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Abstract

Background: Previous studies have shown that plant mitochondrial movements are myosin-based along actin filaments,
which undergo continuous turnover by the exchange of actin subunits from existing filaments. Although earlier studies
revealed that actin filament dynamics are essential for many functions of the actin cytoskeleton, there are little data
connecting actin dynamics and mitochondrial movements.

Methodology/Principal Findings: We addressed the role of actin filament dynamics in the control of mitochondrial
movements by treating cells with various pharmaceuticals that affect actin filament assembly and disassembly. Confocal
microscopy of Arabidopsis thaliana root hairs expressing GFP-FABD2 as an actin filament reporter showed that
mitochondrial distribution was in agreement with the arrangement of actin filaments in root hairs at different
developmental stages. Analyses of mitochondrial trajectories and instantaneous velocities immediately following
pharmacological perturbation of the cytoskeleton using variable-angle evanescent wave microscopy and/or spinning disk
confocal microscopy revealed that mitochondrial velocities were regulated by myosin activity and actin filament dynamics.
Furthermore, simultaneous visualization of mitochondria and actin filaments suggested that mitochondrial positioning
might involve depolymerization of actin filaments on the surface of mitochondria.

Conclusions/Significance: Base on these results we propose a mechanism for the regulation of mitochondrial speed of
movements, positioning, and direction of movements that combines the coordinated activity of myosin and the rate of
actin turnover, together with microtubule dynamics, which directs the positioning of actin polymerization events.
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Introduction

Mitochondria serve as energy-producing organelles in plants

and other eukaryotes, and they are known to associate with

energy-consuming organelles and structures, such as the nucleus,

rough endoplasmic reticulum, and plasma membrane [1]. In

addition, recent research has demonstrated that mitochondria

serve as fundamental elements in intracellular signaling. For

example, mitochondria play a role in modulating the spatio-

temporal features of a [Ca2+]c signal [2–4] and are crucial

participants in cell death programs [5–7]. Previous studies using

mammalian cells have suggested that strategic mitochondrial

localization at particular subcellular sites was required both for

the provision of energy and for intracellular signaling [8].

Because of the importance of mitochondrial distribution for

cellular activities, the mechanism of mitochondrial movements

has received considerable attention, particularly in yeast and

animal cells.

Active mitochondrial movements involve a close interaction

with the cytoskeleton, in particular, with actin filaments or with

microtubules. A number of studies have shown that both

microfilaments and microtubules function in mitochondrial

movements, although the contribution of each cytoskeletal element

varied considerably depending on specific cell types and

organisms. In most animal cells and also some algae and protists,

mitochondrial movement is mainly dependent on microtubules

[4,9–11], and mediated by molecular motor proteins such as

kinesins and dyneins that move the cargo toward the plus-end or

minus-end of microtubules, respectively [12]. However, studies in

neuronal axons [13,14] and in insect cells [15] revealed that actin

filaments could also serve as tracks for mitochondrial transport. In

higher plants it has been shown that mitochondria are closely
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associated with microfilaments and mitochondrial translocation is

mainly dependent on intact microfilaments, in contrast to studies

using yeast or animal cells [16–19].

F-actin undergoes turnover: the exchange of actin subunits from

existing filaments through polymerization at the barbed ends of

filaments in conjunction with depolymerization at the pointed

ends enabling increases and decreases in the length of polymerized

actin filaments [20]. Apart from actin turnover, more complex

dynamics of actin filaments have been recognized, including the

flow of polymerized actin filaments, elongation and shortening of

polymerized actin filaments, and other morphological changes

[21,22]. Specific functions of the actin cytoskeleton depend on

how actin filaments are distributed and arranged, and how their

behavior is modified by proteins that directly associate with both

intact polymers and their monomer subunit [23–25]. Cytoskeletal

dynamics play an integral role in cellular metamorphosis,

organelle trafficking and endocytosis. For example, a polarized

actin polymerization process is involved in the movement of

bacteria inside the host cytosol [26]. Furthermore, it has been

demonstrated that actin cables serve as ‘‘conveyor belts’’ to drive

retrograde movement of mitochondria, endosomes, and actin

patches in Saccharomyces cerevisiae [27,28]. Recently, it has also been

suggested that endosomal movements in Medicago trunculata root

hairs are driven by actin polymerization [29]. To date, no research

on the function of actin filament dynamics in driving mitochon-

drial movements has been reported in tip-growing cells.

To study the roles of the cytoskeleton in many aspects of plant

growth, several cytoskeletal inhibitors, such as latrunculin B (LatB),

cytochalasin D (CD), jasplakinolide (Jas), oryzalin, taxol and 2,3-

butanedione 2-monoxime (BDM) have been widely used [30].

Using pharmacological inhibitors, Van Gestel et al. reported that

plant mitochondria moved on F-actin, but that their positioning in

the cortical cytoplasm depends on F-actin and microtubules [17].

Sheahan et al. found that inhibiting myosin activity and

depolymerizing F-actin stopped vectorial mitochondrial move-

ment, whereas disrupting microtubules slightly reduced mitochon-

drial movement [18]. Recently, Doniwa et al. demonstrated that

mitochondria moved along actin filaments in BY-2 cells and

Arabidopsis epidermal cells [19]. However, the inhibitors were used

at high concentrations and applied for long time frames in these

experiments, which makes deciphering of the role of actin filament

dynamics in plant mitochondrial movements impossible and may

cause nonspecific effects of drug treatments.

Root hairs show strictly polar cell-expansion called tip growth.

Within the growing root hair the cytoplasm itself exhibits a high

degree of polarized zonation. Growing hairs have a tip region free

of detectable bundles of actin filaments, behind which is a

subapical region of net axially-aligned fine F-actin, followed by a

basal region showing thicker bundles of actin filaments [31].

Correspondingly, it has been reported that a tip-focused G-actin

gradient is present in growing root hairs that is not present in fully-

grown root hairs [32]. Therefore, growing root hairs provide an

excellent model system to study actin filament dynamics in relation

to mitochondrial movements.

In this investigation we co-visualized actin filaments and

mitochondria in living growing root hairs using stably transformed

Arabidopsis thaliana seedlings expressing GFP-FABD2 [33] co-

labelled with vital dye MitoTracker Red CMXRos. Additionally,

the trajectories and instantaneous velocities of mitochondria were

analyzed immediately following pharmacological perturbation of

the cytoskeleton using variable-angle evanescent wave microscopy

(EWM) and/or spinning disc confocal microscopy (SDCM) in wild

type Arabidopsis, or in an Arabidopsis line stably transformed with a

mito-GFP construct. Finally, cross-correlation analysis was used to

compare mitochondrial movements with the status of actin

filaments in order to decipher the relationship between mitochon-

dria movements and the actin cytoskeleton.

Results

Mitochondrial distribution and actin filament
organization in root hairs at different developmental
stages

Mitochondria in trichoblasts at the pre-bulge stage were evenly

distributed in the cortical cytoplasm (Fig. 1A) containing actin

bundles with an average thickness of 0.7260.12 mm (n = 15 cells)

(Fig. 1B). When trichoblast cells formed bulges, mitochondria

aggregated within the bulge (Fig. 1C), the average thickness of

actin bundles were reduced to 0.4160.10 mm (n = 14 cells), and

fine actin filaments were present at the site of bulge outgrowth

(Fig. 1D). In elongating root hairs, mitochondrial density increased

markedly while mitochondrial distribution showed a subapical to

base gradient (Fig. 1E). Visualization of actin filaments in fast

elongating root hairs expressing GFP-FABD2 revealed that

extensive arrays of thick actin bundles at the base extended

towards tip, dispersed into fine filaments in the subapical region

and became much finer in the apex, eventually becoming

undetectable (Fig. 1F). When G-actin polymerized into thick

stable actin filaments in terminally differentiated root hairs that

had stopped growing (Fig. 1H), mitochondria were uniformly

distributed in the cytoplasm and their density declined to 35.7% of

that in elongating root hairs (Fig. 1G).

Characterization of the movement of individual
mitochondria by EWM

Previously, we used EWM to study endosomal movements in

growing pollen tubes [34]. In the current study, mitochondria

visualized either with mito-GFP [35], or with MitoTracker,

showed active movements in epidermal root cells and in root

hairs. Using the time-lapse images obtained by EWM with 200

milliseconds intervals in a single focal plane, we analyzed the x-y

plane velocities and trajectories of individual mitochondria. The

results demonstrate that mitochondria can undergo a wide range

of rates and directions of linear movement (as shown in video S1).

Furthermore, measurement and statistical analysis revealed that a

gradient of mitochondrial velocity occurred along the long axis of

growing root hairs (Table 1). In the region 5–30 mm from the

apex, mitochondria moved at an average velocity of

0.6460.32 mm/sec (n = 15 root hairs, 985 mitochondria), with a

maximum velocity of 2.63 mm/sec. As the distance from the apex

increased to 30–80 mm, the average velocity of mitochondria

increased to 1.8061.03 mm/sec (n = 14 root hairs, 990 mitochon-

dria), with a maximum velocity of 5.97 mm/sec. In the base of

growing root hairs, the average velocity of mitochondria increased

further to 3.4562.13 mm/sec (n = 12 root hairs, 893 mitochon-

dria), with a maximum velocity of 9.96 mm/sec. However, this

velocity gradient was not apparent in fully grown root hairs, in

which mitochondria moved throughout the entire length of the

root hair at an average velocity of 4.0362.06 mm/sec (n = 13 root

hairs, 806 mitochondria), with a maximum velocity of 10.2 mm/

sec (Fig. 2E).

To further characterize mitochondrial movement, the motility

of individual mitochondria over time was plotted in an x-y

velocity graph. Pauses were operationally defined as status that

mitochondria lost their linear movement and instead exhibited

complex behaviors, e.g., rotations, oscillations, and immobility.

At the tip of the root hairs, mitochondria frequently moved at a

lower velocity and paused more frequently than in the regions

Plant Mitochondrial Motion
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closer to the base. During pauses, mitochondrial instantaneous

velocities declined to 0.5 mm/sec over 1 second. The velocities

of an individual mitochondrion in the apical zone over a 17 sec

period are presented in Fig. 2A. To characterize mitochondrial

behavior during periods of pause, the mean squared displace-

ment (MSD) at different time intervals during a pause (indicated

by the red arrow) was calculated and these values were averaged

to generate the MSD-versus-time plot (Fig. 2B). The diffusion

coefficient in two dimensions, D2, was derived from the slope of

a plot of the MSD-versus-time for interval DtR0. The diffusion

coefficient ranged from 1.7561022 mm2/sec to 9.161022 mm2/

sec, with an average value of 4.66102262.161022 mm2/sec

(n = 103 mitochondria), suggesting that mitochondrial motion

was neither random nor Brownian during their pauses according

to Stokes’ law. In the region 30–80 mm from the tip and in the

basal part of the growing root hairs, mitochondria moved more

rapidly and paused less often, as indicated by a lower frequency

of instantaneous velocities of less than 0.5 mm/sec (Fig. 2C and

2D).

Effects of actin cytoskeleton disruption on mitochondrial
movements

Treatment of seedlings with 5 mM CD for 10 minutes did not

inhibit cytoplasmic streaming in any of the growing root hairs

tested. Confocal microscopy demonstrated that use of 5 mM CD

resulted, in the subapical area, in a decrease in GFP-FABD2

labeled actin structure, including the apparent disappearance of

fine actin filaments and the appearance of very fine spots, whereas

toward the base of the root hair the thick bundles of actin filaments

remained intact (Fig. 3A and 3B). The effects of CD on

mitochondrial movements showed typical dose- and time-depen-

dent patterns. A notable effect of treatment with 5 mM CD for 10

minutes on mitochondrial movements was that linear movements

were gradually replaced with wiggling motion or immobility,

particularly in the apical region of growing root hairs. As shown in

Fig. 3B and 3D, sudden inhibition of linear mitochondrial

movement occurred when the mitochondrion arrived at a position

38.4 mm from the tip. Before this arrest, the mitochondria

continued to move as fast as they did before drug application

Figure 1. Mitochondrial distribution and actin organization in root hairs at different developmental stages. Mitochondria are labeled
with MitoTracker, actin is visualized using GFP-FABD2. The single pictures represent a stack of all optical sections through these cells visualized by
spinning disc confocal microscopy. A. Mitochondria were evenly distributed in the cortical cytoplasm in pre-bulge of trichoblast. Scale bar = 10 mm. B.
Thick actin filaments formed a network in prebulge trichoblast. Scale bar = 10 mm. C. Mitochondrial distribution in a bulge. Note that mitochondria
were agreggated within the region where the bulge formed. Scale bar = 10 mm. D. Actin filaments are undetected in the tip of bulge, whereas fine
actin filaments are visible in the site of bulge outgrowth. Scale bar = 10 mm. E. Mitochondrial distribution in a fast elongating root hair. Note the large
number of mitochondria in the subapical region. Scale bar = 10 mm. F. Actin filaments in fast elongating root hairs. Note the large number of fine
actin filaments in the subacpcial region and absence of actin filaments in the apical region. Scale bar = 10 mm. G. In the full growth root hair,
mitochondrial density significantly decreased and showed uniform distribution. Scale bar = 10 mm. H. Thick actin filaments arranged in the full growth
root hair. Scale bar = 10 mm
doi:10.1371/journal.pone.0005961.g001
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Figure 2. Mitochondrial linear movements in Arabidopsis root hairs. Mitochondria in wild-type Arabidopsis are labeled with MitoTracker (red)
and their movements in a single focal plane were recorded by evanescent wave microscope at 200 millisecond intervals. A. Plot of the x-y velocity of a
mitochondrion moving in the region 5–30 mm from the tip. Note that the instantaneous velocities ranged from 0.07 mm/sec to 1.53 mm/sec. From
9.8 s to 15.2 s as indicated by arrows, the mitochondrion behaved rotations and oscillations at low instantaneous velocities. B. The mean square
displacement (MSD) of the pause (highlighted the start and the end by arrows in A) plotted against time interval Dt. C. Plot of the x-y velocity of a
mitochondrion moving in the region 30–80 mm from the tip. Note that the instantaneous velocities ranged from 0.06 mm/sec to 3.56 mm/sec. D. Plot
of the x-y velocity of a mitochondrion moving in the basal shank. Note that the instantaneous velocities ranged from 0.41 mm/sec to 7.70 mm/sec. E.
Plot of the x-y velocity of a mitochondrion moving in fully grown root hairs. Note that the instantaneous velocities ranged from 4.19 mm/sec to
9.96 mm/sec.
doi:10.1371/journal.pone.0005961.g002
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(Fig. 3E). As the time after treatment increased, more mitochon-

dria lost their linear movement, until all mitochondria were either

wiggling or immobile.

When treated with 10 nM LatB, most mitochondria became

immobile within 2 minutes. Residual mitochondrial linear

movement displayed an average velocity of 0.4160.21 mm/sec

(Fig. 3F). Although the instantaneous velocities were lower than

0.5 mm/sec, the video and analysis of it demonstrate that

mitochondria moved vectorially (Fig. 3G). The thick actin

filaments in the area between the basal and subacpical regions

remained present when treated with LatB for 10 minutes, whereas

the fluorescence of FABD2 in the apical region trailed off (Fig. 3C).

Jasplakinolide (Jas), a cell-permeable macrocyclic peptide that

inhibits F-actin turnover [36,37], was used to investigate the role of

F-actin turnover in mitochondrial movement. Treatment of GFP-

FABD2 expressing seedlings with 100 nM Jas for 10–15 min

resulted in an increase in GFP fluorescence adjacent to the plasma

membrane: thick actin bundles aggregated at the cell margins and

actin filaments looped into the root hair apex (Fig. 4A). At a

distance of 30–80 mm from the tip, most mitochondria lost linear

movement and were shown to wiggle into or out of the focal plane,

deep in the interior cytoplasm. Other mitochondria that

maintained linear movement in the cortical cytoplasm moved at

velocities ranging from 3.25 to 0.25 mm/sec, with an average

velocity of 1.0460.52 mm/sec (n = 17 root hairs, 438 mitochon-

dria), representing approximately 57.6% of the average velocity

measured in control root hairs (Fig 4C). In contrast to the

distribution and movement of mitochondria after treatment with

CD, treatment with Jas resulted in mitochondria moving into the

tip of the growing root hairs. An interesting phenomenon induced

by Jas was that mitochondria moved at a range of velocities in the

0–30 mm region of the root hairs (Fig. 4E), with a maximal

instantaneous velocity of 8.05 mm/sec.

Myosin functions in mitochondrial movements
To test the dependency of mitochondrial movements on myosin

activity, Arabidopsis seedlings were treated with the myosin inhibitor

BDM. Different concentrations of BDM were tested to determine

the optimal concentration for maximum inhibition of myosin

while minimizing its potential side effects. When treated with

10 mM BDM for 10 minutes, no obvious change was detected in

the organization of actin filaments in growing root hairs (data not

shown). Mitochondria remained motile although their average

velocity in the 30–80 mm region of growing root hairs was reduced

to 1.2760.69 mm/sec (n = 13 root hairs, 588 mitochondria),

representing approximately 70% of the veolicty measured in the

control. As observed following treatment with Jas (see above,

Fig. 4E) mitochondrial movements in the 0–30 mm region were

highly variable ranging from 0.57 mm/sec to 4.58 mm/sec

(Fig. 4F).

When treated with the higher concentration of 30 mM BDM

for 10 minutes, fine actin filaments extended into the apex of

growing root hairs and became slightly thicker than in the control

(Fig. 4B). The average velocity of all mitochondria declined to

0.8360.19 mm/sec (n = 14 root hairs, 687 mitochondria), with

instantaneous velocities ranging from 2.82 to 0.19 mm/sec

throughout the whole root hair (Fig. 4D). Because an obvious

side effect of the treatment in actin filament remodeling was

observed (Figure S1) and the reduction in mitochondrial velocity

was moderate (Figure S2) when the concentration of BDM higher

than 40 mM was used, the 30 mM BDM was selected as the

reasonable concentration to minimize the side effects. Finally,

Arabidopsis seedlings were exposed to a combination of BDM and

Jas to determine whether the residual linear mitochondrial

movements seen after BDM treatment were driven by actin

turnover. The combination of BDM (30 mM) and Jas (100 nM)

led to complete cessation of mitochondrial movement and a

dispersal of mitochondria throughout the cytoplasm.

Effects of microtubule disruption on mitochondrial
movements

To determine whether microtubules play a role in the regulation

of mitochondrial movements, Arabidopsis seedlings were treated

with oryzalin and taxol. Exposure of Arabidopsis seedlings to 10 mM

oryzalin led to an almost complete depletion of actin filaments

from the interior cytoplasm of the subapical region of growing root

hairs (Fig 5A). Such root hairs displayed dispersed and curved

actin bundles in the cortical cytoplasm (Fig. 5B). Mitochondria

congregated in the cortical cytoplasm and their trajectories tended

to curve. The polar gradient of mitochondrial velocity along the

long axis of the root hair was no longer observed in both 0–30 mm

and 30–80 mm regions upon treatment with oryzalin. When

plotting velocity over time, it was apparent that mitochondria

remained capable of high instantaneous velocities, and the

maximum velocity was 6.1 mm/sec (Fig. 5D). Compared with

mitochondria in the control root hairs which moved with a similar

velocity (compare with Fig. 2C and 2D), oryzalin treatment caused

mitochondria to pause more frequently (0.38 pauses per second)

and for a longer time (0.79 seconds per pause) (Fig. 5D).

Unlike oryzalin, treatment with 5 mM taxol did not alter the

cytoarchitecture of growing root hairs and did not affect the

general distribution of the GFP-FABD2 actin reporter, however

fluorescence increased in the 0–30 mm region showing the

presence of thick actin bundles in the apex, and sharply decreased

in the basal region (over 80 mm from the apex) (Fig 5C). Statistical

analysis showed that the mitochondrial velocity gradient was no

longer detectable in the 0–30 mm and 30–80 mm regions and that

approximately 9.3% of the total mitochondrial population became

immobile. However, the majority of mitochondria moved faster

with fewer pauses: the average velocity was 3.961.91 mm/sec

(n = 11 root hairs, 671 mitochondria), with a maximum instanta-

neous velocity of 11.6 mm/sec, representing an increase of 16.6%

if compared with that found in the control (Fig. 5E).

Table 1. Overview of mitochondrial linear movements along the direction of growth in growing root hairs (n = 22 root hairs, 979
mitochondria).

Velocity of mitochondrial movement (mm/sec) 5–30 mm from apex 30–80 mm from apex Base of root hair

Mean6SD 0.6460.33 1.8061.08 3.4562.13

Maximum 2.63 5.97 9.96

Minimum 0.0054 0.021 0.41

doi:10.1371/journal.pone.0005961.t001
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Figure 3. Effects of cytochalasin D (CD) and latrunculin B (LatB) on actin filaments and mitochondrial movements. A. Fluorescence
micrograph showing actin filaments labeled with GFP-FABD2 in an untreated growing root hair of Arabidopsis. Note the fine actin filaments in the
subapical region. Scale bar = 10 mm. B. Fluorescence micrograph showing actin filaments labeled with GFP-FABD2 in a growing root hair treated with
5 mM CD. Note that fine actin filaments were completely eliminated in the apical and subapical region. Scale bar = 10 mm. C. Fluorescence micrograph
showing actin filaments in a growing root hair treated with 10 nM LatB. Note that thick actin filaments remained and the fine actin filaments
disappeared. Scale bar = 10 mm. D. Plot of the x-y velocity of a mitochondrion moving from base to the tip in the region outlined by the square in B.
Note the arrest of mitochondrial movement. E. Plot of x-y coordinates showing the same mitochondrion as in D wiggling or oscillating after the
cessation of linear movement. F. Plot of the x-y velocity of a mitochondrion moving in the region 30–80 mm from the tip of a growing root hair
treated with 10 nM LatB for 10 minutes. G. Plot of x-y coordinates showing the same mitochondrion as in F undergoing linear movement.
doi:10.1371/journal.pone.0005961.g003
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Simultaneous visualization of mitochondrial movements
and dynamics of the actin cytoskeleton

When mitochondria and actin filaments in the root hairs of

Arabidopsis seedlings were simultaneously visualized using Mito-

Tracker and GFP-FABD2 respectively, fluorescence microscopy

revealed that mitochondria were closely aligned with actin filaments.

Additionally, mitochondrial movements followed trajectories de-

fined by actin filaments (video S2). During observation, mitochon-

dria were mostly undergoing vectorial transport, a wiggling motion,

or they were immobile (video S1 and S2). Some mitochondria

observed in epidermal cells and/or in root hairs turned around the

filament axis along which they were moving (Fig. 6). Moreover, the

mitochondria moved quickly and continuously along the prominent

actin tracks, while slower movement with frequent pauses was

observed along the fine actin filaments. Most mitochondria moved

in a continuous manner in the base of the root hairs, whereas they

moved non-uniformly in the subapical and apical regions.

Further detailed analysis demonstrated that acropetal and

basipetal movement of mitochondria occurred on distinct actin

filaments, as opposed to the shuttling of mitochondria along the

same filament in both directions (video S2). Although these actin

filaments displayed frequent aggregation and disaggregation, the

direction of mitochondrial movement remained unchanged along

a given actin filament. In addition, mitochondria displayed

frequent detachment and reattachment to the same or different

actin filaments, accompanied occasionally by a shift in the

direction of mitochondrial movement. Our data suggest that fine

actin filament dynamics control mitochondrial movements: (1)

Figure 4. Effects of jasplakinolide (Jas) and 2, 3-butanedione 2-monoxime (BDM) on actin filaments and mitochondrial movements.
A. A growing root hair treated with 100 nM Jas for 10 minutes. Note thick actin bundles aggregated at the margins and actin filaments looping into
the apex. Scale bar = 10 mm. B. A growing root hair treated with 30 mM BDM for 10 minutes, showing fine actin filaments extending into the apex of
the root hair and emergence of slightly thicker actin filaments. Scale bar = 10 mm. C. Plot of the x-y velocity of a mitochondrion moving in the region
30–80 mm from the tip of a growing root hair treated with Jas. D. Plot of the x-y velocity of a mitochondrion moving in a growing root hair treated
with 30 mM BDM. E. Net rates and frequencies of mitochondrial movements in the region 0–40 mm from the tip of a growing root hair treated with
Jas (n = 8 root hairs, 242 mittochondria). F. Net rates and frequencies of mitochondrial movements in the region 0–30 mm from the tip of growing
root hairs treated with 10 mM BDM (n = 7 root hairs, 256 mitochondria).
doi:10.1371/journal.pone.0005961.g004
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when G-actin assembled into actin filaments adjacent to a

mitochondrion, this mitochondrion moved in a linear direction;

(2) when the actin filament remodeled quickly around a

mitochondrion, the mitochondrion was driven to wiggle; (3) when

the actin filament became detached from a mitochondrion, this

mitochondrion was immobile (Fig. 7 and video S3).

Discussion

Mitochondrial movements are complex and hypersensitive to

various stimuli, such as temperature [38,39], pH [40,41], and light

[15]. Sensitivity to such physical perturbations means that

exposure of live cells to high illumination over extended periods

of time, such as occurs during visualization under a standard
confocal microscope, is likely to have adverse effects on

mitochondrial movements. EWM minimizes photobleaching and

phototoxic reactions due to reduced light scattering of evanescent

wave excitation as compared to epi-excitation in a conventional

confocal laser-scanning microscope [34,42,43]. EWM, therefore,

causes less damage over long imaging intervals and/or during

relatively long capture times. Furthermore, the increased time

resolution afforded by EWM can reveal the true dynamism of

Figure 5. Effects of microtubule-active drugs on actin filaments and mitochondrial movements. A. A single optical section of interior
cytoplasm of the root hair of B. Note that no actin filaments are visible in the interior cytoplasm. Scale bar = 10 mm. B. A growing root hair treated
with 10 mM oryzalin displaying dispersed and curved actin bundles around the cortical cytoplasm and in the base of the hair. Scale bar = 10 mm. C. A
growing root hair treated with 5 mM taxol showing an increase in fluorescence in the subapical and apical regions and an aggregation of thick actin
bundles in the very tip of the hair, concomitant with a decrease in the basal shank. Scale bar = 10 mm. D. Plot of the x-y velocity of a mitochondrion
moving in the region 0–80 mm from the tip of a growing root hair treated with 10 mM oryzalin. E. Plot of the x-y velocity of a mitochondrion moving
in the region 0–80 mm from the tip of a growing root hair treated with 5 mM taxol.
doi:10.1371/journal.pone.0005961.g005
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organelle movements [44], which is particularly important for

imaging mitochondrial movement in the cortical cytoplasm

adjacent to the plasma membrane. SDCM, on the other hand,

allows imaging deeper within specimens and with much greater

temporal resolution. By combining these two imaging techniques

we have been able to characterize mitochondria as they undergo

linear movements, wiggling motion, or when immobile.

de Win et al. found that the behavior of organelles depended on

their position within tobacco pollen tubes [45], although the

identity of the organelles was mostly unknown. However, this

phenomenon was not reported in studies of mitochondria in

tobacco culture cells or protoplasts [17,18]. In this study, detailed

analyses of mitochondrial velocities in root hairs have demon-

strated that mitochondrial movement is relatively slow in the tip

but becomes gradually more rapid and vectorial with increasing

distance from the tip in growing root hairs. Interestingly, in fully-

grown root hairs this tip-to-base differential in mitochondrial

velocity disappeared. It is apparent, therefore, that mitochondrial

movement is under some form of spatio-temporal control. Given

the corresponding actin cytoskeleton arrangement, we propose

that the status of the actin cytoskeleton plays an important role in

mitochondrial movement.

Myosin is a molecular motor that slides along actin filaments

using energy released from the hydrolysis of ATP. In Arabidopsis,

some of the class XI myosins were found in association with

mitochondria, suggesting their involvement in their movement

[46–48]. It has been reported that mitochondrial velocity

exhibited a more than 3-fold lower velocity in an Arabidopsis

myosin XI knock-out mutant than that in the wild type [48,49].

BDM has been shown to act as an inhibitor of plant myosin,

Figure 6. Movement of two mitochondria along an actin filament cable. In images A–G a mitochondrion (white arrow) is turning around the
axis of the filament while moving downwards. When the second mitochondrion (yellow arrow) appears, it contacts the first (picture I). In contrast to
the first turn of the single mitochondrion, there is no downward movement of the touching mitochondria while they are turning around the axis of
the actin bundle. Mitochondria are labeled with MitoTracker (red), actin is visualized using GFP-FABD2 (green). The single pictures represent a single
frame of a ‘‘flat merged’’ projection (each comprised of 14 images in z-axis) of a 4–D time series. The 5 mm scale bar in N applies for all images in this
figure.
doi:10.1371/journal.pone.0005961.g006
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Figure 7. Regulation of mitochondrial movements by actin filament dynamics. A. An x-y plot of mitochondrial movement (yellow
arrowhead in images a-w). B. Fluorescence micrographs showing dynamic remodeling of fine actin filaments (white arrowhead) and concomitant
changes in mitochondrial movement. When the actin filament was in close proximity to the mitochondrion (yellow arrowhead), the mitochondrion
was subject to linear movement (a–c and u–w). When the actin filament underwent rapid remodelling (d–k and n, p, q), the mitochondrion ceased
liner movement and underwent a wiggling motion. When the actin filament detached from the mitochondrion (i, m, o and r–t), the mitochondrion
became immobile. Mitochondria were labeled with MitoTracker (red), actin was visualized using GFP-FABD2 (green). The single images in B represent
a single frame of a ‘‘flat merged’’ projection (each comprised of 14 images in z-axis) of a 4-D time series. The 1 mm scale bar in w applies for images a-
w in this figure.
doi:10.1371/journal.pone.0005961.g007
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although it can have a side effect on the organization of actin

filament bundles at high concentrations [50,51]. In our study, we

found that mitochondrial movements were inhibited by BDM in a

dose-dependent manner. 10 mM BDM caused a 30% decline in

mitochondrial velocity and no visible changes in the actin

cytoskeleton, whereas 30 mM BDM induced a 65% decline in

mitochondrial velocity and slightly thicker actin filaments. That

mitochondrial velocity was similarly reduced in the myosin XI

knock-out [48,49] as by the treatment with BDM in this study

suggests that myosin is not the only factor driving mitochondrial

movement in root hairs. Furthermore, it was found that

mitochondrial linear movement could not be completely inhibited

by Jas, but could by a combined treatment with both 30 mM

BDM and Jas. Based on these results, we conclude that myosin

and actin filament dynamics cooperate in driving mitochondrial

movement in root hairs.

Actin cables are composed of bundles of short actin filaments [52]

and these short actin filaments undergo continuous turnover in yeast

[20]. Qualitatively similar actin dynamics were also reported in

plant cells, where single actin filaments were more dynamic than

actin filament bundles or cables [21]. Mitochondria can use

cytoskeleton-based mechanisms for movement that are distinct from

the well-established mechanism for force generation by myosin

along cytoskeletal tracks in yeast [19,53]. For example, actin

polymerization itself can generate the force for mitochondrial

movement along a cytoskeletal track [54]. Furthermore, mitochon-

dria can also bind to actin cables undergoing retrograde flow and

use the forces of retrograde actin cable flow for passive transport

toward the tip of the yeast mother cell [27]. In present study, we

found that a large number of single actin filaments displayed

dynamic behavior in fast-growing Arabidopsis root hairs. Our results

clearly show that actin filament elongation does not drive

mitochondrial movements, because treatment with CD (CD binds

to the barbed end and inhibits filament elongation directly) did not

affect mitochondrial velocity until the mitochondria stopped

abruptly, or started wiggling in the apical region where fine actin

filaments are not detected. When the G-actin pool was sequestered

by treatment with LatB, mitochondria lost their velocities although

the thick actin filaments remained, suggesting an available G-actin

pool is essential for mitochondrial movements. In addition, Jas

treatment induced a 42.4% reduction in mitochondrial average

velocity in the cortical cytoplasm. Given the effects of Jas on actin

turnover [29,36,37], these results lead us to conclude that

mitochondrial movement can be driven by actin turnover. Based

on the findings that actin filaments can slide along other filaments in

Arabidopsis [21] and that active actin filament flow also occurs in

growing lily pollen tubes [22], the most probable explanation for our

observations is that mitochondrial movements can be powered by

the force of actin flow driven by actin turnover. Moreover, the actin

cytoskeleton has been implicated to play key roles in the positioning

of mitochondria in plant cells [55]. In animal cells, it was reported

that mitochondrial distribution was regulated by RhoA and formins,

which function in actin filament organization [56]. In our study it

was found, at various developmental stages, that mitochondrial

aggregation was correlated with the site where fine actin filaments

were arranged. When fine actin filaments disappeared upon

treatment of CD and Jas, mitochondria underwent a wiggling

motion, or movement was arrested. In addition, simultaneous

visualization of mitochondria and the actin cytoskeleton revealed

that the transition from vectorial movement of mitochondria to

relative immobility is coincident with the disappearance of

mitochondrial-associated fine actin filaments. Together, our results

suggest that actin filament depolymerization was required for the

arrest of mitochondrial movement.

In yeast microtubules are involved in directing the proper

placement of actin polymerization through transporting the

formin regulators tea1p and tea4p via association with tea2p

(kinesin) and tip1p (CLIP-170) [57]. The Arabidopsis genome

contains homologs of these yeast proteins [58], suggesting

conservation of the role of microtubules in controlling actin

filament dynamics. Oryzalin is a dinitroaniline herbicide that

binds rapidly and reversibly to cytoplasmic tubulin heterodimers,

and thereby prevents further growth of microtubules, leading to

microtubule depolymerization, starting with the most dynamic

microtubules [59,60], whereas taxol is a drug that stabilize tubulin

against depolymerization, thereby inducing the stabilization of

microtubules [61,62]. We found that treatment with oryzalin

caused the dispersal and curving of fine actin filaments, whereas

treatment with taxol induced actin filament assembly in the apex

region, confirming a role for microtubules in the positioning and/

or organization of actin filaments. Concomitant with these

alterations in actin filament organization, our measurements show

that mitochondria moved at more variable instantaneous velocities

and with a curved trajectory with more frequent pauses when

treated with oryzalin. In contrast, mitochondria moved faster with

fewer pauses when treated with taxol. These results show that

microtubules play roles in the regulation of mitochondrial velocity

and trajectory, rather than simply their position in the cytoplasm

as suggested by experiments using cultured cells of tobacco [17].

Given the link between microtubule plus-ends and formin [57,58],

and the link between actin filament organization and formin [63],

we speculate that alterations in microtubule dynamics lead directly

to a redistribution of formin proteins, which in turn regulates

mitochondrial velocity and positioning via variations in actin

filament dynamics.

In summary, using a dual labeling technique, together with

EWM and SDCM, we have collected data that enable three novel

conclusions to be made: (1) myosin and actin turnover cooperate

in driving mitochondrial linear movements; (2) the transition of

mitochondria from immobility to movement involves de novo actin

polymerization and depolymerization; (3) microtubule dynamics

has profound effects on mitochondrial velocity, trajectory and

positioning via its role in directing the arrangement of actin

filaments. Taken together, our data can be combined to generate a

testable model that expands our insights into the molecular control

of mitochondrial movement in plant cells.

Materials and Methods

Plasmid constructs
Generation of stably transformed Arabidopsis plants expressing

GFP-FABD2 is described in Voigt et al. [33] and mitochondria-

targeted GFP (mito-GFP) in Logan and Leaver [35]. T3 and T4

generation plants were used in this study.

Plant culture
According to Valvekens et al. [64], seeds were surface sterilized

for 2 min in 70% EtOH, transferred to 5% (w/v) NaClO for 15 min

then washed five times with sterilized distilled water. Subsequently, a

thin layer of solid medium containing one-half strength Murashige

and Skoog salts with 0.7% plant agar (Duchefa, Haarlem, the

Netherlands), covered by a 30624 mm piece of biofoil (Vivascience

via Merck, Poole, UK) was placed on a coverslip (50624 mm). The

solid medium that was not covered by biofoil was removed by

making a straight cut with a sharp knife. Seeds were placed against

the cut agar surface and allowed to germinate into the solid medium.

The slides with seedlings were placed with the seeds towards the

upper side on 1 mL pipette tips contained within 70 mm Petri

Plant Mitochondrial Motion

PLoS ONE | www.plosone.org 11 June 2009 | Volume 4 | Issue 6 | e5961



dishes, and sealed with parafilm. Plants were cultured at 22uC in a

long daylight regime (16 h light, 8 h dark) for 4 days.

Dye loading
Mitochondria were stained with 200 nM MitoTracker Red

CMXRos (Molecular Probes, Eugene, OR, USA) by direct

addition of diluted solutions to the culture medium. After 5

minutes incubation with MitoTracker Red, the medium contain-

ing the dye was washed three times with fresh liquid medium

containing one-half strength Murashige and Skoog salts

Inhibitor treatments
All chemicals were purchased from Sigma (St Louis, MO, USA)

unless otherwise indicated. Stock concentrations of 1 mM taxol,

10 mM LatB and 100 mM Jas (Molecular Probes, Eugene, OR,

USA) were made up in DMSO, BDM was prepared fresh for each

experiment as 500 mM stock solution in distilled H2O. Oryzalin

and CD were prepared as 20 mM and 2 mM stocks respectively in

100% ethanol. Appropriate amounts of stock solutions were added

to the samples, after labeling with MitoTracker at 25uC. To

reduce the possibility of nonspecific effects of the drug treatments,

inhibitors were used at low concentrations and applied for a short

period of time (5–10 min).

Spinning disc confocal microscopy (SDCM)
Simultaneous visualization of mitochondria and actin filaments

was performed on a spinning-disk confocal microscopy system

consisting of a CSU10 spinning disk unit (Yokogawa Electric

corporation) and an iXon EMCCD camera device (Andor, Belfast,

Northern Ireland), mounted on a IX71 inverted microscope

(Olympus, Japan). GFP-FABD2 and MitoTracker Red CMXRos

were excited using the 488 and 559 nm lines of an argon ion laser.

The objective was a 406, 1.30 NA Olympus UPLFLN oil

immersion lens. Image acquisition was conducted at a lateral

resolution of 5126512 pixels and a scan rate of 2 ms/pixel using

Andor iQ (Andor, Belfast, Northern Ireland) acquisition software.

The exposure was set to minimize oversaturated pixels in the final

images. Fluorescence emission with wavelengths of 500–545 nm

and 570–670 nm were collected simultaneously through two

channels. The collected images were processed using Adobe

Photoshop 7.0 (Adobe Systems) and Image J 1.34e (Wayne

Rasband, National Institutes of Health, Bethesda, MD, USA).

Evanescent wave microscopy (EWM)
Variable-angle total internal reflection fluorescence microscopy,

also known as EWM as described in a previous paper [34], was

used to image mitochondrial movement in Arabidopsis root hairs,

particularly in the cortical cytoplasm [44]. MitoTracker-labeled

mitochondria in root hairs were visualized with an excitation

wavelength of 514 nm and an emission wavelength of 575 nm.

Fluorescence was gathered through a 1006 Apo OHR objective

(NA 1.65; Olympus Corp.) at the optimal angle of the incident

light. Time-lapse images were acquired every 50 and 200 ms and

sampled through a frame grabber with genuine 16 Bit (216, 65536

gray levels). The images were analyzed with Image-Pro Plus 5.1

(Media Cybernetics, Inc., San Diego, CA, USA), Adobe Photo-

shop 7.0 (Adobe Systems), and Image J 1.34e. The pixel size was

74 nm with a 1.66optical zoom, and the image size was typically

3266484 pixels. The fluorescence intensity was expressed in the 8-

bit value of digitization as previously described [65,66].

The image stacks were subsequently subjected to analysis using

Image J software, which can track the movement of individual

mitochondria by ascribing an exact location to the organelle [(x1,

y1), (x2, y2), (x3, y3)…(xn, yn)]. Therefore, the distance (Dn) of an

individual mitochondrial movement during the time of interval

(Tn) can be estimated by the formula below:

Dn~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xn{x n{1ð Þ
� �2

z yn{y n{1ð Þ
� �2q

This allows the instantaneous velocity (Vn) to be determined by:

Vn = Dn/Tn

Supporting Information

Figure S1 Dose-dependent effects of BDM on actin filaments

organization in growing root hairs visualized using GFP-FABD2.

The single pictures represent a stack of all optical sections through

these cells visualized under spinning disc confocal microscopy.

A.An untreated growing root hair in standard medium. Scale

bar = 10 mm. B and C. Growing root hairs treated with 10 and

20 mM BDM for 10 minutes, respectively, showing little change in

actin filament organization in comparison with that in untreated

growing root hairs. Scale bar = 10 mm. D. A growing root hair

treated with 30 mM BDM for 10 minutes. Note slight change in

actin filament organization. Scale bar = 10 mm. E, F and G.

Growing root hairs treated with 40, 50 and 70 mM BDM for 10

minutes, respectively. Note severe change in actin filament

organization. Scale bar = 10 mm.

Found at: doi:10.1371/journal.pone.0005961.s001 (10.69 MB

TIF)

Figure S2 The effect of BDM treatments on mitochondrial

movements in root hairs. The BDM concentrations were set at 0,

10, 20, 30, 40, 50 and 70 mM; The results are from four replicates

consisting of approximately 250 mitochondria each.

Found at: doi:10.1371/journal.pone.0005961.s002 (2.14 MB TIF)

Video S1 Video sequence showing active mitochondrial move-

ments in an untreated Arabidopsis root hair. Images were

collected at 200 millisecond intervals using variable-angle

evanescent wave microscope and played back at 10 frames per

second (fps). Total elapsed time is 19.2 s.

Found at: doi:10.1371/journal.pone.0005961.s003 (7.41 MB AVI)

Video S2 Video sequence showing mitochondrial movements

along dynamic actin filaments in an untreated Arabidopsis root

hair. Images were collected at 1317 millisecond intervals using

spinning disc confocal microscope and played back at 10 fps.

Total elapsed time is 52.68 s.

Found at: doi:10.1371/journal.pone.0005961.s004 (9.80 MB AVI)

Video S3 Video sequence showing mitochondrial movements

controlled by actin filament dynamics. Images were collected at

3.5 second intervals using the spinning disc confocal microscope

and played back at 5 fps. Total elapsed time is 112 s.

Found at: doi:10.1371/journal.pone.0005961.s005 (8.00 MB AVI)
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