked increase in

level of Bcl-2 protein (Fig. 5A). The BITC treatment downreg-

ulated Bcl-xL protein expression in MDA-MB-231 cells transiently

transfected with both the empty vector and vector encoding for

Bcl-xL (Fig. 5B). In agreement with results in MCF-7 cells

Figure 1. BITC treatment increases PUMA protein level in MCF-7 and MDA-MB-231 cells. (A) Western blotting for PUMA using lysates from
MCF-7 and MDA-MB-231 cells treated with DMSO (control) or BITC (2.5 or 5 mM) for the indicated time periods. Number above band indicates change
in level compared to corresponding DMSO-treated control. (B) Immunofluorescence microscopy for PUMA in Mito GFP expressing MCF-7 cells after
24 h treatment with DMSO or 5 mM BITC (1006 objective magnification). Arrow represents localization of PUMA in mitochondrion. (C)
Immunoblotting for PUMA using lysates from MCF-7 cells transiently transfected with a control siRNA or PUMA-targeted siRNA and treated for 24 h
with DMSO or 5 mM BITC. (D) Quantitation of histone-associated DNA fragment release into the cytosol (a measure of apoptosis) in MCF-7 cells
transiently transfected with a control siRNA or PUMA-targeted siRNA and treated for 24 h with DMSO or 5 mM BITC. Results are expressed as
enrichment relative to corresponding DMSO-treated control. Data represent mean 6 SD (n = 2–3). Significantly different (P,0.05) compared with
arespective DMSO-treated control and bbetween control siRNA transfected and PUMA siRNA transfected cells by one-way ANOVA followed by
Bonferroni’s multiple comparison test. The experiments were repeated twice and data from one representative experiment are shown.
doi:10.1371/journal.pone.0032267.g001
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(Fig. 4C), overexpression of Bcl-xL protein was protective against

BITC-mediated apoptosis in MDA-MB-231 cells (Fig. 5C).

Because the expression of Bcl-2 protein was increased after BITC

treatment in MDA-MB-231 cells, we determined the effect of its

knockdown on BITC-induced apoptosis. Level of Bcl-2 protein

was decreased by 80% in MDA-MB-231 cells transfected with the

Bcl-2-targeted siRNA compared with control siRNA transfected

cells (Fig. 5D). Knockdown of Bcl-2 alone increased apoptosis in

MDA-MB-231 cells (Fig. 5E). In addition, the BITC-induced

apoptosis was increased significantly in MDA-MB-231 cells upon

knockdown of Bcl-2 when compared with cells transfected with the

control siRNA (Fig. 5E). Collectively, these results indicated that

MCF-7 and MDA-MB-231 cells responded differentially to BITC-

mediated alterations in Bcl-2 protein expression.

p53 is dispensable for BITC-mediated downregulation of
Bcl-2 protein in MCF-7 cells

Next, we questioned whether differential behavior of MCF-7

versus MDA-MB-231 cells to BITC-mediated change in Bcl-2

protein expression was related to difference in p53 status. Twenty-

four hour treatment of control siRNA transfected MCF-7 cells to

5 mM BITC resulted in .10-fold increase in level of p53 protein

(Fig. 5F). This effect was not observed in MCF-7 cells transfected

with the p53-targeted siRNA. However, the BITC-mediated

suppression of Bcl-2 protein level was observed in MCF-7 cells

transfected with both control siRNA and p53-targetd siRNA

(Fig. 5F). These results indicated that BITC-mediated downreg-

ulation of Bcl-2 was not influenced by the p53 status at least in

MCF-7 cells.

Role of p53 in BITC-mediated induction of PUMA
We sought to determine the role of p53 in BITC-mediated

induction of PUMA using MCF-7 cells. As can be seen in Fig. 5G,

MCF-7 cells transfected with the p53-targeted siRNA showed a

60% decrease in the level of p53 protein in comparison with cells

transfected with the control siRNA. In addition, the BITC-

mediated induction of PUMA was partially reversed upon RNA

interference of p53. Two possibilities exist to explain these results:

(a) the BITC-mediated induction of PUMA in MCF-7 cells is only

partially regulated by p53, and (b) PUMA induction after

treatment with BITC in MCF-7 cells transfected with the p53-

targeted siRNA is simply a consequence of incomplete knockdown

of the p53 protein. Nevertheless, based on data in MDA-MB-231

cells, it is likely that both p53-dependent and -independent

mechanisms are responsible for BITC-mediated induction of

PUMA at least in breast cancer cells.

BITC administration causes in vivo induction of PUMA in
MDA-MB-231 xenografts

We used tumor specimens from our previously published MDA-

MB-231 xenograft study [7] to determine the in vivo effect of BITC

Figure 2. PUMA knockout HCT-116 cells are partially resistant
to BITC-induced apoptosis. (A) Immunoblotting for PUMA protein
using lysates from wild-type HCT-116 cells (WT) and PUMA knockout
HCT-116 cells (PUMA KO) following 24 h treatment with DMSO or BITC
(2.5 or 5 mM). (B) Quantitation of histone-associated DNA fragment
release into the cytosol in WT and PUMA KO HCT-116 cells after 24 h
treatment with DMSO or BITC (2.5 or 5 mM). Results are expressed as
enrichment relative to corresponding DMSO-treated control. Data
represent mean 6 SD (n = 4). Significantly different (P,0.05) compared

with arespective DMSO-treated control and bbetween WT and PUMA KO
HCT-116 cells by one-way ANOVA followed by Bonferroni’s multiple
comparison test. (C) Visualization of apoptotic nuclei (DAPI assay) with
condensed and fragmented DNA (identified by arrows) in WT HCT-116
cells after 24-hour treatment with DMSO or 5 mM BITC. (D) Quantitation
of apoptotic nuclei in WT and PUMA KO HCT-116 cells following 24 h
treatment with DMSO or BITC (2.5 or 5 mM). Data represent mean 6 SD
(n = 3). Significantly different (P,0.05) compared with arespective
DMSO-treated control and bbetween WT and PUMA KO cells by one-
way ANOVA followed by Bonferroni’s multiple comparison test. Each
experiment was repeated at least twice.
doi:10.1371/journal.pone.0032267.g002
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administration on the expression of PUMA and Bcl-xL proteins.

The MDA-MB-231 tumors from BITC-treated mice exhibited

induction of PUMA protein when compared with tumors from

vehicle-treated control mice as judged by immunohistochemistry

(Fig. 6A) and western blotting (Fig. 6B). Even though BITC

treatment resulted in in vivo induction of Bcl-xL as well (Fig. 6C),

the difference was not significant (Fig. 6D). These results provided

in vivo evidence for BITC-mediated induction of PUMA protein in

MDA-MB-231 xenografts.

Discussion

The results presented herein indicate that PUMA plays an

important role in BITC-induced apoptosis. This conclusion is based

on the following observations: (a) the BITC treatment increases the

level of PUMA protein in breast cancer cells, which is not a cell line-

specific response but relatively more pronounced in cells with wild-

type p53 (MCF-7); although RNA interference of p53 alone has

minimal impact on BITC-induced apoptosis in MCF-7 cells [13],

Figure 3. BITC treatment causes G2/M phase cell cycle arrest in PUMA knockout HCT-116 cells. (A) Representative flow histograms
depicting cell cycle distribution in wild-type HCT-116 cells (WT) and PUMA knockout HCT-116 cells (PUMA KO) after 24 h treatment with DMSO or
5 mM BITC. Quantitation of (B) sub-G0/G1 and (C) G2/M fraction in WT and PUMA KO HCT-116 cells after 24 h treatment with DMSO or 5 mM BITC. The
experiment was repeated twice and merged data from both the experiments are shown. Data represent mean 6 SD (n = 4). aSignificantly different
(P,0.05) compared with DMSO-treated control by one-way ANOVA followed by Bonferroni’s multiple comparison test. (D) Immunoblotting for p21
and cdk1 using lysates from WT and PUMA KO HCT-116 cells treated for 24 h with DMSO or the indicated concentrations of BITC. Each experiment
was repeated at least twice.
doi:10.1371/journal.pone.0032267.g003

PUMA Regulates BITC-Induced Apoptosis
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(b) BITC-induced apoptosis is partially but significantly attenuated

by RNA interference of PUMA, (c) the PUMA knockout variant of

HCT-116 is significantly more resistant to BITC-induced apoptosis

compared with wild-type HCT-116 cells, and (d) BITC adminis-

tration increases levels of PUMA protein in MDA-MB-231 tumor

xenografts in vivo. Because BITC-mediated induction of PUMA is

discernible in cultured and xenografted breast cancer cells, this

protein represents a viable biomarker of BITC response.

Role of p53 in regulation of PUMA expression is well

established [20]. PUMA is expressed at a low level in normal

tissues but it is highly sensitive to induction in response to a wide

variety of stresses [20,28]. In stressed cells (e.g., DNA damage), p53

is recruited to the two p53-responsive elements in the PUMA

promoter [29]. Binding of p53 to the PUMA promoter alters

acetylation of histones H3 and H4 leading to opening of the

chromatin structure and hence transcriptional activation [30]. The

results of the present study indicate that BITC treatment causes

both p53-dependent and p53-independent induction of PUMA as

this effect is observed in both MCF-7 and MDA-MB-231 cells.

However, as expected the MCF-7 cell line is relatively more

Figure 4. Overexpression of Bcl-xL and Bcl-2 confers protection against BITC-induced apoptosis in MCF-7 cells. (A) Western blotting
for Bcl-xL and Bcl-2 using lysates from MCF-7 cells treated with DMSO (control) or BITC (2.5 or 5 mM) for the indicated time periods. Number above
band indicates change in level compared to the corresponding DMSO-treated control. (B) Western blotting for Bcl-xL using lysates from MCF-7 cells
transiently transfected with empty vector or Bcl-xL plasmid and treated for 24 h with DMSO or 5 mM BITC. Number above band represents change in
level relative to empty vector transfected cells treated with DMSO (first lane). (C) Quantitation of histone-associated DNA fragment release into the
cytosol in MCF-7 cells transiently transfected with empty vector or vector encoding for Bcl-xL and treated for 24 h with DMSO or 5 mM BITC. (D)
Western blotting for Bcl-2 using lysates from MCF-7 cells transiently transfected with empty vector or Bcl-2 plasmid and treated for 24 h with DMSO
or 5 mM BITC. Number above band represents change in level relative to empty vector transfected cells treated with DMSO (first lane). (E)
Quantitation of histone-associated DNA fragment release into the cytosol in MCF-7 cells transiently transfected with empty vector or vector encoding
for Bcl-2 and treated for 24 h with DMSO or 5 mM BITC. Data in C, E are expressed as enrichment relative to corresponding DMSO-treated control
(mean 6 SD, n = 3). Significantly different (P,0.05) acompared with corresponding DMSO-treated control, and bbetween empty vector transfected
cells and Bcl-xL or Bcl-2 overexpressing cells by one-way ANOVA followed by Bonferroni’s multiple comparison test. The experiments were repeated
twice and data from one representative experiment are shown.
doi:10.1371/journal.pone.0032267.g004

PUMA Regulates BITC-Induced Apoptosis
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Figure 5. Opposing effect of BITC treatment on levels of Bcl-xL and Bcl-2 proteins in MDA-MB-231 cells. (A) Western blotting for Bcl-xL
and Bcl-2 using lysates from MDA-MB-231 cells treated with DMSO (control) or BITC (2.5 or 5 mM) for the indicated time periods. Number above band
indicates change in level compared to the corresponding DMSO-treated control. (B) Western blotting for Bcl-xL and (C) quantitation of histone-
associated DNA fragment release into the cytosol in MDA-MB-231 cells transiently transfected with empty vector or vector encoding for Bcl-xL and
treated for 24 h with DMSO or 5 mM BITC. Results are expressed as enrichment relative to corresponding DMSO-treated control. Data represent mean
6 SD (n = 3). Significantly different (P,0.05) acompared with corresponding DMSO-treated control, and bbetween empty vector transfected cells and
Bcl-xL overexpressing cells by one-way ANOVA followed by Bonferroni’s multiple comparison test. (D) Western blotting for Bcl-2 and (E) quantitation
of histone-associated DNA fragment release into the cytosol in MDA-MB-231 cells transiently transfected with a control siRNA or the Bcl-2-targeted
siRNA and treated for 24 h with DMSO or 5 mM BITC. In panel E, results shown are relative to control siRNA transfected cells treated with DMSO. Data
represent mean 6 SD (n = 3). Significantly different (P,0.05) acompared with corresponding DMSO-treated control, and bbetween control siRNA
transfected cells and Bcl-2 siRNA transfected cells by one-way ANOVA followed by Bonferroni’s multiple comparison test. (F) Western blotting for p53
and Bcl-2 using lysates from MCF-7 cells transiently transfected with a control siRNA or the p53-targeted siRNA and treated for 24 h with DMSO or
5 mM BITC. (G) Western blotting for p53 and PUMA using lysates from MCF-7 cells transiently transfected with a control siRNA or the p53-targeted
siRNA and treated for 24 h with DMSO or 5 mM BITC. Number above the bands in 5F, G represents change in level relative to control siRNA
transfected cells treated with DMSO. All the experiments were repeated at least twice and representative data from one such experiment are shown.
doi:10.1371/journal.pone.0032267.g005

PUMA Regulates BITC-Induced Apoptosis
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sensitive to BITC-mediated induction of PUMA protein compared

with the MDA-MB-231 cell line. Further studies are needed to

gain insights into the p53-independent mechanism(s) responsible

for BITC-mediated induction of PUMA protein especially in the

MDA-MB-231 cells. It is possible that this effect in MDA-MB-231

cells is mediated by transcriptional suppression of Slug, which is

a negative regulator of PUMA [31]. We have shown previously

that BITC-mediated inhibition of epithelial-mesenchymal transi-

tion in MDA-MB-231 cells is associated with transcriptional

repression of Slug [15]. At the same time, several other

transcription factors have been implicated in regulation of PUMA

expression, including p53 homologue p73 [32], the forkhead

family member FOXO3a [33], c-Myc [34], and E2F1 [35], and

their involvement in BITC-mediated induction of PUMA protein

can’t be excluded.

Attenuation of BITC-induced apoptosis in PUMA knockout

HCT-116 cells is accompanied by an increase in G2/M phase cell

cycle arrest, which is accompanied by induction of p21. These

findings are consistent with literature data showing the balance

between induction of PUMA and/or suppression of p21 in cells

committed for cell cycle arrest or apoptotic death [36].

Conversely, suppression of PUMA [31] or selective induction of

Figure 6. BITC administration increase PUMA expression in vivo in MDA-MB-231 xenografts. Immunohistochemical analysis for (A) PUMA
and (C) Bcl-xL in MDA-MB-231 tumor sections from control and BITC-treated mice (7). Magnification- 2006; scale bar- 40 mm. Immunoblotting for (B)
PUMA and (D) Bcl-xL using tumor supernatants from control and BITC treatment groups. Lower panels in B and D represent densitometric
quantitation (arbitrary units). Statistical significance was determined by Student’s t-test (n = 5 for control and n = 3 for BITC treatment group).
doi:10.1371/journal.pone.0032267.g006

PUMA Regulates BITC-Induced Apoptosis
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cell-cycle regulators [37] is evident in cells resistant to DNA-

damage-induced apoptosis.

We have shown previously that ROS generation is a critical

event in BITC-induced apoptosis in MDA-MB-231 and MCF-7

cells [12]. Attenuation of apoptosis by ectopic expression of

catalase and superoxide dismutase reinforces the notion that ROS

provide initial signal for BITC-induced apoptosis at least in breast

cancer cells [12]. The BITC-mediated ROS production is

associated with inhibition of complex III of the mitochondrial

respiratory chain [12]. Notably, PUMA can be induced by

oxidative stress in neuronal and colon cancer cells [38,39]. The

PUMA-deficient neurons are resistant to apoptosis induction by

oxidative stress [38]. At the same time, Liu et al [40] have shown

that PUMA overexpression itself causes ROS generation in colon

cancer cells. It would be interesting to determine if ROS function

upstream of PUMA induction or PUMA induction is partly

responsible for the pro-oxidant effect of BITC in addition to

inhibition of mitochondrial electron transport chain. Nevertheless,

both ROS production and PUMA induction seem important for

BITC-induced apoptosis in breast cancer cells [12, and present

study].

The multidomain proapoptotic protein Bax seems necessary for

PUMA-mediated apoptosis. For example, the Bax knockout

HCT-116 cells are fully resistant to apoptosis induction by PUMA

overexpression as well as stimuli leading to PUMA-dependent

apoptosis [41]. Moreover, PUMA overexpression has been shown

to cause conformational change, polymerization, and mitochon-

drial translocation of Bax [41,42]. We have also shown previously

that BITC treatment causes ROS-dependent activation (confor-

mational change) and mitochondrial translocation of Bax in

MDA-MB-231 cells [12]. Moreover, SV40 immortalized mouse

embryonic fibroblasts derived from Bax and Bak double knockout

mice are partially but significantly more resistant to BITC-induced

apoptosis compared with mouse embryonic fibroblasts derived

from wild-type mice [11]. We propose a working mechanistic

model involving ROS-dependent induction of PUMA and Bax

activation in BITC-induced apoptosis.

PUMA contributes to apoptosis by directly interacting with anti-

apoptotic Bcl-2 family members [20]. Direct interaction between

anti-apoptotic proteins and PUMA is dependent on its BH3

domain as this interaction is disrupted by deletion or mutations in

BH3 domain [28]. The BH3 peptide of PUMA is capable of

interacting with anti-apoptotic proteins [43,44]. Overexpression

of PUMA has been shown to cause dissociation of Bax from Bcl-

xL [42]. Interestingly, BITC treatment not only causes the

induction of PUMA, which is likely to relieve inhibitory effects of

Bcl-xL and Bcl-2, but also causes downregulation of Bcl-xL in both

MCF-7 and MDA-MB-231 cells and that of Bcl-2 in MCF-7 cells.

It is possible that Bcl-xL and Bcl-2 downregulation itself

contributes to PUMA-independent apoptosis in our model.

However, the molecular basis for differential effect of BITC

treatment on the level of Bcl-2 protein in MCF-7 (downregula-

tion) versus MDA-MB-231 cells (upregulation) remains elusive. We

have already ruled out involvement of p53 in this differential

response.

In summary, the present study indicates that: (a) the Bim protein

is dispensable for proapoptotic response to BITC in breast cancer

cells; (b) PUMA induction and downregulation of Bcl-xL protein

contribute to BITC-induced apoptosis, which is not a cell line-

specific phenomenon; (c) BITC treatment differentially affects the

levels of Bcl-2 protein in MCF-7 versus MDA-MB-231 cells; and (d)

PUMA deficiency in HCT-116 human colon cancer cell line

increases its sensitivity to BITC-induced G2/M phase cell cycle

arrest.

Methods

Ethics statement
The MDA-MB-231 tumor xenografts from control and BITC-

treated mice archived from our previously published study [7]

were used in the present study to determine the effect of BITC

administration on expression of PUMA and Bcl-xL proteins. Use

of mice was approved by the Institutional Animal Care and Use

Committee (protocol number 1004983A-4).

Reagents
BITC was purchased from LKT Laboratories (St. Paul, MN).

Stock solution of BITC was prepared in DMSO and an equal

volume of DMSO (,0.05%) was added to the controls. Reagents

for cell culture including medium, fetal bovine serum, antibiotics

and Alexa Fluor 568-conjugated donkey anti-rabbit antibody were

purchased from Invitrogen-Life Technologies (Carlsbad, CA).

Antibody against Bcl-2 was from DAKO Cytomation (Carpin-

teria, CA); antibody against Bim was from Cell Signaling

Technology (Beverly, MA); anti-p53 antibody was from Calbio-

chem-EMD Chemicals (Gibbstown, NJ); anti-actin antibody, 49,6-

diamidino-2-phenylindole (DAPI) and propidium iodide were

from Sigma-Aldrich (St. Louis, MO). The siRNA targeted against

p53, Bcl-2, Bim, and PUMA, and antibodies against Bcl-xL,

PUMA, and cdk1 were purchased from Santa Cruz Biotechnology

(Santa Cruz, CA). Anti p21 antibody was from BD Biosciences

(San Diego, CA). A nonspecific control siRNA was from Qiagen

(Germantown, MD). A kit for quantification of histone-associated

DNA fragment release into the cytosol was purchased from Roche

Applied Science (Indianapolis, IN).

Cell lines
MCF-7 and MDA-MB-231 cells were obtained from the

American Type Culture collection (Manassas, VA), and main-

tained as described by us previously [11,12]. Wild-type HCT-116

human colon cancer cell line and its isogenic PUMA knockout

variant were generously provided by Dr. Bert Vogelstein (Johns

Hopkins University, Baltimore, MD) and cultured in McCoy’s 5A

modified medium supplemented with 10% fetal bovine serum and

penicillin/streptomycin antibiotic mixture.

Western blotting
Control and BITC-treated cells and tumor tissues from mice

treated with vehicle control and BITC were processed for

immunoblotting as described by us previously [45–47]. Proteins

from cell lysates and tumor supernatants were resolved by sodium-

dodecyl sulfate polyacrylamide gel electrophoresis and transferred

onto membrane. The membrane was incubated with the desired

primary antibody for overnight at 4uC after blocking in 5% non-

fat dry milk. Immunoreactive bands were visualized by enhanced

chemiluminescence method. Densitometric quantitation was done

using UN-SCAN-IT software version 5.1 (Silk Scientific Corpo-

ration, Orem, Utah, USA).

RNA interference
MDA-MB-231 and MCF-7 cells were transfected at ,50%

confluency with 100 nM of target specific siRNA or a control

siRNA using OligoFECTAMINE (Invitrogen-Life Technologies).

Twenty-four hours post transfection, cells were treated with

DMSO (control) or BITC for specified time period. Cells were

collected and processed for immunoblotting and measurement for

histone-associated DNA fragment release into the cytosol.
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Immunofluorescence microscopy for PUMA expression
MCF-7 stably transfected with Mito-GFP were maintained in

media supplemented with 400 mg/mL G418. The cells were

plated on cover slips and treated with DMSO (control) or 5 mM

BITC for 24 h followed by fixing in paraformaldehyde. Cells were

permeabilized with Triton X-100 and incubated with blocking

buffer containing bovine serum albumin in phosphate-buffered

saline (PBS) for 1 h at room temperature. Cells were then

incubated with anti-PUMA antibody in blocking buffer overnight

at 4uC. Cells were stained with Alexa Fluor 568-conjugated

secondary antibody and DAPI prior to mounting. Immunofluo-

rescence was examined under a Leica DC300F fluorescence

microscope.

DAPI assay
DAPI staining was done to quantify apoptotic cells with

condensed and fragmented DNA. The DMSO-treated control

and BITC-treated cells were fixed in paraformaldehyde and

permeabilized with 0.4% Triton X-100. Cells were then stained

with 10 ng/mL DAPI for 5 min at room temperature. Apoptotic

cells were counted under a fluorescence microscope.

Flow cytometry and cell cycle analysis
HCT-116 cells (WT and PUM KO) were treated with BITC or

DMSO for 24 h and fixed in 70% ice-cold ethanol. Cells were

then treated with 100 mg/mL RNaseA and 50 mg/mL propi-

dium iodide, and subjected to flow cytometry (Coulter Epics XL

cytometer). Cell cycle distribution was determined as described by

us previously [48].

Transient transfection
MDA-MB-231 and MCF-7 cells were transiently transfected at

,50–60% confluency with the empty pSFFV-neo vector or

pSFFV vector encoding for Bcl-2 or Bcl-xL using FuGENE6

transfection reagent. Transfected cells were treated with DMSO or

BITC and processed for immunoblotting and measurement of

apoptosis.

Immunohistochemistry
Immunohistochemistry for PUMA and Bcl-xL in tumor sections

was performed as described by us previously for other proteins

[47]. Because the expression of PUMA and Bcl-xL was quite

robust even in control tumors, quantitation of expression was not

performed.
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