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Abstract

Background and Aims: In mammalian spermatogenesis, glial cell line-derived neurotrophic factor (GDNF) is one of the
major Sertoli cell-derived factors which regulates the maintenance of undifferentiated spermatogonia including
spermatogonial stem cells (SSCs) through GDNF family receptor a1 (GFRa1). It remains unclear as to when, where and
how GDNF molecules are produced and exposed to the GFRa1-positive spermatogonia in vivo.

Methodology and Principal Findings: Here we show the cyclical and patch-like distribution of immunoreactive GDNF-
positive signals and their close co-localization with a subpopulation of GFRa1-positive spermatogonia along the basal
surface of Sertoli cells in mice and hamsters. Anti-GDNF section immunostaining revealed that GDNF-positive signals are
mainly cytoplasmic and observed specifically in the Sertoli cells in a species-specific as well as a seminiferous cycle- and
spermatogenic activity-dependent manner. In contrast to the ubiquitous GDNF signals in mouse testes, high levels of its
signals were cyclically observed in hamster testes prior to spermiation. Whole-mount anti-GDNF staining of the seminiferous
tubules successfully visualized the cyclical and patch-like extracellular distribution of GDNF-positive granular deposits along
the basal surface of Sertoli cells in both species. Double-staining of GDNF and GFRa1 demonstrated the close co-localization
of GDNF deposits and a subpopulation of GFRa1-positive spermatogonia. In both species, GFRa1-positive cells showed a
slender bipolar shape as well as a tendency for increased cell numbers in the GDNF-enriched area, as compared with those
in the GDNF-low/negative area of the seminiferous tubules.

Conclusion/Significance: Our data provide direct evidence of regionally defined patch-like GDNF-positive signal site in
which GFRa1-positive spermatogonia possibly interact with GDNF in the basal compartment of the seminiferous tubules.
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Introduction

In mammalian testes, spermatogonial stem cells (SSCs) are

continuously maintained by self-renewal in the basal compartment

of seminiferous tubules. This compartment is defined as the area

between the tight junction of Sertoli cells and the continuous basal

lamina [1–4]. SSCs are a small subset of spermatogonia that

express GFRa1 (a GPI-linked cell surface protein) and Nanos2 (a

zinc-finger RNA-binding protein), and are mostly Asingle (singly

isolated) and Apaired (two interconnected cells) cells [5–7]. GFRa1-

positive cells then give rise to longer spermatogonial chain (Aaligned

[chains of 4, 8, 16 and 32 cells etc.]), which then differentiate into

a larger number of advanced spermatogenic cells during the basal-

to-adluminal translocation of the seminiferous epithelium [8–10].

These cells ultimately form spermatozoa at the luminal edge.

In most mammals, it is likely that the balance between self-

renewal and differentiation in the SSCs pool is primarily regulated

by glial cell line-derived neurotrophic factor (GDNF) which is

produced by Sertoli cells [3,11–13]. In Gdnf-heterozygote mice, the

undifferentiated spermatogonia including SSCs are reduced in

number in the basal compartment of the seminiferous tubules,

resulting in a lack of spermatogenic cells from the basal to apical
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side in older mice [11]. Moreover, in Gdnf-overexpressing mice,

the SSC-like cells are clearly increased in number in the basal

region, leading to defective spermatogonial differentiation without

any spermatozoa [11]. It has also been shown that GDNF is

essential for the maintenance of the SSC self-renewal in vitro

(germ line stem [GS] cells) [14–16]. SSCs, with both self-renewal

and differentiation capabilities, can be maintained in serum-free

conditions with GDNF and several other factors including bFGF

and EGF [14–18]. Moreover, GDNF enhances the short-term

proliferation and survival of bovine SSCs [19–21] and the long-

term expansion of hamster SSCs [22] in vitro. These data indicate

that, in mammalian spermatogenesis, GDNF is one of the major

regulators which control the maintenance of the SSC pool in a

dose-dependent manner.

In Asingle and Apaired spermatogonia, including the SSC pool, it

has been shown that GFRa1/c-Ret mediates secreted GDNF

signals to involve in regulation of their proliferation and survival

[12,23,24] positively through Srk and AKT signaling [25–27] and

negatively through PLZF-derived mTOR signaling [28]. On the

other hand, it is likely that Gdnf mRNA expression is also regulated

in Sertoli cells in relation to their spermatogenic activities. For

example, Gdnf expression level is up-regulated in W/Wv testes

which lack spermatogenic cells due to a germ cell-autonomous

defect, as compared with that in normal testes [29]. This up-

regulation is possibly a positive response to compensate for the

reduction in the number of germ cells in the tubules. It has also

been shown that Gdnf expression can be up-regulated by pituitary

follicle stimulating hormone, FSH [29,30]. This finding suggests a

possible mechanism for the control of SSC self-renewal at the

hypothalamic-pituitary-gonadal axis, especially in seasonal breed-

ers like hamster and some domestic animals (e.g., horse, sheep,

and goat). Moreover, these findings suggest that finely-tuned

control of the level of GDNF expression is crucial for the

maintenance of a constant number of SSCs which, in turn, leads to

normal spermatogenesis and fertility. It remains unclear, however,

as to when and where GDNF molecules are produced, secreted,

and exposed to the GFRa1-positive spermatogonia in the basal

compartment of seminiferous epithelia in vivo.

In this study, we demonstrated the spatiotemporal patterns of

immunoreactive GDNF molecules in mouse and hamster testes in

active and inactive states to identify a potential interaction site

between GDNF molecules and GFRa1-positive spermatogonia.

Here, we showed the cyclical and patch-like distribution of

immunoreactive granular GDNF deposits along the basal surface

of Sertoli cells and their close co-localization with a subpopulation

of GFRa1-positive spermatogonia in vivo.

Materials and Methods

Ethics statement
All animal experiments in this study were carried out in strict

accordance with the recommendations in accordance with the

Guidelines for Animal Use and Experimentation as set out by the

University of Tokyo. The procedures were approved by the

Institutional Animal Care and Use Committee of the graduate

school of agricultural and life sciences in the University of Tokyo,

and the approval IDs are P11-500 and P11-503.

Animals
ICR, C57BL6, W/Wv and Green (B6-Tg(CAG-EGFP) mice (8-

week-old; SLC, Japan) and Syrian hamsters (8-week-old; Nisseiken

and SLC, Japan) were used in this study (more than four animals

were examined for each experiment group). Antibody specificity

was confirmed using testes obtained from three Gdnf-null newborn

pups, a mutant line known for postnatal lethality [31]. Gonadally

inactive (i.e., photoinhibited and hibernating) testes were prepared

by transferring male hamsters (8-week-old; total 36 animals) from

a long (conventional) photoperiod (14 h L, 10 h D) to a short

photoperiod (6 h L, 18 h D), as described previously [32]. Then,

at Week 13 at the peak of testicular photoregression, approxi-

mately half of the animals were transferred from an ambient

temperature of 23uC to 5uC to induce hibernation 4 to 8 weeks

later.

Preparation of W/Wv Testes Transplanted with
Spermatogonial Stem Cells

For spermatogonial transplantation, cell suspensions including

spermatogonia were prepared from 10-day-old wild-type and

Green C57BL6 males and transplanted into the testes of 8-week-

old recipient W/Wv mice (total 6 recipient males), as described

previously [33–35]. At 3 months after transplantation, the

recipient W/Wv testes were dissected and processed for immuno-

histochemical analyses.

Immunohistochemistry
For section immunohistochemical staining, testes were isolated

at various stages, and fixed in Bouin’s solution or 4% PFA for 4 h.

The specimens were dehydrated in ethanol, cleared in xylene, and

then routinely embedded in paraffin. The deparaffinized sections

were incubated with rabbit anti-GDNF (1:200 dilution; sc-328,

against the sequences within amino acids 155–205 of GDNF

[protein accession P39905]; Santa Cruz Biotechnology) antibody

at 4uC for 12 h. The reaction was visualized with biotin-

conjugated secondary antibody in combination with Elite ABC

kit (Vector Laboratories, CA). Some sections stained with anti-

GDNF antibody were re-stained with periodic acid Schiff (PAS)

reagent to accurately stage the seminiferous cycle. In the

immunostained testicular samples of hamsters exposed to a short

photoperiod/low ambient temperature, we counted the number of

seminiferous tubules with or without GDNF-positive signals, and

then estimated the relative incidence of GDNF-positive seminif-

erous epithelia at each stage. Immunohistochemical staining in

each sample was conducted at least three times to confirm its

reproducibility.

For whole-mount immunohistochemistry without permeabili-

zation, all testes (16 and 28 testes used in hamsters and mice,

respectively) were removed from the tunica albuginea and

dispersed roughly in cold PBS. The tissues were then fixed in

4% PFA for 8 to 12 h at 4uC and washed with cold PBS several

times. Without any permeabilization steps using methanol and

detergent (Tween20/Triton X-100), the seminiferous tubule

fragments were incubated with rabbit anti-GDNF (1:200 dilution)

and goat anti-GFRa1 (1:100 dilution; R&D Systems)/goat anti-

mouse c-kit (1:100 dilution in mice, 1:20 in hamsters; R&D

Systems) antibodies at 4uC for 12 h. After being washed with

PBS, the samples were incubated with Alexa-488/594 conjugated

secondary antibodies, including DAPI, at room temperature for

2 h. After counter-staining with DAPI, the samples were analyzed

under Olympus fluorescent microscope (BX51N-34-FL2) and

stereomicroscope (SZX16 plus U-LH100HG) systems and

Olympus FluoView confocal laser microscope (FV10i; Olympus,

Japan) in combination with Volocity software (Mitani Sangyo,

Japan). Whole-mount samples stained with anti-GDNF (green)

and anti-GFRa1 (red) were photographed (6400) separately in

the GDNF-high and GDNF-low/negative regions of the

seminiferous tubule, and then the relative cell number of

Asingle,Aaligned subpopulations and Asingle subpopulation per

mm2 of seminiferous tubule was estimated in each region.

GDNF Deposits along the Basal Sertoli Cell Surface
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Moreover, the lengths of cell processes at both the long

(maximum) and short (minimum) axes were separately analyzed

in each selected GFRa1-positive cell (i.e., only Asingle cells that

are located near the centerline/away from the shoulder of the

whole-mount tubule samples) using a CV-9 Um pen-type map-

meter (Koizumi Sokki Mfg, Japan). In some whole-mount stained

samples, Z-stack images on the X-Y plane were collected via

confocal microscopy, and then three-dimensional reconstructions

and their X-Z plane images were analyzed.

For transmission electron microscopy, the PFA-fixed seminif-

erous tubules were stained with anti-GDNF antibody in

combination with HRP-conjugated anti-rabbit antibody as

described above. After development with DAB-H2O2, the

samples were re-fixed in 2.5% glutaraldehyde-0.1 M phosphate

buffer (PB) at 4uC for 4 h. The samples were postfixed in 1%

OsO4 at 4uC for 2 h, dehydrated in ethanol, and then embedded

in EPON 812. Ultrathin sections were cut, and then observed

under a JEM 1010 transmission electron microscope (JEOL,

Japan) at 80 kV.

As negative controls, anti-GDNF antibody was pre-incubated

with GDNF peptide (sc-328P; Santa Cruz Biotechnology) prior to

use in section and whole mount immunostaining.

In situ Hybridization
Whole-mount and section in situ hybridization were performed

as previously described [36–38]. The PFA-fixed seminiferous

tubules were directly applied for whole mount in situ hybridiza-

tion, while the deparaffinized sections of the testes fixed in Bouin’s

solution were used for section in situ hybridization. Hybridization

of hamster Gdnf was carried out at 68uC for 16 h. Hamster Gdnf

cDNA fragments were isolated by RT-PCR using mouse and

hamster testes cDNA samples, and then subcloned into pGEM-T

(Promega) to prepare RNA probes and determine the amino acid

sequence of hamster GDNF. The section and whole-mount in situ

hybridization staining was conducted four and three times to

confirm its reproducibility, respectively.

Statistical Analysis
Student’s t-test was performed for quantitative data of cell

number and length of cell processes of GFRa1-positive cells in

whole-mount immunostained samples (Table 1). For the relative

numbers of the GDNF-positive seminiferous tubules in the

immunostained section samples, Dennett test was performed to

determine their statistical significance (see Table S1).

Results

A Spatiotemporal Pattern of Immunoreactive GDNF
Distribution in the Seminiferous Tubules of Normal Wild-
type Testes and SSC-transplanted W/Wv Testes in Adult
Mice

First, GDNF expression in mouse and hamster testes was

examined by conventional section immunohistochemistry (Figs. 1,

2). Of the various commercially available antibodies, we used

rabbit anti-GDNF antibody against the C-terminal sequences

within amino acids 155–205 of human GDNF (protein accession

P39905). We confirmed the presence of highly conserved amino

acid sequences corresponding to the C-terminal region of hamster

GDNF with those in human, mouse and rat GDNF, and the trans-

cross reactivity of this antibody to recombinant GDNF among

these species (see Fig. S1). Moreover, anti-GDNF positive signals

were mostly cytoplasmic and observed specifically in Sertoli cells, a

major population of GDNF-secreting cells [3,11,13] which is

located along the basal compartment of seminiferous tubules in the

newborn testes (Fig. 1A). In contrast, signals were greatly reduced

in the basal compartment of the seminiferous epithelia of the Gdnf-

null newborn testes [31] (Fig. 1B). These findings suggest that

immunoreactive GDNF signals are detectable by this antibody in

mouse testes, although non-specific background staining was

found on the luminal side.

In contrast to the high levels of GDNF expression observed in

newborn testes, only weak signals were seen in Sertoli cells of the

Table 1. Comparison of quantitative data showing cell morphological parameters (slender shape) and relative cell density of
GFRa1-positive spermatogonia between immunoreactive GDNF-high and -low/negative areas of the seminiferous tubule in mice
and hamsters1).

GDNF level Cell shape parameter (mm)
No. of GFRa1- positive cells
(total number of cells counted)2)

Long axis Short axis Ratio (long/short)

Hamster High 53.864.2 5.560.2 10.461.1a* 50.168.2c (86)

8.762.6c (15)

Low 44.265.4 6.760.3 7.161.0a 43.068.3d (82)

8.461.4d (16)

Mouse High 31.362.2 4.660.2 7.160.7b* 179.5627.1c** (115)

20.363.8c* (13)

Low 27.362.1 5.260.2 5.460.5b 140.4612.1d** (120)

15.263.0d* (13)

1)Whole seminiferous tubules were double-stained with anti-GDNF (green) and anti-GFRa1 (red), and then photographed (6400). Both the length of the cell process (at
long [maximum radius] and short [minimum radius] axes) and relative cell shape (long/short value) of GFRa1-positive cells (only Asingle type) in GDNF-high and -low/
negative areas of the seminiferous tubule were separately calculated. Moreover, the relative number of GFRa1-positive cells (Asingle,Aaligned types) was separately
estimated in GDNF-high and -low/negative areas of the seminiferous tubules. Data are expressed as mean value6SEM (Student’s t-test, two-tailed).

2)GFRa1-positive cell density showing the relative cell number of all Asingle,Aaligned subpopulations (upper values) and Asingle subpopulation (lower values) per mm2 of
seminiferous tubule.

a,bIn both hamsters and mice, the cell shape of GFRa1-positive (Asingle) cells is significantly (*p,0.05) more slender in the GDNF-high area than in the GDNF-low/
negative area. In addition, cell processes at both the long axis and the long/short ratio (slender shape) were longer in hamsters than in mice (p,0.05).

c,dThe cell number of both Asingle,Aaligned spermatogonia and Asingle spermatogonia is significantly (*p,0.05 or **p,0.01) higher in mice than in hamsters.
doi:10.1371/journal.pone.0028367.t001
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adult mouse testes (8-week-old) (Fig. 1C, 1D). Anti-GDNF and

PAS (periodic acid Schiff) double-staining revealed that GDNF

signals were weakly, but ubiquitously, detected in the Sertoli cells

at all stages of the seminiferous epithelial cycles (Fig. 1E). This is

clearly in contrast to high cyclical patterns of GDNF expression in

hamster testes as described below (see Fig. 2).

In order to examine the influence of advanced spermatogenic

cells on GDNF expression [29,39], we transplanted spermatogo-

nial stem cells (SSCs) into the W/Wv testes (germ cell-less mutant

due to germ cell autonomous defects) [40] and, at 3-month post-

transplant, examined immunoreactive GDNF expression in the

SSC-transplanted testes (Fig. 1F, 1G). In the SSC transplantation

experiment, the seminiferous tubules containing donor advanced

germ cells and those lacking germ cells are located close to each

other within the same testis (Fig. 1F). This allows us to directly

evaluate and compare the signal intensities of GDNF expression

between the seminiferous epithelia supporting advanced germ cells

and those lacking them within one focus area, excluding other

influences in physiological and experimental conditions (e.g.,

interstitial environment, fixation, and all immunostaining proce-

dures). Anti-GDNF staining showed high GDNF immunoreactiv-

ity in Sertoli cells of seminiferous tubules which lacked

Figure 1. Immunoreactive GDNF expression in mouse Sertoli cells in wildtype, Gdnf-null and SSC-transplanted W/Wv testes. (A, B)
Anti-GDNF staining of wildtype (A) and Gdnf-null (B) testes (newborn) showing no immunoreactive GDNF signals in the basal region of the
seminiferous epithelium in Gdnf-null testes, albeit some non-specific signals in the lumen (asterisks). (C–E) Anti-GDNF staining (brown) of wildtype
adult testes showing very weak and ubiquitous GDNF expression in Sertoli cells (arrow). Plate C includes the inset plate showing a negative control
section using the primary antibody pre-incubated with GDNF peptides. Plate E shows anti-GDNF (brown) and PAS (red)-double-stained images of the
wildtype adult testes. (F, G) Anti-GDNF staining of the W/Wv adult testes at 3 months after SSCs transplantation. The level of intensity of GDNF-
positive signals is higher in the seminiferous epithelia lacking germ cells (right in G), as compared with that in the seminiferous epithelia supporting
advanced germ cells (asterisks in F; left in G). Roman numerals indicate the seminiferous epithelial stage of each region. bv, blood vessel; S, Sertoli
cells. Scale bars represent 10 mm.
doi:10.1371/journal.pone.0028367.g001
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spermatogonia (Fig. 1F, 1G). In contrast, in seminiferous tubules

which contained spermatogenic cells, the level of immunoreactive

GDNF expression was low (asterisks in Fig. 1F, 1G) and similar to

that in normal adult testes (Fig. 1C, 1D). These findings are in

agreement with the previous data indicating higher levels of Gdnf

mRNA expression in W/Wv testes [29].

A Spatiotemporal Pattern of GDNF Expression in the
Seminiferous Tubules of Normal ‘‘Active’’ Testes and
Short Photoperiod/Low Ambient Temperature-induced
‘‘Inactive’’ Testes in Adult Hamsters

Next, immunoreactive GDNF expression in adult hamster testes

(8-week-old) in the ‘‘active’’ state was examined. Interestingly, in

contrast to the less-cyclical pattern of GDNF expression in mouse

testes, dynamic cyclical changes in GDNF expression were

observed in normal ‘‘active’’ testes of hamsters (Fig. 2A, 2B; also

see ‘‘Cont’’ in Table S1). Briefly, in 50% of seminiferous tubules,

nearly all Sertoli cells showed no signals. However, in 20.5% of

tubules, some Sertoli cells were found to have strong positive

signals in their cytoplasm while, in 29.5% of the tubules, almost all

Sertoli cells were positive for anti-GDNF staining (Fig. 2A, 2B).

Anti-GDNF and PAS double-staining revealed that no signals

were detected in the seminiferous tubules at stages VIII-I (Fig. 2C,

2D). At stages II–IV, some Sertoli cells located within the same

cross section were positive for anti-GDNF staining, and almost all

Sertoli cells were positive at stages V–VII (Fig. 2C, 2D).

Interestingly, at stage VIII when spermiation (i.e., a release of

matured spermatozoa from the apical area of Sertoli cells into the

lumen) occurs, a rapid reduction in GDNF-positive signals was

observed in all Sertoli cells, leading to the loss of GDNF expression

during stages VIII-I. This immunostaining pattern is clearly in

agreement with the present in situ hybridization data showing

dynamic cyclical patterns of Gdnf expression at high levels before

spermiation stages (see Fig. S2).

It is well known that Gdnf expression in Sertoli cells is positively

up-regulated by FSH [29,30]. In seasonally breeding hamsters, it

has been shown that a short photoperiod and a low ambient

temperature can induce the most ‘‘inactive’’ state of spermatogenic

activity with low levels of serum FSH/LH [41,42]. In order to

confirm reduced GDNF expression in Sertoli cells in an ‘‘inactive’’

state, we examined immunoreactive GDNF expression in the

hamster testes in the photoregressed and hibernating states and

during subsequent spontaneous recrudescence by prolonged

exposure to inhibitory photoperiods (Fig. 3, see Fig. S3).

In adult hamsters (8-week-old) that were exposed to a short

photoperiod (6 h light, 18 h dark) and an ambient temperature of

23uC, the testes photoregress to the most ‘‘inactive’’ state at Week

13 of treatment, showing atrophied seminiferous tubules with

closed lumen [32]. As anticipated, anti-GDNF staining showed a

marked reduction in GDNF-positive signals in the inactive testes at

Week 13 (‘‘D0’’ in Fig. 3A, 3B, also see Table S1), suggesting the

Figure 2. Seminiferous cycle-dependent pattern of immunoreactive GDNF expression in seminiferous tubules of ‘‘active’’ testes in
hamsters. (A, B) Anti-GDNF staining of adult hamster testes in an ‘‘active’’ state showing dynamic changes in immunoreactive GDNF expression in
Sertoli cells in a seminiferous cycle-dependent pattern. Negative control sections using the primary antibody pre-incubated with GDNF peptides are
also shown in the lower plate of Figure A. (C, D) Anti-GDNF (brown) and PAS (red)-double-staining of the wildtype adult testes, showing that
immunoreactive GDNF expression starts to occur at stages II–IV, reaches a peak at VII (arrows), and then rapidly disappears at stage VIII. Roman
numerals indicate the seminiferous epithelial stage of each region. S, Sertoli cells. Scale bars in A, C represent 100 mm, while the other bars represent
10 mm.
doi:10.1371/journal.pone.0028367.g002
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Figure 3. Changes in immunoreactive GDNF expression in hamster testes in photoregression, hibernating and subsequent
recrudescent states. Adult hamsters (8-week-old) were exposed to a short photoperiod (6 h light, 18 h dark) and an ambient temperature of 23uC.
The testes photoregressed to the most ‘‘inactive’’ state at 13 weeks of treatment (D0). Then, in half of the hamsters, the ambient temperature was
reduced from 23uC to 5uC to induce a hibernated state (C6). It was shown that, after 13 weeks of exposure to a short photoperiod (D0),
spermatogenic activity spontaneously recrudesced after 10 to 20 weeks in both the 5uC and 23uC groups (‘‘D10’’ and ‘‘C20’’), albeit a 7 to 10 week
delay in GDNF expression was observed in the 5uC group. (A) A line graph, including small circle graphs at each stage, shows changes in testicular
weight (Y axis in the line graph; error bars indicate6SD) and the appearance ratio of GDNF-positive seminiferous tubules (small circle graph at each
stage; also see Table S1) in adult testes exposed to a short photoperiod (solid lines in the line graph; D0, D6, and D10) in combination with a low
ambient temperature (broken lines in the line graph; C6, C13, and C20). X axis represents weeks before and after the most ‘‘inactive’’ state (D0) was
reached in Week 13 of treatment. (B) Anti-GDNF immunostaining patterns show no appreciable positive signals in almost any of the seminiferous
tubules in ‘‘inactive’’ testes at D0 and C6 stages. A rapid recovery of immunoreactive GDNF-positive signals is ubiquitously observed, even at C13
stage (arrows) when the testicular weight is at a similarly low level to that in the inactive state, D0 (‘‘D0’’, ‘‘C13’’ in A, B). A seminiferous cycle-

GDNF Deposits along the Basal Sertoli Cell Surface
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down-regulation of GDNF expression in the gonadally inactive

stages. When the hamsters were transferred from an ambient

temperature of 23uC to 5uC at Week 13 and maintained in a short

photoperiod (5uC group), most animals entered a hibernated state

within 4 to 8 weeks of transfer. At this stage, no appreciable signals

were detected in almost any of the seminiferous tubules in these

testes (‘‘C6’’ in Fig. 3A, 3B). This finding is in contrast to the

constantly moderate levels of nuclear-positive signals for anti-

GATA4 staining in Sertoli cells throughout all (i.e., inactive and

active) stages examined in this study (inset of Fig. 3B). After

exposure to a short photoperiod for 13 weeks, spermatogenic

activity began to spontaneously recrudesce with complete recovery

observed within 6 to 10 weeks in the 23uC group (‘‘D6’’ and

‘‘D10’’ in Fig. 3A, 3B, respectively) or within 13 to 20 weeks in the

5uC group (‘‘C13’’ and ‘‘C20’’ in Fig. 3A, 3B, respectively). GDNF

expression in the 5uC group, however, was delayed by 7 to 10

weeks. As anticipated, anti-GDNF staining showed a rapid

recovery of GDNF-positive signals even in D6 and C13 before

the recovery in testicular weight to the active level (‘‘D6’’, ‘‘C13’’

in Fig. 3A, 3B). This finding is consistent with previous reports

showing a rapid recovery in plasma FSH/LH levels within 1–3

weeks prior to recrudescence of spermatogenic activity in adult

photoinhibited hamster [42–44].

Whole-mount Immunostaining Visualized Cyclical and
Patch-like GDNF-positive Deposits along the Basal
Surface of Sertoli Cells in Hamster and Mouse Testes

As described above, anti-GDNF section immunohistochemistry

showed species-specific as well as seminiferous cycle- and

spermatogenic activity-dependent changes in immunoreactive

GDNF expression in Sertoli cells. It is unclear, however, which

GDNF-positive signal sites correspond to the extracellular GDNF

molecules that can be accessed by GFRa1-positive spermatogonia

in vivo. Therefore, in order to selectively visualize GDNF

molecules in the extracellular region of the basal compartment

of seminiferous epithelia, we applied anti-GDNF staining for PFA-

fixed whole seminiferous tubules without any permeabilization

steps in the adult testes of hamsters (Fig. 4) and mice (Fig. 5).

Whole-mount anti-GDNF immunostaining showed seminiferous

cycle-dependent patterns in immunoreactive granular GDNF

signals along the basal wall of the seminiferous tubules in hamsters,

albeit with slightly cyclical patterns in mice (green fluorescence in

Figs. 4A–D, 5A–C; also see negative controls in Fig. S4).

Fluorescent microscopy of DAPI images of round and elongate

spermatids showed that the border between immunoreactive

GDNF-high and GDNF-negative areas roughly corresponded to

the stages VII/VIII, just at spermiation in hamsters (Fig. 2; data

not shown). In mice, the GDNF-high and –low/negative regions

were also distinguishable along the basal wall of the seminiferous

tubules (Fig. 5A–C), although such cyclical patterns were not

evident in the immunostained sections (Fig. 1C–E). Interestingly,

whole-mount immunostaining visualized a patch-like distribution

pattern of granular GDNF deposits along the basal wall of the

seminiferous tubules in hamsters (green in Fig. 4B, 4D–G). Even in

the GDNF-positive area during the peak of its expression, GDNF

deposits appeared to be restricted to a regionally defined, patch-

like distribution pattern along the basal surface areas of Sertoli

cells (Fig. 4F). This is in sharp contrast to almost all Sertoli cells

becoming positive for anti-GDNF staining in transverse sections in

hamsters (‘‘V–VII’’ in Fig. 2). In mice, GDNF-positive deposits

were more granular in shape and wider in distribution than those

in hamsters (green in Fig. 5A–E). In some regions, these granular

deposits appeared to be, at times, defined by a patch-like restricted

area similar to the GDNF-positive patches seen in hamsters (green

signals in Fig. 5E).

Immunoelectron microscopy of whole-mount samples stained

with the same non-permeabilization procedures revealed that the

majority of GDNF-positive signals were located within the

extracellular space adjacent to the spermatogonia and basal

lamina along the basal surface of some Sertoli cells (arrows and

arrowheads in Fig. 6). Moreover, certain weak signals were

detectable in the outer tubular region between the basal lamina

and peritubular myoid cells and in the transported vesicles in the

cytoplasm of the peritubular myoid cells (double-arrowhead in

Fig. 6F), suggesting a possible removal process of the GDNF

molecules from the basal compartment of the seminiferous

epithelium through the basal lamina and peritubular myoid cells.

Taken together, these data suggest that patch-like GDNF deposits

are formed in a seminiferous cycle-dependent manner in the

extracellular space along the basal surface of Sertoli cells. The

present non-permeabilized condition of whole-mount staining

allowed us to mainly detect GDNF-positive signals within the

extracellular spaces of the basal compartment in seminiferous

tubules. However, we should consider the presence of cytoplasmic

GDNF-positive signals near the plasma membrane of the Sertoli

cells as a possible source of some GDNF-positive signals in this

whole-mount staining.

Close Co-localization of Immunoreactive GDNF Deposits
with a Subpopulation of GFRa1-positive Spermatogonia
in the Basal Compartment of Seminiferous Tubules in
both Hamster and Mouse Testes

Finally, we visualized a possible interaction between immuno-

reactive GDNF molecules and its GPI-linked cell surface receptor,

GFRa1, on undifferentiated spermatogonia including SSCs, by

whole-mount double-staining of seminiferous tubules (without

permeabilization). GFRa1/GDNF-double-staining allowed us to

quantitatively compare the number and shape of GFRa1-positive

cells (Asingle,Aaligned) in GDNF-high and -low/negative areas of

seminiferous tubules (Table 1). In both hamster and mouse

seminiferous tubules, the relative number of GFRa1-positive

spermatogonia tended to be increased in the GDNF-high area as

compared with that in the GDNF-low/negative area (Table 1).

Moreover, we occasionally noticed a tilted distribution of GFRa1-

positive cells toward the GDNF-high area in the border region

between GDNF-high and -low/negative areas (see Fig. 5A;

GDNF-high left-half area versus GDNF-low/negative right-half

area). As for cell morphology, GFRa1-positive cells (Asingle) in the

GDNF-high area were significantly (p,0.05) more slender in

shape, as compared with cells in the GDNF-low/negative area in

both mice and hamsters (Table 1). As for species differences,

GFRa1-positive cells were significantly more slender in shape and

lower in number in hamsters, as compared with GFRa1-positive

cells in mice (Table 1; see Fig. S5).

Interestingly, GFRa1/GDNF double-staining visualized the

close co-localization of GDNF deposits and a subpopulation of

GFRa1-positive cells in the basal region of the seminiferous

tubules in both hamster and mouse (open arrows in Figs. 4, 5). The

dependent pattern of GDNF signals recovers at D10 and C20. The insets in B indicate the constant GATA4 expression in the Sertoli cells throughout all
stages (insets in B). Asterisks, non-specific signals in interstitial region. Scale bars represent 100 mm.
doi:10.1371/journal.pone.0028367.g003
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long cell processes of some GFRa1-positive cells were closely

connected with the patch-like distribution of immunoreactive

GDNF-positive deposits in hamster seminiferous tubules (arrow-

heads in Fig. 4G). In some Apaired and Aaligned subpopulations of

GFRa1-positive cells, asymmetrical co-localization with GDNF

deposits was observed among connected GFRa1-positive cells (e.g.

‘‘open arrow’’ in Fig. 4E; double arrowheads in Fig. 5E). Confocal

microscopy clearly revealed that the apical surface of some

GFRa1-positive cells was colocalized to GDNF-positive signals,

suggesting a possible interaction site between GDNF and GFRa1-

Figure 4. Cyclical changes in immunoreactive GDNF deposits and their close co-localization with GFRa1-positive spermatogonia in
hamsters. (A–D) Whole-mount immunostaining (without permeabilization) of seminiferous tubules showing GDNF-positive deposits (green) and
GFRa1-positive spermatogonia (red) in the basal compartment of the seminiferous epithelia. In panel A, the right inset plate indicates a moderately
magnified image of the right-half area of the left plate, showing a striatal distribution of the patch-like GDNF-positive signals in the border region
between GDNF-negative to -high area. Panels B-D are higher magnification images of the tubule of panel A (B, the border region between GDNF-high
and -low/negative areas; C, GDNF-low/negative area; D, GDNF-high area). Arrowheads indicate GFRa1-positive spermatogonia with long slender cell
processes. (E–G) Higher magnified images (green, GDNF; red, GFRa1; blue, DAPI) show the close co-localization of GDNF deposits and a
subpopulation of GFRa1-positive spermatogonia. The long cell processes (arrowheads) or cell bodies (open arrows) are closely associated with some
GDNF-positive deposits. Scale bars represent 1 mm in A, 100 mm in D, and 10 mm in E, G.
doi:10.1371/journal.pone.0028367.g004
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positive cells in the basal compartment of seminiferous tubules

(Fig. 7; see Movie S1, Movie S2).

On the other hand, we also noticed that a considerable number

of GFRa1-positive cells were not directly associated with any

GDNF deposit, especially in hamsters (see Figs. 4C, 5B). Both in

mice and hamsters, the majority of GDNF-positive signals appear

to correspond to the cell surface area of the c-kit-positive

differentiated spermatogonia (Fig. 8) rather than the cell process

or cell body of GFRa1-positive cells in the basal compartment

(Fig. 4E–G; Fig. 5D,E).

Discussion

This study was the first to visualize the changes in

immunoreactive GDNF expression in the adult testes in a

species-specific as well as spermatogenic activity- and seminifer-

ous cycle-dependent manner. As anticipated, GDNF expression

was specifically observed in Sertoli cells of the seminiferous

epithelia, and its expression levels appear to be tightly regulated

by the spermatogenic activity of the testes in both mice and

hamsters. In mice, higher levels of GDNF expression were

observed in seminiferous epithelium lacking germ cells than in

seminiferous tubules colonized by donor germ cells (Fig. 1F, 1G),

which may reflect a positive response to compensate for the

reduced germ cell number in the basal compartment. In

contrast, lower levels of GDNF expression were noted in almost

all Sertoli cells in photoregressed and hibernating hamster testes

(Fig. 3). Moreover, during the subsequent testicular recrudes-

cence, GDNF expression was shown to be clearly up-regulated at

the initial phases which coincide with the resumption of

spermatogenesis (Fig. 3). Since a rapid recovery in serum

FSH/LH levels occurs before testicular function in the adult

photoinhibited hamster [42,44], this is clearly consistent with the

previous data that GDNF expression is tightly regulated

immediately downstream of the gonadotropin-gonadal axis

[29,30]. Moreover, in ‘‘active’’ testes in hamsters, the stages

II–VII of the high levels of GDNF-positive signals in the Sertoli

cells (Fig. 2C, 2D) roughly coincide with those of the highest

levels of FSH-induced cAMP production in the seminiferous

epithelia (stages II–VI) [45,46].

Figure 5. Immunoreactive GDNF deposits and their close co-localization with a subpopulation of GFRa1-positive spermatogonia in
mice. Whole-mount immunostaining (without permeabilization) of seminiferous tubules showing GDNF-positive deposits (green) and GFRa1-
positive spermatogonia (red) in the basal surface of seminiferous epithelia in mice. (A–C) Plate A shows the border region between GDNF-high (left
side) and -low/negative (right side) surface areas (Note the tilted distribution of GFRa1-positive cells on the left side). Plates B and C show GDNF-low/
negative and -high tubule areas, respectively. (D, E) Merged images visualize the close co-localization of granular GDNF deposits and some GFRa1-
positive spermatogonia. Plates D and E are higher magnification images of the tubule of panels A and C, respectively. The patch-like distribution of
GDNF-positive granular deposits is closely associated with the outline of a subpopulation of spermatogonia with a close connection with the cell
processes (arrowheads) and cell bodies (open arrows). A double arrowhead indicates the asymmetrical co-localization of GDNF deposits and
connected cells of Apaired GFRa1-positive cells (Note the lack of GDNF deposits around another Apaired GFRa1-positive cell). Scale bars represent
100 mm in C and 10 mm in E.
doi:10.1371/journal.pone.0028367.g005
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Anti-GDNF immunostaining showed high levels of immunore-

active GDNF expression at the timing of spermiation in a

seminiferous cycle-dependent pattern in hamsters. It is well known

that, at the same seminiferous cycle stage as spermiation (stages

VII/VIII in hamsters or stages VIII/IX in mice), preleptotene

spermatocytes move across the blood-testis barrier from the basal

to the adluminal compartment of the seminiferous epithelium

[47,48]. It is likely that the transition of preleptotene spermato-

cytes from the basal to adluminal compartment also leads to a

transient increase in ‘‘spare room’’ for spermatogonia within the

basal compartment of the seminiferous epithelium. Since higher

levels of GDNF expression were observed in seminiferous epithelia

lacking germ cells than in seminiferous epithelia colonized by germ

cells in SSC-transplanted W/Wv testes, these data suggest that

some other signals which are derived from the presence or absence

of ‘‘spare room’’ and/or advanced spermatogenic cells within the

basal compartment may partially contribute to cyclical changes in

GDNF expression in mammalian spermatogenesis.

The present anti-GDNF staining of whole seminiferous tubules

successfully visualized the cyclical and patch-like distribution

patterns of GDNF-positive granular deposits along the basal

surface of Sertoli cells in both species. Double-staining of GDNF

and its receptor, GFRa1, showed close co-localization of GDNF

deposits and a subpopulation of GFRa1-positive spermatogonia in

the basal region. Moreover, the present quantitative analysis

revealed that GFRa1-positive cells showed a slender bipolar shape

as well as a tendency for increased cell numbers in the GDNF-

enriched area, as compared with those in the GDNF-low/negative

area of the seminiferous tubules. For morphometric determina-

tion, further studies are required to generate hard data which can

be statistically verified by using more accurate quantification of the

GDNF signal levels around each GFRa1-positive cell. However,

Figure 6. Immunoelectron microscopic analysis showing GDNF-positive signals along the basal surface of Sertoli cells in hamsters.
Electron micrographs showing transverse ultrathin sections of whole seminiferous tubules immunostained with anti-GDNF antibodies (DAB-osmium
black). GDNF-positive signals are observed in the basal surface of Sertoli cells (S) adjacent to the spermatogonia (arrows) and the basal lamina (open
arrowheads). Some signals are detected in the pinocytotic vesicles of peritubular myoid cells (double arrowhead in F). No signals are detected in the
basal compartment of seminiferous tubules at stage XI (H, I). Panels B and C are higher magnified images of the basal surface of Sertoli cells in panel
A. Asterisks, peritubular myoid cells; bl, basal lamina; G, spermatogenic cells; S, Sertoli cells. Scale bars represent 1 mm.
doi:10.1371/journal.pone.0028367.g006
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these findings suggest that GDNF-positive deposits along the basal

surface of Sertoli cells have a ‘‘niche’’ function in the in vivo

maintenance of SSCs in mammalian testes. These GDNF-positive

deposits may not be static, but unstable dependently on the

functional states and seminiferous cycle stages, although this does

not fit the classical niche for the SSCs as a fixed and static

Figure 7. Co-localization of GDNF-positive signals with the apical surface of GFRa1-positive spermatogonia in hamsters and mice.
The seminiferous tubules were stained with anti-GDNF (green) and GFRa1 (red) antibodies (DAPI, blue), and then analyzed to reconstruct a three-
dimensional image (see also Movie S1 and Movie S2). GDNF deposits are closely connected to the cell processes and cell bodies (open arrowheads) of
some GFRa1-positive spermatogonia in hamsters (A) and mice (B). Plates A and B indicate X-Y axis sections, while plates A9 and B9 represent
reconstructed X-Z axis sectioning images at the points indicated by each arrowhead. Scale bar represents 10 mm.
doi:10.1371/journal.pone.0028367.g007

Figure 8. GDNF-positive signals largely overlap with the areas of c-kit-positive spermatogonia in hamsters and mice. Whole-mount
immunostaining (without permeabilization) of seminiferous tubules showing GDNF-positive deposits (green) and c-kit-positive spermatogonia (red)
in the basal surface of seminiferous epithelia in hamsters (A) and mice (B). Merged images (lower plates) visualize that the majority of GDNF deposits
are overlapped with the areas of the c-kit-positive differentiated spermatogonia (arrowheads). Arrows indicate GDNF deposits that are seen in the c-
kit-negative areas. Scale bar represents 100 mm.
doi:10.1371/journal.pone.0028367.g008
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structure in several lower vertebrates and invertebrate species [49–

51].

The cyclical and patch-like distribution of GDNF deposits along

the basal surface of Sertoli cells possibly leads to the asymmetric

interaction of GDNF signals with some Apaired and Aaligned

GFRa1-positive cells (arrow in Fig. 4E; double-arrowhead in

Fig. 5E), which may be consistent with recent suggestion showing

asymmetric selection of SSCs from Aaligned spermatogonia after

fragmentation in vivo [7]. Moreover, the present regionalized

GDNF regulation in a small subpopulation of GFRa1-positive

cells would explain the findings of a recent clone-fate study which

showed that SSCs have an unexpectedly short life-span (average:

#2 weeks) in the seminiferous epithelia [52]. This is because, in

both hamster and mouse, many GFRa1-positive cells do not

appear to physically associate and co-localize with GDNF deposits

(see Figs. 4C, 5B), possibly leading to their eventual removal from

a potential SSCs pool. Taken together, it is reasonable to speculate

that such regionalized GDNF regulation may define the size of a

pool of GFRa1-positive spermatogonia, especially in hamsters,

possibly leading to the finely-tuned control between the self-

renewal/survival and differentiation of the SSCs in the basal

compartment of seminiferous tubules. Moreover, the present study

demonstrated that the GDNF-positive signals are accumulated

largely on the c-kit-positive spermatogonia along the basal surface

of the seminiferous tubules (Fig. 8). This in turn suggests that the

dynamics of a c-kit-positive population of Aaligned spermatogonia

clearly affects the size of a pool of GFRa1-positive spermatogonia

(mostly Asingle and Apaired) in a positive feedback fashion. The

components of GDNF-positive granular deposits, their association

with the blood vessels, interstitial cells, peritubular myoid cells, and

the molecular mechanisms underlying their distribution and

turnover within the basal compartment of seminiferous tubules,

could be a focus for future studies.

Kanatsu-Shinohara et al. (2008) [22] reported that the general

characteristics of hamster germline stem (GS) cells are similar to

those of mouse and rat GS cells, indicating a conserved GDNF

action of self-renewal and maintenance of the SSCs pool between

seasonal and non-seasonal breeding rodents [53]. Interestingly, we

noticed the following species-specific differences in the expression

profiles of GDNF and GFRa1 between mouse and hamster testes:

1) Hamster GFRa1-positive spermatogonia are more slender in

shape and lower in cell density than those in mice, 2) GDNF

expression in hamsters is more cyclical, is restricted to a narrower

area along the longitudinal seminiferous tubule (i.e., only at stages

II,VII), and consists of patch-like deposits. In contrast, GNDF

expression in mice is ubiquitous/less cyclical, with granular GDNF

deposits in a wider area along the longitudinal seminiferous tubule.

These findings imply that the less cyclical and ubiquitous GDNF

distribution in mice is closely associated with the maintenance of a

large number of GFRa1-positive cells. On the other hand, the

more restricted GDNF distribution would explain the relatively

small number of GFRa1-positive spermatogonia in hamsters, as

compared with that in mice. Interestingly, hamster GFRa1-

positive spermatogonia are significantly more slender in shape

than those in mice, which might possibly reflect the high migratory

activity in hamsters. This small number of GFRa1-positive cells

with a high migratory activity may have advantages over a SSCs

pool which is rapidly changing in size during the transition

between inactive and active states in seasonal breeding animals.

This is because the up- and down-regulation of GDNF expression

is directly transmitted to the rapid expansion of, and/or reduction

in, the SSCs pool throughout the longitudinal seminiferous tubule.

This observation is consistent with the present data which

demonstrated the ubiquitous and widespread nature of GDNF

expression in most seminiferous tubules in the initial phases of

spontaneous testicular recrudescence in hamsters (‘‘D6’’, ‘‘C13’’ in

Fig. 3). Both GDNF and GFRa1 may be highly conserved

molecules between mice and hamsters [22], reflecting the

successful maintenance and colonization of hamster SSCs in

mouse testicular soma [53] and the higher cross-species reactivity

of anti-GDNF and anti-GFRa1 antibodies (this study). Taken

together, these findings indicate that the hamster testes in

photoregressed, hibernating and subsequent recrudescent states

are very useful in a comparative animal approach to understand

the seasonal regulation and evolution of the SSCs and their niche

in mammalian spermatogenesis.

In conclusion, the present study was the first to demonstrate the

dynamic changes in immunoreactive GDNF expression and its

close association with a small subpopulation of GFRa1-positive

spermatogonia in the basal compartment of seminiferous epithelia.

The unexpectedly cyclical and patch-like distribution of GDNF

deposits implicates a novel hypothesis for in vivo maintenance of

SSCs based on highly regionalized association between GFRa1-

positive cells and extracellular GDNF signals in the basal

compartment of the seminiferous epithelia of mammalian testes.

Supporting Information

Figure S1 Comparative amino acid sequences of the C-
terminal region of hamster, human, mouse and rat
GDNF (A) and cross-reactivity of anti-human GDNF
antibody with rat recombinant GDNF proteins by SDS-
PAGE/western blot analysis. (A) The C-terminal amino acid

sequences of GDNF (the epitope region of anti-GDNF antibody

used in this study [against the amino acids 155–205 of human

GDNF: acc no. P39905], arrows in A) are highly conserved

among human [P39905], hamster [direct sequencing of RT-PCR

products; this study], mouse [P48540], and rat [Q07731] (using

ClustalW multiple alignment software). (B) Trans-species cross-

reactivity of this antibody with functionally active recombinant rat

GDNF proteins (90.2% [46/51] amino acid identity with the

human GDNF epitope; 15 or 30 kDa as monomer or dimmer;

PeproTech). The immunoblot control by normal rabbit IgG is also

shown in the right-most lane.

(TIF)

Figure S2 Whole-mount (A–C) and section (D–E) in situ
hybridization analyses showing high Gdnf expression
before spermiation (, stage VII) in hamster testes. (A–C)

Whole-mount in situ hybridization analysis reveals seminiferous

cycle-dependent expression of Gdnf mRNA in hamster seminifer-

ous tubules (purple staining). In A and B, arrowheads indicate the

border between high- and low Gdnf-positive areas. In C, SBA

lectin staining (red fluorescence for acrosome staining; DAPI, blue

in lower plate) using transverse sections of whole-mount stained

seminiferous tubules (Gdnf signal, purple; upper plate) reveals the

reduction in Gdnf expression between stages VII and VIII (inset

indicates positive signals in Sertoli cells at stage VII). The changes

are consistent with the immunohistochemical data (Fig. 2). (D–E)

Section in situ hybridization analysis demonstrates high levels of

Gdnf expression before spermiation in hamster testes (purple

staining). Asterisks, non-specific signals in the acrosomes of round

spermatids. Scale bars represent 100 mm in C and D, and 10 mm

in E.

(TIF)

Figure S3 Histological analysis of seminiferous tubules
in short photoperiod/low ambient temperature-induced
‘‘inactive’’ testes in adult hamsters. Adult hamsters (8-
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week-old) were exposed to a short photoperiod (6 h light, 18 h

dark) and an ambient temperature of 23uC. After the testes

reached the most ‘‘inactive’’ state in Week 13 of treatment (D0),

half of the hamsters were maintained in an environment with an

ambient temperature of 5uC (5uC group) for 6 (C6), 13 (C13), or

20 weeks (C20), respectively. The remaining hamsters were

maintained in an environment with a stable ambient temperature

of 23uC (23uC group) for 6 (D6) or 10 weeks (D10), respectively.

After exposure to a short photoperiod for 13 weeks (D0),

spermatogenic activity began to recover autonomously, with

complete recovery observed within 10 to 20 weeks in both the

5uC (C20) and 23uC groups (D10). Scale bars represent 100 mm.

(TIF)

Figure S4 Negative controls for whole-mount anti-
GDNF immunostaining (without permeabilization) of
seminiferous tubules in hamsters and mice. Anti-GDNF

antibody was pre-incubated with GDNF peptides (sc-328P; Santa

Cruz Biotechnology) prior to use for whole mount immunostain-

ing. The pre-treatment with GDNF peptides (+pep) greatly

reduced GDNF-positive signals in both hamster (A, B) and mouse

(C, D) samples. Each plate includes the inset panel showing a

higher magnification image of upper panel. Scale bar represents

100 mm.

(TIF)

Figure S5 Comparative GFRa1/GDNF-double-staining
images of the seminiferous tubules in hamsters and
mice. Whole-mount immunostaining (without permeabilization)

of seminiferous tubules showing GDNF-positive deposits (green)

and GFRa1-positive spermatogonia (red) in the basal compart-

ment of the seminiferous epithelia in hamsters (left) and mice

(right). In each plate, the seminiferous tubule is shown at the same

magnification. In the left plate, the lower edge of the tubule wall is

missing due to the larger diameter of the seminiferous tubule in

hamster than that of the mouse. Hamster GFRa1-positive cells are

more slender in shape and lower in number than those in mouse

GFRa1-positive cells. In both plates, dotted lines roughly indicate

the border between GDNF-high and -low/negative areas of the

seminiferous tubules. Scale bar represents 10 mm.

(TIF)

Movie S1 Rotating 3D reconstruction showing the close
co-localization of a GFRa1-positive spermatogonial cell

with immunoreactive GDNF-positive deposits in the
basal compartment of seminiferous tubule in hamster
testes. PFA-fixed seminiferous tubule fragments were double-

stained with anti-GDNF (green) and GFRa1 (red) antibodies

(DAPI, blue) without any permeabilization steps, and then

analyzed to reconstruct a three-dimensional image using an

Olympus FluoView confocal laser microscope (FV10i; Olympus,

Japan) in combination with Volocity software (Mitani Sangyo,

Japan) (see also Fig. 7).

(MP4)

Movie S2 Rotating 3D reconstruction showing the close
co-localization of a GFRa1-positive spermatogonial cell
with immunoreactive GDNF-positive deposits in the
basal compartment of seminiferous tubule in mouse
testes. PFA-fixed seminiferous tubule fragments were double-

stained with anti-GDNF (green) and GFRa1 (red) antibodies

(DAPI, blue) without any permeabilization steps, and then

analyzed to reconstruct a three-dimensional image using an

Olympus FluoView confocal laser microscope (FV10i; Olympus,

Japan) in combination with Volocity software (Mitani Sangyo,

Japan) (see also Fig. 7).

(MP4)

Table S1 Ratio of GDNF-positive seminiferous tubule in
hamster testes at inactive and recovery period.

(DOC)
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