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Abstract

A novel computational method for prediction of proteins excreted into urine is presented. The method is based on the
identification of a list of distinguishing features between proteins found in the urine of healthy people and proteins deemed
not to be urine excretory. These features are used to train a classifier to distinguish the two classes of proteins. When used in
conjunction with information of which proteins are differentially expressed in diseased tissues of a specific type versus
control tissues, this method can be used to predict potential urine markers for the disease. Here we report the detailed
algorithm of this method and an application to identification of urine markers for gastric cancer. The performance of the
trained classifier on 163 proteins was experimentally validated using antibody arrays, achieving .80% true positive rate. By
applying the classifier on differentially expressed genes in gastric cancer vs normal gastric tissues, it was found that
endothelial lipase (EL) was substantially suppressed in the urine samples of 21 gastric cancer patients versus 21 healthy
individuals. Overall, we have demonstrated that our predictor for urine excretory proteins is highly effective and could
potentially serve as a powerful tool in searches for disease biomarkers in urine in general.
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Introduction

The rapid advancement of omic techniques in recent years has

made it possible to search for biomarkers for specific human

diseases in a systematic and comprehensive manner, which is

substantially improving our ability to detect diseases at early

stages. Most of the previous biomarker studies have been focused

on serum markers [1], mainly because of the known richness of

serum in containing signals for various physiological and

pathophysiological conditions.

Compared to serum markers, existing urinary markers are

mostly related to urinary-tract or closely associated diseases. Only

within the last few years has improved proteomic analyses of urine

samples revealed that, like sera, urine is also a rich source of

information for detecting human diseases such as the graft-versus-

host disease and coronary artery disease [2,3,4]. Note that urine is

formed by filtration of blood through the kidneys; hence some

proteins in blood may pass through the filters and be excreted into

urine. As a result, the urinary proteins not only reflect the

conditions of the kidney and the urogenital tract, but also those of

other organs that may be distal from the kidney, as at least 30% of

the urinary proteins are not originally from the urogenital tract

[5,6]. The plethora of information in urine makes it an attractive

source for biomarker screening since, compared to serum, the

composition of urine is relatively simple, and urine collection is

easier and noninvasive [7,8].

Marker identification in urine could potentially be done through

comparative proteomic analyses of urine samples of patients with a

specific disease and control groups. The challenge in such searches

for urinary markers in a blind fashion is twofold. (a) Urine could

have a large number of proteins/peptides (in contrast to the

previous understanding [8]) with relatively low abundance. (b) The

dynamic range in the abundance of these proteins could span a

few orders of magnitude, wider than the range typically covered by

a mass spectrometer [9]. For these reasons, comparative analyses,

particularly (semi)quantitative analyses, of proteomic data of urine

samples can be very challenging. This might be a key reason that

there are no reliable urine markers for cancer diagnosis.

Our study focuses on development of a computational method

for accurately predicting proteins that are urine excretory (see

Figure 1 for the outline of the approach). These proteins must have

specific properties that allow them to be secreted from cells first and

then to be filtered out through the glomerulus membrane in kidneys.

A recent proteomic study identified more than 1,500 proteins/

peptides that are excreted into urine through healthy glomerular

membranes [8]. Using this set of proteins and proteins deemed not

to be urine excretory, we have identified a list of distinguishing

features between these two classes of proteins and trained a support

vector machine (SVM) based classifier to predict if a given protein

might be excreted into urine. The prediction method was

experimentally validated using antibody arrays in conjunction with

Western blots, and the results are highly encouraging.
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This classifier has been applied to predict proteins that might be

excreted into urine based on the identified differentially expressed

genes in gastric cancer versus reference gastric tissues; and a

number of potential urine markers for gastric cancer have been

identified. A key contribution made in this work is that it provides

a new and effective way to guide proteomic studies of urine by

suggesting candidate marker proteins, hence allowing targeted

marker searches using antibody-mediated techniques like Western

blots and Elisa, which are substantially more feasible than large-

scale comparative proteomic analyses of urine samples without any

targets with which to work. While this prediction program has

been applied to gastric cancer data in this study, no gastric cancer-

specific information was used in this program; hence, it can be

used for urine marker searches for other diseases.

Methods

This study consists of three main components: (i) construction of

a classifier for predicting urine excretory proteins; (ii) evaluation of

the performance of the classifier by applying it to a set of proteins

for which the excretory status of the proteins is known; and (iii)

application of the validated classifier to gene-expression data of

gastric cancer to demonstrate its effectiveness in solving the urine

marker identification problem.

This research was approved by the Institutional Review Board

at the University of Georgia, Athens, Georgia, USA (Office of the

Vice President for Research DHHS Assurance ID NO.

FWA00003901, Project Number 2009-10705-1)and by the

Chinese Institutional Review Board overseeing human subjects

at Jilin University College of Medicine, Changchun, China. A

consent form, approved by IRB at the University of Georgia and

Chinese IRB, was collected from each subject. All subjects are

aware that any data from research may be used for documents or

publications as stated in the consent form.

a. An algorithm for predicting excretory proteins
The general understanding of protein excretion from tissues to

urine is that some proteins are secreted or leaked from cells into

blood circulation, and then a portion of these proteins, along with

some native proteins in blood, may be excreted into urine. Our

goals are first to identify distinguishing features for such urine

excretory proteins and then to build a classifier based on these

features to predict which proteins in cells can be excreted into

urine. To the best of our knowledge, there has not been any

published work aimed to solve this problem. The importance in

having such a capability is that it provides an effective link in

connecting omic analyses of tissues to marker search in urine by

providing candidate markers in urine that can be studied using

antibody-based approaches.

The first step in developing such a predictive capability, i.e., a

classifier, is to have a training dataset containing proteins that can and

that cannot be excreted into urine, based on which a set of

distinguishing features could possibly be identified. Fortunately, we

have found one large proteomic dataset of urine samples from healthy

people in a recently published study [8], which contains more than

1,500 unique proteins of which 1,313 have SwissProt accession IDs.

We have used these 1,313 proteins as the positive training data for the

to-be-trained classifier. The following procedure was then used to

generate a negative training set: arbitrarily select at least one protein

from each Pfam family that does not contain any positive training

data, and the number of selected proteins from each family is

Figure 1. The flow of the study.
doi:10.1371/journal.pone.0016875.g001
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proportional to the size of the family [10,11]. As a result, 2,627

proteins were selected and used as the negative training set.

We examined 18 physiochemical features computed from

protein sequences, which are potentially useful for the classification

problem based on the general understanding of urinary excretion

of proteins. The details of the 18 features and the computer

programs used to calculate them are listed in Table S1. Some of

these features are represented by multiple feature values, e.g., the

amino acid composition in a protein sequence is represented by 20

feature values; overall the 18 features are represented using 243

feature values. We then identified a subset of features values from

the 243, which can distinguish between the positive and the

negative training data using an SVM-based classifier. The RBF

kernel was used in our SVM training, considering its capability to

handle non-linear attributes [12,13].

To ascertain which of the initially considered features are actually

useful, the feature selection tool provided in LIBSVM [12] was used

to select the most discerning features among the 243. Other feature

selection tools could possibly be used but we have considerable

experience in using this tool and found it to be adequate. Codes used

in this are publicly available from LIBSVM website (http://www.

csie.ntu.edu.tw/,cjlin/libsvm/); we also have made the relevant

program accessible at http://seulgi.myweb.uga.edu/files. An F-

score [12], defined as follows, is used to measure the discerning

power of each feature value to our classification problem,
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where Xk refers to the training feature values (k = 1,…, m); n+ and

n2 are the number of proteins in the positive (+) and negative (-)

training dataset, respectively; xi, xz
i , x{

i are the averages of the

ith feature value across the whole training dataset, the positive

dataset and the negative dataset, respectively; and xz
k,i and x{

k,i are

the ith feature of the kth protein in the positive and negative

training data, respectively. Generally, the larger an F-score, the

more discriminative the corresponding feature is. In our selection,

all features with F-scores above a pre-selected threshold were

retained and used in training the final classifier. To find an optimal

F-score threshold, we considered a list of possible thresholds and

then selected the best one based on the training results.

The training of our SVM-based classifier is done using a

standard procedure provided in LIBSVM [12] to find values of

two parameters C and c that give an optimal classification on the

training data, where C controls the trade-off between training

errors and classification margins, and c determines the width of

the kernel used [12]. Our training procedure is summarized as

follows[12]:

a. Obtain the F-score for each feature value;

b. For each of the pre-selected thresholds, do the following

i. Remove the feature values with F-scores lower than the

threshold;

ii. Randomly split the training data into a sub-training and a

sub-validation sets with equal size;

iii. Train an SVM with an RBF kernel on the sub-training set

to search for optimal values of C and c, and then apply it to

the sub-validation data and calculate the classification

error;

iv. Repeat steps (i) – (iii) five times and calculate the average

validation error;

c. Choose the threshold that gives the lowest average validation

error, and keep the features with F-score above the selected

threshold; and

d. Retrain an SVM based on the selected features as the final

classifier.

b. Datasets used to evaluate the performance of the
classifier

An independent dataset was used to assess the performance of

the trained classifier for which the excretory status of each protein

is known. The positive subset of this dataset has 460 human

proteins found in the urine of healthy individuals by three urinary

proteomics studies [14,15,16], and the negative subset contains

2,148 proteins selected using the same procedure described

previously but does not overlap with the negative set used for

training.

The following measures were used to assess the classification

accuracies: the sensitivity, the specificity, the accuracy, the

Matthew’s correlation coefficient, and the AUC [17]. Table 1

summarizes the classification accuracies of the trained classifier on

the both training and the test datasets [17]. From the classification

accuracies on the two datasets, we believe that our trained

classifier captured the key distinct features of the excretory

proteins in urine.

In addition, our classifier was tested on a separate dataset, a

subset of the 274 proteins fixed on a pre-made protein antibody

array (the RayBio Human G-series Array 4000 (RayBiotech, Inc.,

Norcross, GA)). Of the 274 proteins, 111 are known to be

excretory and were included in our training or independent test

dataset. We applied the classifier on the remaining 163 proteins for

which the excretory status was unknown (see Results and Table

S2). This protein array provides the relative expression level for

each protein on the array when tested on a (urine) sample, which is

measured in terms of the signal intensity, quantified by the

densitometry. The background of the array was used as the control

to determine the actual presence of a protein in the (urine) sample.

The signal intensity for a protein was considered as a true signal if

it was at least 5-fold higher than that of the control, as suggested by

the manufacturer’s recommendation. We focused our experimen-

tal validation on confirming the positive predictions only since it is

virtually impossible to prove a protein is not present in a urine

sample due to limitations in detection sensitivity of the current

technology when the protein is of very low concentration in the

sample.

c. Urine sample collection/preparation
Urine samples from gastric cancer patients and healthy controls

were collected at the Medical School of Jilin University,

Changchun, China. Gastric cancer patients, from who the samples

were collected from, are all late stage patients (see Table S3 for

patient information). These samples were immediately lyophilized

and stored at 280uC until further use after their surgical removal

from the patients. They were then reconstituted and centrifuged

(3,000xg for 25 min at 4uC) to remove cellular components. The

supernatants were collected and dialyzed at 4uC against Millipore

ultra pure water (three buffer changes followed by an overnight

dialysis) using Slide-A-Lyzer Dialysis Cassettes (Thermo Fisher

Scientific, Rockford, IL). Protein concentrations were measured

using the Bio-Rad Protein Assay (Bio-Rad, Hercules, CA) with

bovine serum albumin as a standard.

Predicting Urinary Proteins and Its Applications
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d. Identification of genes that are differentially expressed
in gastric cancer and control tissues

A total of 80 gastric cancer tissues and their adjacent

noncancerous tissues from 80 patients were collected at the

Medical School of Jilin University. Microarray experiments were

conducted on these tissues using the Affymetrix GeneChip Human

Exon 1.0 ST Array, which covers 17,800 human genes. The

PLIER algorithm [18] was used to summarize the probe signals to

gene-level expressions. For each gene, we examined the distribu-

tion of the expression fold-change between the paired cancer and

control tissues across all 80 pairs of tissues. Let Kexp, be the number

of pairs of tissues whose fold-change is at least 2. A gene is

considered as differentially expressed if the p-value of the observed Kexp

is less than 0.05. Using this criterion, a total of 715 genes were

found to be differentially expressed in gastric cancer across all

human genes, and the names of the 715 genes, along with the

associated Kexp and p-values, are given in Table S4. A detailed

study of the microarray data has been reported elsewhere [19].

e. Function and pathway enrichment analyses
The DAVID Bioinformatics Resources and the KOBAS web

server [20,21] were used to do functional and pathway enrichment

analysis, respectively, for all the predicted urine-excretory proteins,

using the whole set of human proteins as the background. We refer

the readers to [20,21] for details on the methods for functional and

pathway enrichment analyses. Using DAVID Bioinformatics

Resources, the enrichment score for a specified group of proteins

was determined by the EASE score [20,22]. KOBAS is a

complementary tool to DAVID as it expands the gene annotation

using KEGG Orthology (KO) terms. The KOBAS web server,

along with the KO-based annotation system [21,23], was used to

find statistically enriched and underrepresented pathways among

the predicted urine-excreted proteins. KOBAS takes in a set of

protein sequences and annotates them using the KO terms. The

annotated KO terms were then compared against all human

proteins as the background set for assessing if they are enriched or

underrepresented.

f. Western blots
Urinary proteins from each sample (total of 2 mg) were

combined with 3x sample dye. Each tube was boiled for 5 min

and loaded on SDS-PAGE gels, along with 10 ml standards and

run for 1 h at 200 volts. The membrane was activated with 100%

methanol, following a transfer from the gel to the membrane (100

volts for 1 h). Once the transfer was complete, the membrane was

allowed to dry, rewetted in 100% methanol and washed 2X for

5 min each with Tris-Buffered Saline (TBS). The membrane was

then incubated in 3% milk blocking solution for 2 h at room

temperature. Next the membrane was incubated in the first

antibody solution (1:200 dilutions in 1.5% milk blocking) for 1 h at

room temperature, and the unbound antibody was removed by

washing the membrane 3X with TBS Tween-20 (TBST) solution

for 10 min each. Then the membrane was incubated in a 1:10,000

dilution of the secondary antibody in 1.5% milk blocking solution

for 1 h at room temperature. The membrane was washed 3X with

TBST and 2X with TBS (10 min each). Lastly, the membrane was

covered completely with an equal amount of enhancer and

peroxide solution from a Pierce Western Blotting kit for 5 min and

exposed to the film. Each experiment was repeated multiple times

to ensure reproducibility [24]. The signal intensities were

determined using the imageJ software [25]. For each membrane,

the blank lane was used to normalize the signal intensities across

the membranes. The performance was examined using ROC and

whisker-box plot.

Results and Discussion

a. Signal peptide and secondary structures are key
features of urine-excreted proteins

The initial list of features was carefully selected to include what

we believed to be protein characteristics relevant to urinary

excretion based on literature search and our current understand-

ing of urinary proteins. For example, the negatively charged

glomerular wall in kidney will allow the filtration of only positively

or neutrally charged proteins. Thus, charge of a protein is one of

the features we selected. Taking the available information into

consideration, the total number of feature values collected initially

was 243, representing basic sequence properties, motifs, physico-

chemical properties, and structural properties (Table S1). In

identifying features that are effective in discriminating urine

excretory proteins from the non-excretory ones, a simple and

effective method to eliminate features that show little or no

discerning power for our classification problem was employed; 74

feature values were selected using the procedure outlined in

Section a of Methods (Table S5). These feature values were used to

train the final classifier.

Among the selected features, the most discriminatory one was

the presence of signal peptides. It is understood that proteins that

are secreted through the ER have signal peptides and are

trafficked to their destination according to the specific signal

peptides; thus, not surprisingly, most excreted proteins have this

feature. Another prominent feature was the secondary structure

type; specifically, the percentage of alpha helices in a protein

sequence was ranked as the number 2 feature value among the

selected 74 (Table S5). As expected, the charge of a protein was

among the top ranked features for excreted proteins. This is

consistent with the general understanding that charge is a factor in

determining which proteins can be filtered through the glomerular

membrane [26] as proteins inside glomerular membranes and

podocyte slits are negatively charged, and hence negatively

charged proteins will have low chances to filter through the

kidneys. Indeed, the feature values of positive amino acids and

charge were among the top ranked feature values.

Interestingly, however, molecular weight, which ranked at 232

out of 243, was not included in the final 74 feature values. This

Table 1. Classification performance by the trained classifier on the training and an independent test set.

Sets TP TN FP FN SEN SP ACC MCC AUC

Train 972 2,493 134 341 0.74 0.95 0.88 0.52 0.94

Independent 360 1,983 165 100 0.78 0.92 0.90 0.45 0.93

TP = true positive; TN = true negative; FP = false positive; FN = false negative; N = total number of proteins in dataset; SEN = TP/(TP+FN); SP = TN/(TN+FP); ACC =
(TP+TN)/N; MCC = (TPxTN-FPxFN)/!((TP+FN)(TP+FP)(TN+FP) (TN+FN)); AUC is described in (37).
doi:10.1371/journal.pone.0016875.t001
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could be explained by the following. Proteins present in serum

may have already undergone a cleavage or have been partially

degraded, and thus may not be in their intact or complete form

when they enter the kidney. It has, in fact, been established that

the majority of proteins found in urine are extensively degraded

[27]. While an intact protein may not be able to filter through the

glomerulus due to its size or shape, a protein-derived peptide may

easily pass through the podocyte slits. As a result, the molecular

weight of the intact protein is a non-factor in predicting if the

protein is urine excretory.

It should be noted that urine excretory proteins and secreted

proteins share some common characteristics as some of the

features used to identify blood-secreted proteins in our previous

study [10] were selected in the urinary protein prediction in this

study. For example, features such as solvent accessibility, polarity,

and signal peptides were included in both classifiers. However

there is a clear difference between the features used in the two

classifiers. While features such as beta-strand-content, features

associated with beta-barrel transmembrane protein and protein

ratio, TatP motif, transmembrane domain, protein size, and the

longest disordered region were among the top features for

prediction of blood-secretory proteins [10], they were not included

in the final features for the urinary protein prediction. Moreover,

features related to positive charge, such as the composition of

positively charged amino acids, were prominent in urinary protein

prediction but not selected in the blood secretion prediction.

Similarly, the alpha-helix-content and the coil-content of proteins

were among the top features for urinary protein prediction, but

they were not selected for the blood-secretory protein prediction.

It is interesting to note that in contrast to the finding that beta-

strands are a common secondary structure type among the blood

secretory proteins, urinary proteins tend to have higher alpha-

helix and coil content, which indicates that the urinary proteins

possess properties not shared by blood secretory proteins in

general.

b. Performance of the classifier
To determine the accuracy of the final classifier, we tested it on

an independent test set, which consists of 460 experimentally

validated urine excretory proteins and 2,148 non-urine excretory

proteins. Our classifier has its prediction sensitivity and specificity

on this independent test set at 0.78 and 0.92, respectively (Table 1).

We then ran the classifier on the 163 out of the 274 proteins

fixed on the pre-made antibody array (see Methods), for which the

excretory status was unknown. Of the 163 proteins, 112 proteins

were predicted to be urine excretory by our classifier. To assess the

performance of this prediction, antibody array-based experiments

were conducted on 14 urine samples, seven from healthy

individuals and seven from gastric cancer patients. Of the 112

predicted urine-excretory proteins, 92 were found in at least one of

the urine samples (Table S6), giving a positive prediction rate of

0.81, which is consistent with the performance level on the first test

set.

It should be noted that one limitation of this classifier is that

some proteins might have been partially degraded before being

excreted into urine or in urine, making it difficult for our

classifier to detect so formed peptides as it was trained on

whole intact proteins. This issue will be addressed in the future

through deriving feature values based on the actual proteins/

peptides identified in previous urinary proteomic studies rather

than their corresponding full-length proteins as done in this

study. While there is clearly room for further improvement,

the prediction results of the current classifier are highly

encouraging.

c. Application of classifier to gastric cancer data
Our previous study on 160 sets of microarray gene-expression

data of gastric cancer has identified 715 differentially expressed

genes with at least 2-fold changes in gastric cancer versus control

tissue samples [19]. While it would be preferable to have

proteomic data of the tissue samples, we have only gene-expression

data available in this study. Hence, gene expression data are being

used as an approximation to the protein expression in this

methodology-oriented study. Our classifier was applied to these

715 proteins, and it predicted that 201 of the 715 proteins are

urine excretory. Table S7 provides the detailed information of the

201 proteins. Since it is unrealistic to check all the 201 proteins in

this study to determine if they are urine excretory or not, we did

analyses to narrow down this list. Specifically, we have carried out

the following analyses: (i) functional and pathway enrichment

analyses to gain a better understanding of the types of proteins

present in urine, (ii) literature search on urinary proteins to

compile information about published urinary marker proteins, (iii)

examining the gene expression data to remove genes that are not

substantially differentially expressed between cancer and control

tissue samples; and (iv) Western blots on proteins chosen from a

narrowed down list of the 201 proteins. This procedure showed a

high success rate and led to an interesting discovery of potential

biomarker for gastric cancer.

For (i), we have carried out functional and pathway enrichment

analyses on all the 201 proteins using the DAVID [20] and

KOBAS [21] servers, respectively. We found that the enriched

functional groups included the extracellular matrix (ECM), cell

adhesion, and development, cell motility, defense response,

angiogenesis, which are all known to be involved in the

development of or in defense of cancer (Figure S1A). The most

enriched pathways were ECM-receptor interaction and inorganic

ion transport and metabolism pathways (Figure S1B).

The following criterion was used to reduce the list of 201

proteins for steps (ii) - (iii): the proteins have not been reported to be related

to any cancer based on our extensive literature search, which gives rise to 71

proteins. The list was further reduced based on a pre-selected

cutoff on differential expressions and functional annotations

(potentially relevant to gastric cancer rather than immune

responses).

d. Endothelial lipase is substantially reduced in the urine
samples of gastric cancer patients

We chose six proteins (MUC13, COL10A1, AZGP1, LIPF,

MMP3, and EL) for experimental validation from the above

narrowed down list. To do this, we have collected urine samples of

21 gastric cancer patients and 21 healthy individuals. Of the six

selected proteins, five proteins, MUC13, COL10A1, LIPG,

AZGP1, and EL were detected by Western blots in at least one

urine sample. Out of the five, MUC13, COL10A1, and EL were

detected even at a very low quantity of the total urinary proteins

(1–2 mg). MMP3 was not found in the samples we tested, which

may be due to the low concentration of MMP3 in urine or a false

prediction by our classifier.

It is particularly interesting to note that we were able to detect

consistent differences in the EL abundance (encoded by LIPG)

between the two sets of 21 urine samples. The Western blots for

EL showed a substantial reduction in its abundance in urine

samples of the 21 gastric cancer patients compared to the control

samples. As shown in Figure 2A, the majority of the control

samples showed the presence of EL, whereas most of the gastric

cancer samples had relatively low amounts of EL. This pattern was

observed repeatedly.

Predicting Urinary Proteins and Its Applications
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The molecular weight of this protein has been determined to be

68 kDa [28]; thus, a homo-dimer is expected to be 134 kDa. In the

Western blots, however, bands were detected at near 100 kDa. This

probably corresponds to a partially cleaved homo-dimer, an active

form of which was confirmed by a previous study [29], although the

possibility of a monomeric form of EL associated with another

protein cannot be ruled out. The Western blots do provide semi-

quantitative information based on the signal intensities. The ROC

curve suggests that the EL concentration was discriminant in

distinguishing the gastric cancer samples from the non-gastric

cancer samples, yielding an AUC greater than 0.9 (Figure 2B–C).

Using 5,000 as a signal intensity cutoff, true positive rate and false

positive rate were 85% and 9.5%, respectively.

A further study is required to assess EL as a gastric cancer

biomarker. The limited sample size of 21 samples in each group is

too small to accurately evaluate its potential for biomarker.

Enrolling many more patients is needed to confirm the efficacy of

EL as a potential biomarker for clinical purposes. Also, it would be

interesting to test EL on the early stage of gastric cancer, as our

samples were all from late stage gastric cancer patients. Nonetheless,

our preliminary result shows highly encouraging results.

Concluding remarks
The available evidence indicates that many proteins are excreted

into urine that may be good biomarker candidates for different

diseases. The novel computational method developed and used

herein for predicting excreted proteins may aid in identifying these

and other biomarkers in urine. Our study has demonstrated that the

integrated approach, coupling bioinformatics prediction with

experimental validation, is an effective paradigm for identification

and validation of potential urinary biomarkers. We anticipate that

this approach will provide a powerful tool in the future for urinary

proteomics and biomarker studies in general.
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