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Abstract

Recent advances in high-throughput technologies have made it possible to generate both gene and protein sequence data
at an unprecedented rate and scale thereby enabling entirely new ‘‘omics’’-based approaches towards the analysis of
complex biological processes. However, the amount and complexity of data that even a single experiment can produce
seriously challenges researchers with limited bioinformatics expertise, who need to handle, analyze and interpret the data
before it can be understood in a biological context. Thus, there is an unmet need for tools allowing non-bioinformatics users
to interpret large data sets. We have recently developed a method, NNAlign, which is generally applicable to any biological
problem where quantitative peptide data is available. This method efficiently identifies underlying sequence patterns by
simultaneously aligning peptide sequences and identifying motifs associated with quantitative readouts. Here, we provide a
web-based implementation of NNAlign allowing non-expert end-users to submit their data (optionally adjusting method
parameters), and in return receive a trained method (including a visual representation of the identified motif) that
subsequently can be used as prediction method and applied to unknown proteins/peptides. We have successfully applied
this method to several different data sets including peptide microarray-derived sets containing more than 100,000 data
points. NNAlign is available online at http://www.cbs.dtu.dk/services/NNAlign.
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Introduction

Proteins are extremely variable, flexible and pliable building

blocks of life that are crucially involved in almost all biological

processes. Many diseases are caused by protein aberrations, and

proteins are frequent targets of intervention. A plethora of high-

throughput methods are currently being used to study genetic

associations and protein interactions, and intense on-going

international efforts aim at understanding the structures, functions

and molecular interactions of all proteins of organisms of interest

(e.g. the Human Proteome Project, HPP). In some cases, linear

peptides can emulate functional and/or structural aspects of a

target structure. Such peptides are currently identified using

simple peptide libraries of a few hundreds to thousands peptides

whose sequences have been systematically derived from the target

structure at hand – that is, if this is known. Even when the native

target structure is unknown, or too complex (e.g. discontinuous) to

be represented by homologous peptides, the enormous diversity

and plasticity of peptides may allow one or more peptides to mimic

relevant aspects of a given target structure [1,2].

Peptides are therefore of considerable biological interest and so

are methods aimed at identifying and understanding peptide

sequence motifs associated with biological processes in health and

disease. Indeed, recent developments in large-scale, high-density

peptide microarray technologies allow the parallel detection of

thousands of sequences in a single experiment, and have been used

in a wide range of applications, including antibody-antigen

interactions, peptide-MHC interactions, substrate profiling, iden-

tification of modification sites (e.g. phosphorylation sites), and

other peptide-ligand interactions [3,4,5,6,7]. One of the major

advances of peptide microarrays is the ease of generating large

numbers of potential target structures and systematic variants

hereof [8].

Given the capability for large-scale data-generation already

realized in current ‘‘omics’’ and peptide microarray-based

approaches, experimentalists will increasingly be confronted with

extraordinary large data sets and the consequent problem of

identifying and characterizing features common to subsets of the

data. These are by no means trivial problems. Up to a certain level

of size and complexity, data can be presented in simple tabular

forms or in charts, however, larger and/or more complex bodies of

data (e.g. in proteome databases) will need to be fed into

bioinformatics data mining systems that can be used for automated

interpretation and validation of the results, and eventually for in
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silico mapping of peptide targets. Moreover, such systems can

conveniently be used to design next-generation experiments aimed

at extending the description of target structures identified in

previous analyses [9].

A wealth of methods has been developed to interpret

quantitative peptide sequence data representing specific biological

problems. By way of examples, SignalP, which identifies the

presence of signal peptidase I cleavage sites, is a popular method

for the prediction of signal peptides [10]; LipoP, which identifies

peptidase II cleavage sites, predicts lipoprotein signal peptides in

Gram-negative bacteria [11]; various prediction methods predict

phosphorylation sites by identifying short amino acid sequence

motifs surrounding a suitable acceptor residue [12,13,14,15] etc.

In general terms, these methods can be divided in two major

groups depending on the structural properties of the biological

receptor investigated, and of the nature of the peptides recognized.

The simplest situation deals with interactions where a receptor

binds peptides that are in register and of a known length. In this

case, the peptide data is pre-aligned, and conventional fixed

length, alignment-free pattern recognition methods like position

specific weight matrices (PSSM), artificial neural networks (ANN),

and support vector machines (SVM) can be used. Peptide-MHC

class I binding is a prominent example of the successful use of such

methods to characterize receptor-ligand interaction represented by

pre-aligned data (reviewed in [16]). Another more complex type of

problems deals with interactions where either the motif lengths,

and/or the binding registers, are unknown. In these cases, the

peptide data must a priori be assumed to be unaligned and any

bioinformatics method dealing with such data is faced with the

challenge of simultaneously recognizing the binding register (i.e.

performing an alignment) and identifying the binding motif (i.e.

performing a specificity analysis). Peptide-MHC class II binding is

a preeminent example of a receptor-ligand interaction represented

by unaligned data. Several bioinformatics methods have been

developed to identify binding motifs in such peptide data including

Gibbs sampling [17], hidden Markov models (HMM) [18],

stabilization matrix method (SMM) alignment [19], and alignment

using artificial neural networks [20] (for more references see [21]).

Another example of unaligned peptide data is that of antibodies

interacting with linear peptide epitopes. Although B-cell epitopes

frequently are conformational and three-dimensional in structure,

some do contain linear components that can be represented by

peptide interaction with the corresponding antibodies [22,23,24].

Even though most of the methods described above are standard

methods for data-driven pattern recognition, the development of a

prediction method for any given biological problem is far from

straightforward, and the non-expert user will rarely be able to

develop their own state-of-the-art prediction methods. We have

recently described a neural network-based data driven method,

NN-align, which has been specifically designed to automatically

capture motifs hidden in unaligned peptide data [20]. NN-align is

implemented as a conventional feed-forward neural network and

consists of a two-step procedure that simultaneously identifies the

optimal peptide-binding core, and the optimal configuration of the

network weights (i.e. the motif). This method is therefore

inherently designed to deal with unaligned peptide data, and it

identifies a core of consecutive amino acids within the peptide

sequences that constitute an informative motif. Note that the

method does not allow for gaps in the alignment. Although NN-

align was originally developed with the unaligned nature of

peptide-MHC class II interaction in mind – and independent

validations have shown that NN-align indeed performs significantly

better than any previously published methods for MHC class II

motif recognition [25] – the unique ability of this method to

capture subtle linear sequence motifs in quantitative peptide-based

data and its adaptability makes it extremely attractive for other

applications as well. Here, we have adapted and extended the NN-

align method so that it can handle quantitative peptide-based data

in general. Making this method generally available for the

scientific community, we have embedded it into a public online

web-interface that facilitates both handling of input data,

optimization of essential training parameters, visual interpretation

of the results, and the option of using the resulting method to

predict on user-specified proteins/peptides. Through the server

the user can easily set up a cross-validation experiment to estimate

the predictive performance of the trained method, and automat-

ically reduce redundancy in the data. The logo visualization is also

improved with an algorithm that aligns individual neural networks

to maximize the information content of the combined alignment.

This web-based extension of the NN-align method empowers

experimentalists of limited bioinformatics background with the

ability to perform advanced bioinformatics-driven analysis of his/

her own sets of large-scale data.

Results

Enabling any non-expert end-user to extract specific informa-

tion from quantitative peptide data using an advanced bioinfor-

matics approach, we have used our recently published NN-align

method to generate a web-based extension with a reasonably

simple, yet adaptable, web-interface and made this server publicly

available at http://www.cbs.dtu.dk/services/NNAlign. Using this

web server any user can submit quantitative peptide data

(optimally based on actual discrete measurements, but even

assigned classification, e.g. 0 and 1, can be used) and in return

receive a trained method including training details and estimated

predictive performance, a visual interpretation of the identified

peptide pattern, and the trained model itself. The latter can be re-

submitted to the web server at any later time and used to predict

the occurrence of the learned motif in one or more concurrently

submitted peptide sequences or FASTA format sequences.

The truly non-expert user has the option of using a set of default

settings. Using these settings, the data is preprocessed using a

linear transformation to make the data fall in the range from 0 to

1, and the NN-align method is trained using five-fold cross-

validation. For each cross validation partition five networks, each

initiated from different initial configurations, are trained with 3

hidden neurons. The only critical parameter that the user is

required to specify is the motif length. The value used for this

parameter is specific to each problem and the user is recom-

mended to define a motif length (or an interval of motif length)

that is relevant to the biological problem investigated by the

peptide data. The default settings will in most cases allow the user

to obtain a first impression of the motif contained in the data, and

achieve a prediction method that allows the user to make

prospective studies on uncharacterized proteins/peptides. The

more experienced user has several advanced options to customize

the training. For details on these options refer to Materials and

Methods section, or the help section of the web-server.

An example output from the NNAlign Server is shown in

Figure 1. Information about the training data is accompanied by a

plot of the data distribution before and after the data processing

needed to train the neural networks. An important feature is the

possibility to download and save the trained model, and use it

subsequently for predictions on new data. The results page also

returns the performance of the method as estimated by cross-

validation, and provides links to a scatter-plot showing the

correlation between measured and predicted values, as well as
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the complete alignment core on the training data. A sequence logo

gives a visual representation of the identified sequence motif,

which can also be viewed in a log-odds position-specific scoring

matrix format. If any evaluation data has been provided at the

time of method training, a section of the results will report the

predictions of this evaluation set.

A few example applications illustrating the power of the NNAlign

method are presented in the following sections. First, the method is

applied to examples of pre-aligned peptide data using examples of

MHC class I binding. Next, the alignment problem is included

using MHC class II binding data, showing the ability of the

method to identify at the same time the correct length of the motif,

the binding register, and the sequence motif itself. An important

output from the NNAlign method is a sequence logo representing

the identified binding motif. Such sequence logos provide a highly

intuitive representation of single-receptor specificities (as is the case

Figure 1. Example of output from the NNAlign server trained on MHC class II binding data for allele HLA-DRB1*0101. Links on the
results page (in pink) redirect to additional files and figures relevant for the analysis. Run ID is a sequential identifier for the current job, and Run
Name a user-defined prefix that is added to all files of the run. The ‘‘view data distribution’’ link shows the transformation applied to the data in pre-
processing, which can be either a linear or logarithmic transformation. In this case the method was trained with a motif length of 9, including a PFR of
size 3 to both ends of the peptide, and encoding in the network input layer peptide length and PFR length. The hidden layer was made of a fixed
number of 20 neurons. Peptides were presented to the networks using a Blosum encoding to account for amino acid similarity, for 500 hundred
iterations per peptide without stopping on the best test set performance. At each cross-validation step, 10 networks were trained starting from 10
different initial configurations. The subsets for cross-validation were constructed using a Hobohm1 method that groups in the same subset
sequences that align with more than 80% identity (thr = 0.8). The model can be downloaded to disk using the dedicated link, and can be resubmitted
to NNAlign to find occurrences of the learned pattern in new data. The estimated performance of the trained method is expressed in terms of Root
Mean Square Error, Pearson and Spearman correlation. A visual representation of the correlation can be obtained from the scatterplot of predicted
versus observed values. The ‘‘complete alignment core’’ link allows downloading the prediction values in cross-validation for each peptide, and where
the core was placed within the peptides. Next follows a section on the sequence logo, showing a logo representation of the binding motif learned by
the network ensemble. If the relative option is selected, links to logos for the individual networks in the final ensemble are also listed here. Finally, if
an evaluation set is uploaded, an additional section shows performance measures and core alignment for these data.
doi:10.1371/journal.pone.0026781.g001
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for MHC class I and II binding data). Finally, to illustrate how the

method is capable of handling and guide the semi-expert user in

interpreting large-scale data sets, NNAlign is applied to data

generated by a large-scale peptide microarray technology.

MHC class I
Binding of peptides to MHC class I molecules is highly specific,

with only 1–5% of a set of random natural peptides binding to any

given MHC molecule [26]. Moreover, in the vast majority of cases

only peptides with length 8–10 amino acids can fit in the binding

pocket of MHC class I molecules. The predictive performance of

NNAlign on 12 human MHC class I alleles from data by Peters

et al. [27] is shown in Table 1 (see the table footnote for the

parameters used). The benchmark data sets contain quantitative

binding data of a given length (9 amino acids) covering the whole

spectrum from non-binding to strong-binding peptides, hence

serving as a perfect illustration of the strength of the NNAlign

method to handle pre-aligned peptide data. The overall

performances of the three methods are comparable demonstrating

that NNAlign competes with state-of-the-art methods designed

specifically for MHC class I prediction.

MHC class II
As opposed to MHC class I binding, which is mostly limited to

peptides of similar length, the MHC class II molecule interacts

with peptides of a wide length distribution and high compositional

diversity [28]. Binding of a peptide to an MHC class II molecule is

primarily determined by a core of normally 9 amino acids, but the

composition of the regions flanking the binding core (peptide

flanking region, PFR) has been shown to also affect the binding

strength of a peptide [29,30]. Identifying the binding motif and

binding register for MHC class II binding peptides is thus a

problem that inherently requires simultaneous alignment and

binding affinity identification. Here, an MHC class II bench-

marking was obtained from the recent publication by Wang et al.

[25]. The performance was estimated for each allele using a 5 fold

cross validation, where at each step 4/5 of the data were used to

train the neural networks, and 1/5 were left out for evaluation. For

cross-validation, we preserved the same data partitioning as used

in the original publication. In Table 1, the performance of NNAlign

on the Wang set is compared to other publicly available methods

for MHC class II prediction. These include SMM-align [19],

ProPred/Tepitope [31,32], as well as the original version of the

NN-align algorithm [20]. The NN-align-based methods outperform

their competitors on all alleles, confirming the ability of the neural

networks in dealing with alignment problems. The difference with

the original NN-align method, which is due to differences in

network architecture, is small and not significant (p.0.2, binomial

test). For this example involving unaligned data, the NNAlign server

competes with comparable state-of-the-art methods.

Choosing the optimal motif length
Different positions in a binding motif can be more or less

informative, and the ends of a motif can often not be clearly

delineated. This prompts the question of how many positions are

necessary and sufficient to represent a given motif and how the

length of a motif is defined. NNAlign allows searching for the

optimal motif length in a quantitative peptide data set. Here, the

best motif length is the one that yields, in a cross-validation

experiment, the lowest root mean square error (RMSE) between

Table 1. Predictive performance in AUC on 12 human HLA MHC class I alleles (Peters data set) and on 14 HLA-DR MHC class II
alleles (Wang similarity reduced SR dataset).

MHC class I MHC class II

ALLELE # SMM ANN NNAlign ALLELE # NN-align SMM-align Propred NNAlign server

A*0101 1157 0.980 0.982 0.980 DRB1*0101 3504 0.763 0.756 0.692 0.794

A*0201 3089 0.952 0.957 0.959 DRB1*0301 1136 0.829 0.808 0.669 0.816

A*0203 1443 0.916 0.921 0.922 DRB1*0401 1221 0.734 0.721 0.711 0.736

A*2402 197 0.780 0.825 0.772 DRB1*0404 474 0.803 0.789 0.753 0.782

A*0301 2094 0.940 0.937 0.941 DRB1*0405 1049 0.794 0.767 0.742 0.808

A*1101 1985 0.948 0.951 0.952 DRB1*0701 1175 0.811 0.796 0.75 0.845

A*2902 160 0.911 0.935 0.920 DRB1*0802 1017 0.698 0.689 0.641 0.714

A*3101 1869 0.930 0.928 0.931 DRB1*0901 1042 0.713 0.696 0.745

A*6801 1141 0.885 0.883 0.881 DRB1*1101 1204 0.847 0.829 0.779 0.853

B*0702 1262 0.964 0.965 0.961 DRB1*1302 1070 0.732 0.754 0.577 0.775

B*3501 736 0.889 0.875 0.876 DRB1*1501 1171 0.756 0.741 0.703 0.765

B*5301 254 0.882 0.899 0.875 DRB3*0101 987 0.798 0.78 0.784

Ave 0.914 0.922 0.914 DRB4*0101 1011 0.789 0.762 0.808

DRB5*0101 1198 0.795 0.776 0.711 0.798

Ave 0.776 0.762 0.703 0.787

For MHC class I no significant difference is found in predicted performance between the NNAlign, SMM and ANN method (p.0.5, binomial test). The values for the SMM
and ANN methods were taken from Peters et al. [27]. The method was trained using a fixed motif length of 9 corresponding to the peptide length, and constructing a
network ensemble with multiple architectures using respectively 2,3,4,5 and 7 hidden neurons. Performance was measured in cross-validation, training each network for
a fixed number of 500 iterations per sequence.
The different MHC class II prediction methods are NN-align [20], SMM-align [19], and Propred [31,32]. NNAlign server is the method described here. Performance values
for first 4 methods are taken from [25]. NNAlign was trained with a motif length of 9, flanking regions of 3 amino acids, Blosum encoding including peptide length and
flanking region length, and an ensemble of 2, 3, 5, 9 and 12 hidden neurons for each of 10 initial random configurations.
In bold is highlighted the best performing method for each MHC allele. The column # gives the number of the peptides in the data set for the given allele.
doi:10.1371/journal.pone.0026781.t001
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observed and predicted values. By this token, a terminal position is

included in the motif if it contributes with information at a level

above what could be considered to be noise. In contrast, if the

inclusion of a putative terminal position does not lead to a

reduction in the RSME then it can be concluded that it does not

add useful parameters to the model; rather, it lowers the predictive

performance and should be omitted. This approach was used to

suggest the motif length of the 14 MHC class II HLA-DR alleles,

which were searched for optimal predictive performance by

scanning through possible lengths from 6 to 11 amino acids.

NNalign will report the length associated with the lowest RMSE

value as the optimal motif length (see Figure 2, left hand panel).

Nonetheless, the user is advised to inspect the sequence logo as

well as the performance plot of the RMSE as a function of the

motif length to evaluate whether the dependence upon length

appears significant. As defined here and illustrated in Figure 2

right panel, the 9-mer preference of HLA-DRB1*01:01 is

significant, whereas the apparent 8-mer preference of HLA-

DRB1*15:01 is not significant. In fact, for the 14 HLA-DR

molecules included in the benchmark, only one was found to have

a single consistent optimal motif length (DRB1*0101 with a motif

length of 9 amino acids). For all other molecules the method did

identify more than one possible optimal motif length. However, all

motif lengths fell in the range of 7 to 10 amino acids, and in all

cases a 9-mer motif was compatible with being the optimal motif

length.

Improving the LOGO sequence motif representation by
an offset correction

In order to enhance predictive performance, the NNAlign

method exploits an ensemble of neural networks [20,33], which

have been trained on different subsets of the data, and/or from

alternative configurations of the network architecture (i.e. different

number of hidden neurons and/or encoding schemes). As a

consequence of different architectures and starting conditions,

individual networks might disagree on the exact boundaries of the

motif. This disagreement would complicate the visualization of the

motif if this was represented as a simple overlay of the individual

motifs as exemplified in Figure 3, where sequence logos for four

different networks from the ensemble trained on HLA*DRB1-

04:01 binding data are shown in panels A through D. The

individual networks agree on identifying the same strong primary

anchor residues and positions, however, each single network

identifies different ends (i.e. suggests different registers of the same

motif; in casu starting at positions 1, 2, 2 and 3 of the predicted

nonamer peptide). The weak C-terminal primary anchor residue

of HLA*DRB1-04:01 probably explains why the boundaries are

difficult to determine. A simple overlay of the predictions from

individual networks would result in a muddled motif as depicted in

Figure 3, panel E. Implementing a Gibbs sampler approach,

where matrix representations of the core motifs of different

networks are aligned, we introduced an off-set correction for each

network aiming at maximizing the information content of a

combined logo representation of the motif. This approach led to a

considerable improvement in the visual logo representation of the

binding motif (Figure 3, panel F). Offset correction is included as

an integral part of the method to enhance motif visualization.

Characterizing the binding motif of HLA-DR molecules
using the NNAlign method

To illustrate the power of the NNAlign method to capture the

binding motifs within unaligned quantitative peptide data, we

applied the method to derive sequence logo representations of the

14 MHC class II HLA-DR molecules included the Wang dataset.

NNAlign was trained with a binding motif length of 9 amino acids,

Blosum encoding, including peptide length and flanking region

length, and PFRs of 3 amino acids, homology clustering at

threshold 0.8 using all data points, 20 hidden neurons and a 5-fold

cross-validation without stopping at the best test set performance.

These parameters were found to be optimal in the original NN-

align paper for MHC class II binding prediction [20], with the

only difference that here we choose a single value for hidden layer

size for a matter of prediction speed. Individual networks are

aligned to a common register using the offset correction strategy

previously described. The sequence logos obtained are shown in

Figure 4. The sequence logos reflect the overall consensus of the

binding motifs for HLA-DR molecules, namely a prominent P1

anchor with strong amino acids preference towards hydrophobic

Figure 2. Identification of optimal motif length using the NNAlign method. Left panel: Histogram of the optimal motifs lengths for the 14
HLA-DR molecules in the Wang dataset as identified by the NNAlign method. Right panel: Predictive performance measured in terms of the root
mean square error (RMSE) between observed and predicted values as a function of the motif length for the two molecules DRB1*0101 and
DRB1*1501. NNAlign was trained using the same parameters settings described in Figure 4. At each motif length are shown the mean and standard
error of the mean RMSE as estimated by bootstrap sampling. For DRB1*0101 a single consistent optimal motif length of 9 amino acids is found. For
DRB1*1501 all motif length 8–11 had statistically indistinguishable performance (paired t-test).
doi:10.1371/journal.pone.0026781.g002
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amino acids in general, and aromatic amino acids as F and Y in

particular, and the presence of two or more additional anchors at

P4, P6 and/or P9 each with a unique amino acid preference. Even

though most of these motifs exhibit a strong preference for

hydrophobic and neutral amino acids at most anchor positions,

some dramatic deviations from this general pattern exist.

Examples of this are the motifs of DRB1*0301 and DRB1*1101

molecules that have strong preferences for charged amino acids at

P4 and P6, respectively.

Handling large data sets exemplified by protease
recognition of high-density peptide microarrays

A peptide microarray containing a total of .100,000 peptides

(49,838 of which were unique) was digested with the protease

trypsin. The peptide sequences had been synthesized using the

theme Ac-GAGAXXXXXGAGA, where Ac- is acetyl blocking

the peptide alpha-amino group prior to digestion, and X

represents amino acids chosen randomly from the 20 natural

amino acids (except lysine, as this residue contains an epsilon-

amino group, which even without digestion would be detectable

(see Materials and Methods for details)). As a result, free amino

groups can only be expressed by trypsin cleaved peptides, which

then can then be labeled with Dylight549 and quantitated by

fluorescence microscopy. A fluorescence microscopy picture of

such a digested and stained peptide microarray (Figure 5a)

demonstrates both the resolution of the photolithographic peptide

synthesis strategy and the dynamic range of the free amino group

detection strategy. The resulting data was log-transformed and

rescaled to obtain a data distribution covering the spectrum

between 0 and 1, which - along with the corresponding peptide

sequences encoded as Blosum scores without flanking regions -

were used to train an NNAlign method. Training was done with a

motif length of 5, a fixed number of 3 hidden neurons, 5-fold

exhaustive validation, and stopping at the best test set perfor-

mance. The prediction method yielded a Pearson correlation

between measured values and predictions of r = 0.971, a

Spearman correlation of r= 0.910, and receiver operating

characteristics (ROC) area under the curve (AUC) of 0.997 (using

Figure 3. Sequence logos for HLA*DRB1-0401. In panels a) to d) are shown sequence logos for 4 single networks from the network ensemble
created with NNAlign. The fundamental pattern appears in all these networks, but they place the anchors at different position of the core. e) shows
the core of the 20 networks ensemble without offset correction; in f) offset correction was used to realign the logos to a common register.
doi:10.1371/journal.pone.0026781.g003
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a target threshold of t = 0.5). The very high performance measures

of the resulting NNAlign method demonstrate both that the

recorded peptide digestion data contains a consistent and

intelligible signal, and that the NNAlign method is capable of

deciphering and predicting this extraordinary large number of

sequence-dependent peptide signals. The correlation scatterplot

feature of the NNAlign web-server output, which compares

predicted vs. observed values, further supports the validity of both

the peptide microarray and of the NNAlign method. The

correlation scatterplot for the trypsin digestion data reveals two

major populations of peptides, one composed of non-degradable,

non-predicted peptides and one containing weakly to strongly

degradable, predicted peptides (Figure 5b). Few (0.7%) of the

former peptides contained Arginine, whereas most (97.1%) of

latter peptides contained Arginine. This is exactly what one would

have expected from a peptide digestion with trypsin, which is

known to cleave at the C-terminal side of amino acids Arginine

(and Lysine, which has been excluded here, see above) [34]. For

illustration purposes, Figure 5b includes a color-enhanced

visualization of certain dipeptide sequences (note, this is not a

standard feature of the NNAlign server) showing that RP sequences

are resistant, RA sequences are quite susceptible, and RR

sequences appear extremely susceptible to trypsin digestion. Thus,

the known trypsin resistance of RP sequences is both demonstrated

by the peptide microarray and subsequently captured by the

NNAlign method. Note, that both the peptide microarray and the

NNAlign generate a continuous set of measurements and

predictions showing that trypsin cleavage involves a more complex

interaction than a simple recognition solely of an Arginine residue

(and by inference a Lysine residue), which would have resulted in a

cleaved/non-cleaved classification [35]. It is also important to note

that the detection strategy employed here does not reveal where

the protease cleavage has occurred, but merely that the protease

has recognized the peptide as a substrate and cleaved it

somewhere.

A similar high-density peptide microarray driven approach was

next used to address the specificity of the protease chymotrypsin,

which is known to preferentially cleave at the C-terminal of

tyrosine, phenylalanine and tryptophan (albeit not if followed by a

proline). A high-density peptide microarray containing about

50,000 peptides (16,526 unique peptides) was generated according

to the theme Ac-GAGAXXXXGAGA, treated with chymotryp-

sin, labeled with TAMRA and quantitated by fluorescence

microscopy. The resulting data was used to train an NNAlign

method (using the settings described in Figure 5). The correlation

scatterplot of the measured versus predicted values exhibits a very

Figure 4. Sequence logo representation of the binding motifs for the 14 HLA-DR molecules contained in the Wang MHC class II data
set. NNAlign was trained with Blosum encoding, including peptide length and flanking region length, PFRs of 3 amino acids, homology clustering at
threshold 0.8 using all data points, 20 hidden neurons and a 5-fold cross-validation without stopping on the best test set performance.. Sequence
logos are calculated as described in material and methods and visualized using the WebLogo program [48].
doi:10.1371/journal.pone.0026781.g004
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strong linear correlation with a Pearson of r = 0.943 demonstrating

that the peptide microarray data contains a consistent signal that

reliably has been captured by the NNAlign method.

Discussion

The amount of data deposited in genomic and proteomic

databases has been growing exponentially for many years [36].

Due to recent technological advances that have enabled whole-

genome sequencing and made whole-proteome analysis a realistic

goal, sequence data will accumulate at an even faster pace in the

future where single laboratories, even single experiments, can

generate data at the ‘‘omics’’ level. This is amply illustrated here

where a high-density peptide microarray technology allowed the

parallel synthesis of more than 100,000 discrete peptide sequences

per array, and the collection of a corresponding number of

quantitative peptide-receptor interaction data - all within a single

experiment.

The biggest hurdle of future ‘‘omics’’ research may easily

become that of making sense of such large-scale biologic sequence

data [37]. Presently, the ‘‘omics’’ experimentalist requires

assistance from specialized and highly trained bioinformaticians

capable of large-scale data handling and interpretation. Ideally,

however, he or she should not only be armed with high-

throughput data-generation technologies, but also with reasonably

easy and robust bioinformatics methods allowing the experimen-

talist to analyze his or her own data. This would permit an

immediate analysis of experimental results and assist in rational

designs of next generation experiments aimed at extending the

original analysis e.g. providing in silico tools for searches that

potentially could encompass entire proteomes. Enabling the same

person to do large-scale experiments and analysis should result in a

better integration between design, experiment, and interpretation

– and eventually support the development of new hypotheses.

Unfortunately, suitable bioinformatics resources aimed at the non-

expert user are currently scarce, and rarely web-based. In our

experience, open source software packages such as Weka [38] are

not capable of performing concurrent alignment and motif

identification, and are not suited for treating large-scale data sets.

A widely used method for motif discovery, MEME [39], can

perform searches for un-gapped sequence patterns in DNA or

protein sequences, and offers a user-friendly online server to the

untrained user. However, this method is not designed for use in

quantitative data, such as peptide-MHC binding or peptide

microarray data.

To the best of our knowledge, NNAlign is the first web-based

bioinformatics solution that allows non-expert users to discover short

sequence motifs in quantitative peptide data. As shown here, NNAlign

easily competes with state-of-the-art methods for identifying peptide-

binding motifs of aligned (exemplified by MHC class I) as well as

unaligned (exemplified by MHC class II) quantitative peptide

sequence data. Further, demonstrating the general utility of NNAlign,

we have used it to characterize the cleavage specificities of proteases

from high-throughput peptide array data. If a sufficient number of

training examples can be generated, including negative instances, we

could envision applying the method also on data generated by phage

display peptide libraries. Other instances of recognition of short

specific peptide motifs occurs frequently in biology where they are

involved in molecular interaction, recognition, signaling, internaliza-

tion, modification etc (e.g. phosphorylation, dephosphorylation,

trafficking motifs, SH2 and SH3 domains, glycosylation, lipidation,

etc. In contrast to domain recognition, short linear peptide sequences

are thought to be particularly difficult to identify due to their

unordered structure [40]. NNAlign appears to be ideally suited to

identify such short linear peptide targets. Due to its simple interface

and robust performance, we believe the method to constitute a

significant tool providing the non-bioinformatician end-user with the

ability to perform advanced bioinformatics-driven analysis of large-

scale peptide data sets.

Materials and Methods

MHC class I data set
The data set of quantitative peptide-MHC class I binding

affinity data published by Peters et al. [27] contains data from 48

different human, mouse, macaque and chimpanzee alleles. We

selected 12 representative human alleles, and extracted binding

data for 9-mer peptides maintaining the subsets of the original

benchmark. This allows comparing the performance of NNAlign to

the other methods presented in the paper by Peters et al.

Figure 5. Analysing high-density peptide array data with NNAlign. a) Fluorescence microscopy picture of a peptide microarray. The image is
a magnified segment of the peptide chip used in the trypsin cleavage analysis. b) Trypsin peptide-chip data. The normalized observed (target)
likelihood of cleavage as a function of the prediction score for the trypsin data set. Localizations of peptides containing the pairs of amino acids RP,
RA or RR are highlighted in the plot. Proline (P) is known to prevent cleavage after arginine (R), whereas cleavage is observed with other amino acids
such as R and A. c) Chymotrypsin peptide-chip data. Correlation plot between predicted and measured (target) data from the chymotrypsin data set.
Values are binned by their x,y proximity, so that the scatterplot represents the density of data in each bin. NNAlign was trained with linear rescaling of
the quantitative data, a motif length of 4 amino acids without inclusion of PFR encoding, Blosum encoding of peptide sequences, a combination of
3,7,15 hidden neurons, 10 initial seeds, 5-fold exhaustive cross-validation, training was stopped on the best test set performance.
doi:10.1371/journal.pone.0026781.g005
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MHC class II data set
A large set of over 17,000 HLA-peptide binding affinities was

published by Wang et al. [25] containing data from several

different human alleles including HLA DR, DP and DQ alleles.

For each allele, the predictive performance of various methods was

estimated on the similarity reduced (SR) data set, where sequence

similarity is minimized in order to avoid overlap between cross-

validation subsets. We preserved the same subsets for our cross-

validation, for easy comparison of the results and predictive

performances.

Peptide arrays
Peptide arrays were synthesized by Schafer-N, Copenhagen,

Denmark using a maskless photolithographic technique [41] in

which 365 nm light is projected onto NPPOC-photoprotected

[42,43] amino groups on a glass surface in patterns corresponding

to the synthesis fields. Details of the technique will be published

elsewhere, but briefly, the patterns were generated using digital

micromirrors and projected onto the synthesis surface using UV-

imaging optics. In each layer of amino acids, the relevant amino

acids were coupled successively to predefined fields after UV-

induced removal of the photoprotection groups in those fields. The

couplings were made using standard Fmoc-amino acids activated

with HBTU/DIEA in NMP. After coupling of the last Fmoc-

amino acid in each layer, all Fmoc-groups were removed in 20%

piperidine in NMP and replaced by NPPOC groups coupled as

the chloroformate in DCM with 0.1 M DIEA. The procedure was

then repeated until all amino acids had been added to the growing

peptide chains. Final cleavage of side protection groups was

performed in TFA:1,2-ethanedithiol:water 94:2:4 v/v/v for 2 h at

room temperature.

Trypsin data. Peptide arrays were incubated for 30 min at

room temperature with 0.1 g/L bovine Trypsin (Sigma T9201)

dissolved in 0.1 M Tris/Acetate pH 8.0. After washing in the

same buffer containing 0.1% SDS, the slides were washed with

deionized water and air-dried. Staining of amino groups exposed

by enzyme cleavage was made by incubation the slide for 30 min

in 0.1 mg/mL Dylight549-NHS (Thermo Scientific) in 9:1 v/v n-

methyl pyrrolidone:0.1M n-methyl morpholine/HCl pH 8 for

10 minutes.

Chymotrypsin. Peptide arrays were incubated for 30 min at

room temperature with 0.1 g/L bovine Chymotrypsin (Sigma

C4129) dissolved in 0.1 M Tris/Acetate pH 8.0. After washing in

the same buffer containing 0.1% SDS, the slides were washed with

deionized water and air-dried. Staining of amino groups exposed

by enzyme cleavage was made by incubation of the slides for

10 min in 1 mM 5(6)-TAMRA (carboxytetramethylrhodamine,

Fluka 21953) activated with 1 eq HBTU, 2 eq DIEA in n-

methylpyrrolidone.

Recording of signals from peptide arrays. After incuba-

tion with activated fluorochromes, the peptide array slides were

washed in the incubation buffer without fluorochrome followed by

washings in n-methylpyrrolidone and dichloromethane and air-

dried. Images of the arrays were recorded using a MVX10

microscope equipped with a MT10_D fluorescence illumination

system and a XM10 CCD camera (all from Olympus). The

excitation wavelength was 530–550 nm and the emission filter was

575–625 nm. The images were analyzed using the PepArray

analysis program (Schafer-N, Copenhagen Denmark).

The NNAlign Web Server
Data pre-processing. The quantitative peptide data entered

by the user is rescaled to be between 0 and 1 before being fed to

the neural network. The user is also given the option to apply a

logarithmic transformation to the raw data, if its distribution

appears to be too squashed towards low values. Outliers deviating

more than 3 standard deviations from the average, which after

rescaling would produce sparse regions in the spectrum with no

data, are set at a value of exactly 3 standard deviations. This

procedure produces ideal data for artificial neural network (ANN)

training, with all values in the range [0:1] and the bulk of the data

in the central region of the spectrum. The parameters for the

rescaling function are defined separately on each of the training

sets used in cross-validation, and then also applied to rescale their

relative test sets.

Subsets for cross-validation. In a n-fold cross-validation, n

subsets are created from the complete dataset, and at each step n-

1 subsets are used for training and 1 subset for testing. NNAlign

offers three alternatives to create the subsets: i) random, splits the

data into n subsets randomly; ii) homology clustering, uses a

Hobohm 1 algorithm [44] to identify sequences that share an

ungapped alignment with more than a specified fraction of

matches; iii) common motif clustering, looks for stretches of

identical amino acid between pairs of sequences as described by

Nielsen et al. [19]. For both methods ii) and iii) similar sequences

are grouped together in the same subset, but it is possible to

choose to only include one representative for each group and

disregard the other sequences from training. In this phase, if the

input data contains repeated flanks (as might be the case in

peptide array experiments, where linker sequences can be

attached at the extremities of all peptides), these flanks are

discarded, as they would affect the overlap estimation. If the user

reckons that the repeated flanks might contain meaningful

biological signal, an option allows retaining them in the

training data. Note that in common motif clustering, the motif

length is taken as the smallest in the interval of length given by

the user. Thus, depending on the selected interval the subsets

might be constructed in a different way and that could influence

the cross-validated performance.

Neural network training. The neural network training is

performed as described by Nielsen et al. [20]. Initially, all network

weights are assigned random values. From the current network

configuration, the method selects the optimal n-mer core (and

potential peptide flanking residues) for each of the peptides within

the training set. The network weights are next updated, to lower

the sum of squared errors between the observed and predicted

score, the cores are redefined based on the new network

configuration, and the procedure is iterated.

An ensemble of ANNs is trained on the cross-validation subsets,

with architecture parameters specified by the user. The motif

length, encoding of flanks and peptide length determine the size of

the input layer. If the motif length is given as an interval of values,

multiple runs of ANN training are performed on the different

lengths, and the length that produces the best cross-validated

performance in terms of root mean square error (RMSE) is chosen

for the final ensemble. The number of hidden neurons may be

specified as a list of multiple values, so that an ensemble of

networks is constructed with hidden layers of different sizes. Each

architecture is trained multiple times, starting from different initial

random configurations, to avoid as much as possible choosing sub-

optimal solutions producing local minima. Sequences can be

presented to the network either with Sparse or Blosum encoding.

In Sparse encoding, a vector of length N represents each amino

acid, where all values are identical apart from the one representing

the observed amino acid. Blosum encoding, on the other hand,

takes into account amino acids similarity and partially allows

substitutions of similar amino acids while penalizing very dissimilar

ones [45].
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Performance measures. Cross-validation allows estimating

a method performance without the need of external evaluation

data. The subsets reserved as test-sets are run through the network

trained in the same cross-validation step, and Pearson’s

correlation, RMSE and Spearman correlation are calculated

between observed and predicted values.

It is possible to use the internal subsets to stop the training phase

on the best test set performance in terms of RMSE. In this mode,

performance can be estimated in an exhaustive or in a fast way.

Exhaustive n-fold cross-validation (CV) consists of a nested CV

procedure. At each step, 1 subset is left out as evaluation set, and

the remaining subsets are used to generate a network ensemble in

an n-1 CV training. In this CV training, the selected network

configuration is the one that gives the minimum RMSE on the

stopping set. Next the predictions for the evaluation data are

estimated as a simple average of the prediction values for each

network in the training ensemble. The exhaustive CV procedure

adds one level to the cross-validation and increases greatly the

running time. In alternative, the fast evaluation skips one nested

level by using the same subset for stopping and evaluating

performance, for a quicker but likely less accurate performance

estimation.
Final network ensemble. With cross-validated ANN

training, each network has been evaluated on data not included

in the training. The networks can then be ranked by performance,

and only the top N for each cross-validation step will be included

in the final ensemble, with N specified by the user. The final

network ensemble can be downloaded to local disk, and used for

predictions on new data by loading it to the NNAlign server

submission page.
Sequence motif logo. A list of 100,000 random naturally

occurring peptides with length L = motif length+2 * flank length,

generated from random UniProt [46] sequences, is presented to

the individual networks in the ensemble. For each network, the 1%

peptides that obtain the highest prediction scores are used to

create a position specific scoring matrix (PSSM) that represents the

motif captures by the neural network. Using a Gibbs sampler

approach, all PSSMs are aligned to maximize the information

content of the combined matrix. This ‘‘offset correction’’ step is

obtained by repeatedly attempting to shift the starting position of

randomly chosen PSSMs, and accepting/rejecting the move

according to the conventional Metropolis Monte Carlo

probability relation [47]:

Paccept~ min (1,e
DI=T )

Where DI is the change in information content between the new

and old offset configuration and T is a scalar that is lowered during

the calculation. The process assigns to each PSSM, and to its

relative network, an offset value that quantifies the shift distance

from other networks. The re-aligned cores from the 1% scoring of

100,000 peptides are finally used to generate a combined sequence

logo with the WebLogo program [48]. The offset correction can

be skipped if the user chooses to, and in this case the logo is simply

created by presenting the list of random peptides to the ANN final

ensemble and selecting the 1% peptides that obtain the overall best

score.

Evaluation data. Additional data not included in the training

can be uploaded to the NNAlign Server as an evaluation set.

Evaluation data must be a list of peptides, with or without

associated values, or a file in FASTA format. In the first case, all

peptides are run through the trained network ensemble, and

scored accordingly to their best alignment core. If values are

provided together with peptides, they are assumed to be target

values for validation purposes, and statistical measures between

these values and predictions are calculated. In the case a FASTA

file is loaded as evaluation set, the sequences therein contained are

cut into peptides of length L = motif length+2 * flank length, shifting

the starting position of one amino acid at a time. The generated

peptides are all fed to the network to identify those that most

closely match the motif learned by the ANNs. The results are

sorted by prediction value, so that the best candidates are

displayed at the top of the list.

Making sequence logos
Sequence logos were introduced by Schneider et al. [49] as a

way to represent graphically the pattern in a set of aligned

sequences. The height Ri of each column i in the logo is given as

the information content in bits of the alignment at that particular

position, and for a sufficiently large number of sequences and a 20-

letter alphabet it is calculated as:

Ri~log220z
X

a

fa,ilog2fa,i

where fa,I is the frequency of amino acid a at position i. The

relative height ha,i of amino acid a at position i is:

hi,a~Rifa,i

The value of Ri varies between 0, for a position with maximum

entropy, to log220, for a completely conserved position in the

alignment. Thus, the height of a column in the sequence logo

indicates the importance of a certain position in defining the motif,

and the height of each letter in the column the amino acid

preference at that position. Amino acid letters are colored

according to their chemical properties: polar amino acids (C, G,

S, T, Y) are shown in green and (N, Q) pink, basic (K. R, H) in

blue, acidic (D, E) in red, and hydrophobic (A, L, I, V, F, M, P, W)

in black.
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