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Abstract

Recent studies have shown that multivariate pattern analysis (MVPA) can be useful for distinguishing brain disorders into
categories. Such analyses can substantially enrich and facilitate clinical diagnoses. Using MPVA methods, whole brain
functional networks, especially those derived using different frequency windows, can be applied to detect brain states. We
constructed whole brain functional networks for groups of vascular dementia (VaD) patients and controls using resting state
BOLD-fMRI (rsfMRI) data from three frequency bands - slow-5 (0.01,0.027 Hz), slow-4 (0.027,0.073 Hz), and whole-band
(0.01,0.073 Hz). Then we used the support vector machine (SVM), a type of MVPA classifier, to determine the patterns of
functional connectivity. Our results showed that the brain functional networks derived from rsfMRI data (19 VaD patients
and 20 controls) in these three frequency bands appear to reflect neurobiological changes in VaD patients. Such differences
could be used to differentiate the brain states of VaD patients from those of healthy individuals. We also found that the
functional connectivity patterns of the human brain in the three frequency bands differed, as did their ability to differentiate
brain states. Specifically, the ability of the functional connectivity pattern to differentiate VaD brains from healthy ones was
more efficient in the slow-5 (0.01,0.027 Hz) band than in the other two frequency bands. Our findings suggest that the
MVPA approach could be used to detect abnormalities in the functional connectivity of VaD patients in distinct frequency
bands. Identifying such abnormalities may contribute to our understanding of the pathogenesis of VaD.
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Introduction

Vascular dementia (VaD), also called multi-infarct dementia,

occurs when cells in the brain are deprived of oxygen. A network

of blood vessels (the vascular system) supplies the brain with

oxygen. If a blockage occurs in the vascular system, or if the system

is diseased, blood may be prevented from reaching the brain. As

a result, cells in the brain die, leading to symptoms of dementia

[1,2]. VaD is one of the most common types of dementia, ranking

second only to Alzheimer’s disease (AD) [3]. It is characterized by

a sudden onset followed by a progressive decline in language,

memory, and other cognitive functions. Early studies suggested

that VaD is associated with a specific neuropsychological

dysfunction modality that can be compared to AD [4] and other

dementias [5]. The high occurrence of VaD among older adults

has aroused widespread concern [3]. Although the diagnostic

criteria of VaD have been continuously refined [6], more reliable,

applicable diagnostic modalities continue to be urgently needed for

clinical practice and research purposes.

Resting-state functional connectivity (rsFC) refers to the

synchronization of neurophysiological events in spatially remote

regions of the human brain in a resting state [7]. RsFC has been

widely used to study various brain disorders, such as Alzheimer’s

disease (AD) [8,9], attention deficit/hyperactivity disorder

(ADHD) [10], depression [11], and schizophrenia [12]. Most of

these studies used a frequency band from 0.01–0.1 Hz to explore

the neuronal correlates of fluctuations in fMRI signals [13].

Previous studies showed that oscillations in frequency reflect

synchronized discharges by large numbers of neurons and

correspond to various properties and physiological functions of

the brain [14]. Buzsáki and Draguhn [14] pointed out that brain

neural oscillations cover a wide range of frequencies (0.05 Hz to

500 Hz), including slow-5 (0.01,0.27 Hz), slow-4

(0.027,0.073 Hz), slow-3 (0.073,0.198 Hz), slow-2

(0.198,0.25 Hz). The architecture of functional cortical networks

in the brain appears to be related to systematic neural oscillations

which occur in several oscillatory bands. To distinguish the

contributions of different frequency bands to regional properties of

the brain state, Zuo et al. [15] and Han et al. [16] studied the

distinct spatial profiles of the amplitude of spontaneous low-

frequency oscillations (ALFF) in two frequency bands, the slow-5

and slow-4, and found that widespread alternations in the ALFF

occurred in many brain regions and that these alterations varied
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widely between these two frequency bands. Several other studies

[17–21] also investigated the effects of different frequency bands

on the global properties of whole brain functional networks and

brain states.

Multivariate pattern analysis (MVPA) is greatly useful for

exploiting the determinative relationship between neuroimaging

data patterns and categories of brain states [22–26]. This method

has often been applied in ‘‘brain reading’’ research to decode

specific mental states or representational information from fMRI

activity patterns [27–29]. In such situations, MVPA tools have

often been considered to be classifiers, or more generally, learning

machines. MVPA enables researchers to characterize differences

in brain disorders as well as to identify levels of disorder in

individual brains [30,31]. In light of these past uses, we

hypothesized that rsFC patterns could be used to discriminate

VaD brains from healthy brains using a MVPA method and that

the abnormal functional connectivity of the rsFC patterns in VaD

brains would be frequency dependent.

Our goal was to detect the frequency-specific rsFC patterns of

VaD brains in order to be able to distinguish VaD brains from

healthy controls. To realize this, we constructed frequency-specific

brain functional networks for both the VaD patients and the

controls using three different frequency bands (slow-5, slow-4, and

whole-band). We then used the support vector machine (SVM),

a type of MVPA classifier, on network-based rsFC measures in

order to discriminate the VaD brain state from the healthy brain

state. In addition, we compared the rsFC patterns corresponding

to the three frequency bands to determine the differences between

them with respect to their ability to discriminate the brain state of

VaD patients from that of the controls.

Materials and Methods

Subjects
Twenty-two VaD patients (12 M/10 F) were recruited from the

Department of Radiology, Guangzhou University of Traditional

Chinese Medicine for this study. Table 1 lists their demographic

characteristics and their primary neuropsychological information.

Before the experiment, all patients had received a routine

dementia investigation, including standardized clinical examina-

tions and a conventional magnetic resonance imaging (MRI) scan.

In the hours before and during the MRI scanning, the patients

were not treated with any medication, in order to avoid the effect

of the medications on patients. All the VaD patients were

diagnosed by experienced neurologists according to the dementia

criterion of DSM-IV and showed symptoms of lacunar infarcts,

small white matter hyperintensities and slight brain atrophy. To

avoid the impact of brain atrophy on the functional connectivity

result, patients with obvious atrophy were excluded from this

study. The patients were excluded as well if they met any of the

following clinical characteristics: (a) classical characteristics of AD,

(b) other Axis I psychiatric diagnoses, (c) serious neurologic or

endocrine disorders, (d) any medical condition or treatment known

to affect the brain, (e) alcohol/substance misuse related disorders,

or (f) mental retardation as defined by DSM-IV criteria.

Additionally, the rsfMRI data of three VaD patients (2 M/1 F)

were excluded from further analysis due to excessive head motion

(translation ,2 mm or rotation ,2u).
To make a between-group comparison, we also recruited from

the local community a control group that was comprised of twenty

healthy participants who were age- and gender-matched to the

VaD group. All subjects (both the VaD patients and the controls)

were right-handed and finished a standardized clinical evaluation

protocol, including the mini-mental state exam (MMSE) and the

Montreal Cognitive Assessment (MoCA), the results of which are

also listed in Table 1. We found significant differences in the

clinical evaluation scores of the MMSE and MoCA, but no

significant differences in age, gender, and years of education

between the two subject groups. This study was approved by the

Institutional Review Board of Guangzhou University of Tradi-

tional Chinese Medicine. Written informed consent was obtained

from each participant or a family member (legal guardian) prior to

the experiment.

Data Acquisition
All participants were scanned on a 1.5T Siemens Avanto MR

scanner with a 12-channel phased-array head coil. During the data

acquisition, each participant was asked to lie quietly in the MR

scanner with their eyes closed, but to stay awake and try not to think

about anything. The rsfMRI data were acquired using a gradient-

echo echo-planar imaging (GE-EPI) sequence. The sequence

parameters were as follows: repetition time (TR) = 2000 ms, echo

time (TE) = 39 ms, ip angle = 90u, FOV=240 mm6240 mm, data

matrix = 64664, slice thickness = 4 mm, interslice gap= 1 mm, 30

slices along the AC-PC line covering the whole brain, and 180

volumes.Wealsoacquiredhighresolution3Dbrainstructural images

using a T1-weighted MP-RAGE sequence (TR=1160 ms,

TE=4.21 ms, TI = 900 ms, flip angle = 15u,
FOV=256 mm6256 mm, matrix = 256 mm6256 mm, slice

thickness = 1 mm, and 192 sagittal slices).

Data Preprocessing
Data preprocessing was performed using SPM8 (http://

www.fil.ion.ucl.ac.uk/spm/) and DPARSF (http://www.restfmri.

net/forum/DPARSF). For each participant, the first 10 volumes

of rsfMRI data were discarded to reduce the effects of signal

equilibrium and the participant’s adaptation to the scanning noise.

The remaining rsfMRI data were corrected for the intra-volume

acquisition time delay between slices and then normalized into the

Montreal Neurological Institute (MNI) space by applying the EPI

template at a 36363 mm3 resolution. We removed linear trends

in the process of preprocessing. Also, we regressed out the

covariates of head motion (About head motion information, see

Table S1) and signals from the whole brain and CSF as well as

those from the white matter. No spatial smoothing was performed

on the rsfMRI datasets during preprocessing because spatial

averaging might blur out fine-grained spatial patterns [32]. Similar

to previous studies [15,16], we obtained the waveform for each

Table 1. Demographic characteristics and primary
neuropsychological information of the subjects in the present
study.

VaD Controls p-value

Gender (M/F) 10/9 10/10 0.87

Age (years) 55,81 (69.768.8) 57,75 (65.465.0) 0.06

Education
(years)

0,13 (6.164.0) 0,12 (6.563.7) 0.72

MMSE 13,24 (18.963.2) 22,30 (27.262.0) 1.94E211

MoCA 6,20 (12.364.6) 24,30 (26.961.6) 1.22E212

Data are presented as the range from min–max (mean 6 SD). The p-value was
calculated by using a two samples two-tail t-test. VaD, vascular dementia;
MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive Assessment
(Beijing version).
doi:10.1371/journal.pone.0054512.t001

VaD Prediction from Brain Functional Networks
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voxel to reduce low-frequency drift and high-frequency physio-

logical noise in three different frequency bands, 0.01,0.27 Hz

(slow-5), 0.027,0.073 Hz (slow-4), and 0.01,0.073 Hz (whole-

band).

Construction of Brain Functional Networks
The brain was parcellated into 90 cortical regions of interest

(ROIs) according to the Automated Anatomical Labeling (AAL)

template [33]. Table 2 lists the name and the abbreviations of the

brain regions used in this study.

For each of the three frequency bands (slow-5, slow-4, and

whole-band), we first obtained a time series for each ROI by

averaging the time courses of all the voxels in each of the

participant’s ROIs and then calculated the Pearson’s correlation

coefficient between any pair of ROIs. In this way, a 90690

functional connectivity matrix was determined for each subject.

This matrix included both negative and positive correlation values

[34]. Within a given frequency band for each participant, a brain

functional connectivity matrix was constructed using each cortical

ROI as a node and the Pearson’s correlation coefficient between

any pair of nodes as the weight of the edge.

Fig. 1 shows the procedure for constructing the sample dataset.

Within a given frequency band (e.g., the slow-5), we extracted N

(N-1)/2= 4005 independent elements from each individual brain

functional connectivity matrix and arranged them into a row

vector (1 x 4005). N= 90 was the number of ROIs used to

construct the brain functional networks. By assembling the row

vectors from all 39 subjects, we obtained a 3964005 matrix, which

was used as the sample dataset in this study. In this way, we built

three sample datasets to correspond to the three frequency bands -

slow-5, slow-4, and whole-band. In each sample dataset, we added

a label of 1 or -1 to every row of the sample dataset to indicate

whether it corresponded to a VaD patient or to a healthy subject,

respectively. The sample dataset, that is, the 3964005 matrix, was

normalized using a r-to-z transform (the Fisher z transform) [35]

zij~0:5ln
1zrij

1{rij

� �
,

where rij represents one measurement of inter-regional functional

connectivity, i.e., a single element of the sample dataset. The

normalized sample dataset was used for the remaining calculations

except where stated otherwise.

Pattern Classification
Previous studies have indicated that SVM methods are reliable

and less sensitive to noise than other methods when used to

separate brain states into groups [36]. In this study, we used the

LIBSVM classifier (http://www.csie.ntu.edu.tw/wcjlin/libsvm) to

separate the brains of VaD patients from those of the healthy

controls.

Fig. 2 shows the three steps of the rsFC pattern classification in

the slow-5 frequency band. Step-1: Feature selection. We took

each inter-regional functional connection as a feature. For the

sample dataset, the 3964005 matrix, we thus have 4005 features.

This step involved selecting the features which had appropriate

information for performing the rsFC classification [29,35]. We first

applied a recursive feature elimination (RFE) method [37] to

weight the features and arrange them in rank order according to

their weight, that is to their contribution to the pattern

classification. Then we extracted the subsets of the sample dataset

that related to the slow-5, also arranging them according to the

feature ranking and obtained 4005 subsets of the sample dataset.

Table 2. List of brain regions extracted from the Automated
Anatomical Labeling (AAL) template (Tzourio-Mazoyer et al.,
2002) and their abbreviations as used in this study.

Index Regions Abbreviation

(1,2) Precental gyrus PreCG

(3,4) Superior frontal gyrus, dorsolateral SFGdor

(5,6) Superior frontal gyrus, orbital part ORBsup

(7,8) Middle frontal gyrus MFG

(9,10) Middle frontal gyrus, orbital part ORBmid

(11,12) Inferior frontal gyrus, opercular part IFGoperc

(13,14) Inferior frontal gyrus, triangular part IFGtriang

(15,16) Inferior frontal gyrus, orbital part ORBinf

(17,18) Rolandic operculum ROL

(19,20) Supplementary motor area SMA

(21,22) Olfactory cortex OLF

(23,24) Superior frontal gyrus, medial SFGmed

(25,26) Superior frontal gyrus, medial orbital ORBsupmed

(27,28) Gyrus rectus REC

(29,30) Insula INS

(31,32) Anterior cingulate and paracingulate gyri ACG

(33,34) Median cingulate and paracingulate gyri MCG

(35,36) Posterior cingulate gyrus PCG

(37,38) Hippocampus HIP

(39,40) Parahippocampal gyrus PHG

(41,42) Amygdala AMYG

(43,44) Calcarine fissure and surrounding cortex CAL

(45,46) Cuneus CUN

(47,48) Lingual gyrus LING

(49,50) Superior occipital gyrus SOG

(51,52) Middle occipital gyrus MOG

(53,54) Inferior occipital gyrus IOG

(55,56) Fusiform gyrus FFG

(57,58) Postcentral gyrus PoCG

(59,60) Superior parietal gyrus SPG

(61,62) Inferior parietal, but supramarginal and angular gyri IPL

(63,64) Supramarginal gyrus SMG

(65,66) Angular gyrus ANG

(67,68) Precuneus PCUN

(69,70) Paracentral lobule PCL

(71,72) Caudate nucleus CAU

(73,74) Lenticular nucleus putamen PUT

(75,76) Lenticular nucleus, pallidum PAL

(77,78) Thalamus THA

(79,80) Heschl gyrus HES

(81,82) Superior temporal gyrus STG

(83,84) Temporal pole: superior temporal gyrus TPOsup

(85,86) Middle temporal gyrus MTG

(87,88) Temporal pole: middle temporal gyrus TPOmid

(89,90) Inferior temporal gyrus ITG

The same 45 brain regions were extracted from the right and left hemispheres
to provide 90 regional time series in total for each subject.
doi:10.1371/journal.pone.0054512.t002
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The number of subsets of the sample dataset is equal to the

number of features. In detail, the first subset was a 3961 matrix

corresponding to the first feature; the second subset was a 3962

matrix which corresponded to ranking of the first two features in

declining order, and so on. The 4005th subset was a 3964005

matrix that contained all of features, which is the sample dataset

itself, only arranged in declining order by weight. Note that all of

the subsets had the same number of rows, i.e. the number of total

subjects, but the number of columns was equal to the number of

features.

Step-2: Pattern classification. We evaluated the performance of

the SVM classifier using each of the subsets to validate the

classifier performance. The default parameters of the LIBSVM

classifier were adopted in the calculations. For each subset of the

data sample, the leave-one-subject-out-cross-validation (LOOCV)

method [35,38] was applied to evaluate the performance of the

classifier. Given K subjects (in this study, K=39), we split the subset

of the data sample into K-folds, each subject corresponding to

a fold. We used K-1 folds to train the classifier and the remaining

one to test the classifier. The LOOCV procedure iterated until

each fold was left out one time. In total, the LOOCV process was

iterated K= 39 times and each of iterations produced a corre-

sponding determination accuracy. In the end, we estimated the

determination accuracy rate by averaging all of the accuracies

achieved from every fold of the determination.

Step-3: Information comparison of the pattern classification. In

order to select the subset of the sample dataset with the maximum

discriminative information, we compared the determination

accuracy rates that corresponded to each subset of the sample

dataset. The subset that obtained the highest accuracy rate was

identified and used for further analysis.

We used the same calculation procedure for the other two

frequency bands, the slow-4 and whole-band. In the end, we

obtained three selected subsets from the sample dataset based on

the classification convergence, each subset corresponding to one

frequency band.

Results

Fig. 3 shows the tendency for the determination accuracy rates

to change with the number of selected features before converging.

We found that the determination accuracy rates showed a consis-

tent change with an increase in feature number. The accuracy

rates increased initially and then reached convergence, that is,

leveled off, for any given frequency band. Determination accuracy

rates in all three frequency bands reached convergence with 100%

accuracy. The speeds of convergence, that is, the number of

iterations needed to obtain convergence, in the three frequency

bands differed, with the slow-5 band showing the fastest

convergence speed.

In order to examine whether the high determination accuracy

rates resulted from overfitting the classifier, we re-validated the

SVM classifier with the selected subset data under the condition

that everything was kept in correspondence with the above

analysis, but the subject labels (1 and21) were randomized. When

we did this, we obtained accuracy rates of 56.4%, 38.46%, and

58.9% corresponding to the slow-5, slow-4, and whole-band,

respectively. This indicates that the determination accuracy rates

when the labels were randomized were approximately random,

indicating that the 100% accuracy in the classification result

shown in Fig. 3 indeed reflects actual group differences in the rsFC

patterns between the VaD patients and the controls.

Figure 1. The preprocessing procedure used in the construction of the sample dataset based on resting state fMRI (rsfMRI) data in
three frequency bands. The rsfMRI data were normalized to the MNI standard space using the EPI template and filtered using 0.01,0.027 Hz
(slow-5), 0.027,0.073 Hz (slow-4), and 0.01,0.073 Hz (whole-band) frequencies. Brain regions were defined according to the AAL atlas, and the time
series was extracted for each region. The whole brain functional network was constructed for each frequency band by taking each cortical region as
a node and the inter-regional Pearson’s correlation coefficient as the edge for each subject. All the independent elements of the individual functional
connectivity matrix (90690) were arranged into a 1-by-4005 row vector. We assembled all the row vectors for all 39 subjects into a 39-by-4005 matrix
and normalized the data using their z-scores. The normalized matrix and the subject labels (patients were labeled by 1s and healthy subjects as -1s)
constituted the sample dataset for further SVM analysis. In total, we obtained three sample datasets corresponding to the three different frequency
bands.
doi:10.1371/journal.pone.0054512.g001
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Fig. 4 shows the selected features for the VaD group and for the

control group in the rsFC pattern classification at the point where

the accuracy rates reached convergence for the slow-5, slow-4 and

whole-band frequency bands. The slow-5 band reached conver-

gence with the fewest number of features, nine, whereas the slow-4

reached convergence with the greatest number of features,

fourteen. Table 3 shows that fifteen, twenty-two, and nineteen

brain regions were involved in the features that were selected for

pattern classification in the slow-5, slow-4, and whole-band

frequency bands, respectively. These brain regions are widely

distributed in the frontal cortex, temporal lobe, parietal lobe,

visual cortex, and subcortical regions. Three brain regions, the

CAL.L, IPL.L, and LING.L, appeared among the selected

features for all three frequency bands.

Table 4 shows statistical comparisons between the VaD patient

group and the control group for each feature selected in the rsFC

pattern classifications. In the pattern classification the selected

features are listed in the order of their feature weight from high to

low. Both the feature weight in the pattern classification and the

number of selected features differed between the three frequency

bands. We found nine, fourteen, and twelve features for the slow-

Figure 2. The flow chart of the rsFC pattern classification obtained by applying MVPA to the sample dataset in the slow-5
frequency band. The sample dataset was a 39-by-4005 matrix in this study and was comprised of 4005 features, that is, inter-regional functional
connections. Each row and each column of the sample dataset represented a subject and a feature, respectively. Recursive feature elimination (RFE)
was applied to the sample dataset for feature selection and to calculate the rank of the feature weight (a row vector). The subsets of the sample
dataset were produced according to the feature weighting rank. The classifier was used to separate the VaD brains from those of the controls in each
subset of the sample dataset by using a leave one-out-subject-cross-validation (LOOCV). The accuracy rate was used to compare the discriminative
information in each subset of the sample dataset.
doi:10.1371/journal.pone.0054512.g002

Figure 3. Graph of the convergence of the accuracy rate with
the number of features in the pattern classification subsets.
Triangles in red, green, and blue show how the accuracy rates changed
with the number of features in the slow-5, slow-4, and whole-band
frequency bands, respectively.
doi:10.1371/journal.pone.0054512.g003
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5, slow-4, and whole-band frequency bands, respectively. For the

slow-5 frequency band, we found that five features decreased and

four increased in the VaD group compared with the control group.

The features that decreased were inter-regional connections

between the IPL.L and the MTG.L, between the ORBmid.L

and the CUN.L, between the OLF.L and the REC.L, between the

CAL.L and the CAL.R, and between the CAL.R and the

LING.R, whereas the features that increased were the inter-

regional functional connections between the MFG.L and the

PCG.R, between the ORBsupmed.L and the PUT.L, between the

PCG.R and the PCL.R, and between the LING.L and the

CAL.R. Four of these features were located in the left hemisphere,

three features linked both hemispheres, but only two features were

located in the right hemisphere. For the slow-4 frequency band,

the SVM calculations selected fourteen features that were able to

discriminate each individual VaD brain from the healthy ones.

Five of these features were in the left hemisphere, three features

linked both hemispheres, and six features were located in the right

hemisphere. Specially, among the fourteen features, we detected

four significantly increased features (inter-regional connections

between the SFGdor.R and IFGoperc.R, between the IPL.L and

TPOmid.L, between the SMG.R and TPOmid.L, and between

the THA.L and HES.L) and three decreased features (inter-

regional connections between the HIP.R and CAU.R, between

the LING.L and LING.R, and between the CAU.L and PUT.L).

For the whole–band frequency, we detected six features that

decreased (inter-regional connections between the LING.L and

the CAL.R, between the MTG.R and the SFGdor.R, between the

FFG.L and the HES.L, between the AMYG.L and the

IFGoperc.L, between the IOG.R and the PreCG.R, and between

the CAL.L and the LING.L) and six features that increased

(between the ORBinf.L and the SFGdor.R, between the HIP.R

and the IOG.R, between the SFGmed.L and the MFG.R,

between the AMYG.R and the IOG.R, between the LING.L

and the TPOsup.R, and between the IPL.L and the TPOmid.L) in

the VaD group compared with the control group. Four features

were located in the left hemisphere, another four features linked

the two hemispheres, and the remaining four features were located

in the right hemisphere. In the three frequency bands, we detected

several decreased inter-regional functional connections that were

located in vision-related regions (in the slow-5: between the

CAL.R and the LING.R, between the CAL.R and the LING.L,

and between the CAL.L and the CAL.R; in the slow-4: between

the LING.L and the LING.R and between the CAL.L and the

LING.L; in the whole-band: between the CAL.R and the LING.L

and between the CAL.L and the LING.L).

Discussion

This study investigated the possibility of using pattern classifi-

cation to distinguish individual VaD brains from healthy ones,

based on whole brain functional networks in three different

frequency bands. Using a high-dimensional pattern classification

concept, we utilized an SVM classifier to analyze whole brain

functional networks and to select features for differentiating the

VaD brain from that of healthy controls in terms of their rsFC

patterns. The determination accuracy was estimated using the

LOOCV process to ensure the stability of the discrimination. The

results indicated that the abnormal functional connectivity in the

rsFC patterns depended on the specific frequency band, which

reflects the frequency-specific spatiotemporal information distri-

bution of the BOLD signal. Further analysis indicated that the

slow-5 frequency band was more efficient than the slow-4 and than

the whole-band for discriminating the VaD brain from the

controls when using an SVM classifier.

Dynamic Changes in the Pattern Information
A fundamental question in the MVPA approach is how to select

the features that have the maximum discriminative information to

use in constituting the patterns [27,29,35]. In most of the previous

studies that used MVPA, the feature selection was quite static in

that the features were selected once and then not reconsidered

[22,23]. In this study, we constructed the rsFC patterns by using

the features, that is, the inter-regional functional connections,

based on feature weighting, and then used an SVM classifier to

determinate the brain category based on these rsFC patterns. The

determination accuracy rates were used to assess the magnitude of

the pattern information [28]. Fig. 3 shows the dynamic changes in

the determination accuracy rates with the number of features

required to obtain convergence. Specifically, the accuracy rate

increased with an increase in the number of selected features. For

example, in frequency band slow-5 (Fig. 3), the accuracy was

about 82% when three features were selected, was about 97% with

seven selected features, and was 100% with nine selected features.

The results indicate that, within any given frequency band, the

more features contained in the connectivity patterns, the more

neurobiological information involved in the corresponding pat-

Table 3. Brain regions involved in the features selected from
the functional connectivity pattern for differentiating the
brain states of the VD patients from those of the controls in
the three frequency bands.

Regions

Index slow-5 slow-4 whole-band

1 CAL.L CAL.L CAL.L

2 IPL.L IPL.L IPL.L

3 LING.L LING.L LING.L

4 LING.R LING.R IOG.R

5 PUT.L PUT.L MFG.R

6 MFG.L HES.L HES.L

7 CUN.L HIP.R HIP.R

8 MTG.L SFGdor.R SFGdor.R

9 OLF.L TPOmid.L TPOmid.L

10 CAL.R ACG.R CAL.R

11 ORBmid.L CAU.L AMYG.L

12 ORBsupmed.L CAU.R AMYG.R

13 PCG.R IFGoperc.R FFG.L

14 PCL.R IFGtriang.L IFGoperc.L

15 REC.L OLF.R MTG.R

16 – ORBinf.R ORBinf.L

17 – ORBsup.R PreCG.R

18 – ORBsupmed.R SFGmed.L

19 – PCUN.R TPOsup.R

20 – PreCG.L –

21 – SMG.R –

22 – THA.L –

The brain regions in bold type appeared in all three frequency band subsets of
the sample dataset. The abbreviations of the brain regions and their
coordinates in the MNI standard space can be found in Table S1.
doi:10.1371/journal.pone.0054512.t003
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terns in VaD brains. This provides further evidence that functional

connectivity can reveal VaD neurobiological information.

Frequency Bands Influence Pattern Discriminative
Information
In this study, we proposed that we could obtain a frequency-

specific description of brain functional networks by decomposing

the band-pass filtered time series into smaller frequency intervals.

Fig. 3 indicates that the fastest convergence speed occurred in the

slow-5 frequency band. Thus, the connectivity pattern of the slow-

5 frequency exhibited a greater discriminative power than the

other two frequency bands (slow-4 and whole-band). In addition,

the accuracy of the classification improved using the slow-5 band

compared with the conventional whole-band approach. Although

the convergence accuracy rates were same at 100%, the number of

features that were selected from the rsFC patterns in order to

accurately discriminate those individuals with VaD brains differed

between the three frequency bands.

We also found that the numbers and the locations of the selected

features in the pattern classification differed between the three

frequency bands. We recognized nine, fourteen, and twelve

features in the rsFC pattern discrimination and these features

occurred in fifteen, twenty-two, and nineteen brain regions

(Table 3) for the slow-5, slow-4, and whole-band frequency bands,

respectively. The distributions of the selected features in the slow-5

(low frequency) and in the slow-4 (high frequency) were quite

different (Fig. 4). For the slow-5, four features were located in the

left hemisphere, two features were in the right hemisphere, and

three features linked both hemispheres. For the slow-4, we found

five features in the left hemisphere, six features in the right

hemisphere, and three features linking both hemispheres.

The values of the selected features in the VaD group and the

control group differed between the three frequency bands

(Table 4). The mean value of each feature was calculated across

all subjects for each subject group. For the slow-5 band, we noticed

that the mean value (absolute value) of each feature was nearly the

same for the VaD group (0.36,0.49) and for the control

(0.17,0.47), but the direction of each feature for the VaD group

was opposite to that of the control (Table 4). However, for the

slow-4 band, the mean value of each feature in the VaD group was

Figure 4. The selected features, that is, the inter-regional functional connections in the resting state functional connectivity pattern
classification for the VaD group and the control group in the three frequency bands. Upper panel: The features selected in the VaD
patients. The node size is proportional to the frequency occurrence of the brain region in the selected features and the line thickness to the mean
value of the feature. The red (green) lines represent features that were increased (decreased) in the VaD group compared with the controls. Lower
panel: Same as the upper panel but for the control group. For both panels: slow-5:0.01,0.27 Hz (low frequency); slow-4:0.027,0.073 Hz (high
frequency); whole-band: 0.01,0.073 Hz.
doi:10.1371/journal.pone.0054512.g004
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much larger than that of the control group. For the whole-band,

the mean value of each feature in the VaD group was much larger

than that of the control group except for two features, LING.L-

CAL.L and LING.L-CAL.R. We found that most of selected

features in the rsFC patterns were different for the three frequency

bands.

Differences in lateralization (left vs. right hemispheres) of the

feature distribution were observed between the slow-5 and slow-4

frequency bands. We found that the brain regions related to the

features selected for the slow-5 band were primarily located in the

left frontal cortex and bilateral visual cortex and were obviously

asymmetric (Fig. 4). However, the regions of the selected features

for the slow-4 band were located in the right frontal cortex and left

temporal lobe as well as in the bilateral visual cortex. This may

indicate that the left frontal cortical regions involve primarily low

frequency (slow-5) wavelengths but the right frontal cortex involve

high frequency (slow-4) wavelengths of spontaneous activity in the

resting state of VaD brains.

This study suggests that the discriminative information in an

rsFC pattern depends on specific frequency bands. Several

Table 4. Statistical comparisons between the selected features of the VaD patients and the controls in the three frequency bands.

Features (Inter-regional functional connections) Group mean value of each feature (std)

Frequency bands Regions Regions VaD Controls t-value

slow-5 IPL.L MTG.L 0.41 (0.41) 20.17 (0.26) 23.14**

MFG.L PCG.R 0.47 (0.25) 20.44 (0.24) 3.17**

CUN.L ORBmid.L 0.49 (0.29) 20.47 (0.14) 22.73**

OLF.L REC.L 20.36 (0.35) 0.34 (0.33) 23.37**

ORBsupmed.L PUT.L 0.39 (0.24) 20.37(0.29) 2.34*

PCG.R PCL.R 0.48 (0.39) 20.46 (0.44) 2.30*

CAL.L CAL.R 20.37 (0.32) 0.35 (0.09) 22.52*

LING.L CAL.R 20.47 (0.36) 0.45 (0.33) 2.36*

CAL.R LING.R 20.36 (0.34) 0.35 (0.24) 23.30**

slow24 CAL.L PreCG.L 20.40 (0.20) 20.15 (0.16) 20.99

IFGoperc.R SFGdor.R 0.47 (0.24) 20.01 (0.23) 2.43*

IFGtriang.L ORBsup.R 0.41 (0.26) 0.04 (0.18) 21.51

ORBinf.R ORBsup.R 0.40 (0.25) 20.03 (0.24) 21.17

IFGoperc.R OLF.R 0.39 (0.19) 20.10 (0.11) 1.62

ACG.R OLF.R 0.44 (0.22) 20.17 (0.21) 0.04

ORBsupmed.R PCUN.R 20.39 (0.24) 0.06 (0.17) 21.21

CAU.R HIP.R 20.49 (0.26) 0.08 (0.22) 2.17*

CAL.L LING.L 20.37 (0.21) 0.02 (0.23) 0.61

LING.L LING.R 20.40 (0.24) 0.04 (0.21) 22.56*

IPL.L TPOmid.L 0.42 (0.22) 0.06 (0.20) 22.97**

TPOmid.L SMG.R 0.37 (0.22) 0.01 (0.16) 2.56*

CAU.L PUT.L 20.40 (0.24) 20.02 (0.17) 22.65*

HES.L THA.L 0.43 (0.32) 0.08 (0.22) 2.58*

Whole-band CAL.R LING.L 0.17 (0.23) 0.54 (0.18) 4.50**

ORBinf.L SFGdor.R 20.01 (0.18) 20.18 (0.21) 23.00**

HIP.R IOG.R 0.05 (0.26) 20.15 (0.23) 23.75**

MTG.R SFGdor.R 20.05 (0.17) 0.13 (0.15) 2.70*

MFG.R SFGmed.L 0.16 (0.14) 20.08 (0.20) 23.30*

FFG.L HES.L 20.04 (0.18) 0.09 (0.19) 2.52*

AMYG.R IOG.R 0.15 (0.25) 20.08 (0.19) 23.71**

AMYG.L IFGoperc.L 20.09 (0.21) 0.08 (0.20) 3.44**

LING.L TPOsup.R 0.05 (0.18) 20.15 (0.19) 23.10**

IOG.R PreCG.R 20.01 (0.14) 0.19 (0.19) 2.91**

IPL.L TPOmid.L 20.03 (0.19) 20.19 (0.19) 23.14**

CAL.L LING.L 0.35 (0.22) 0.65 (0.29) 4.30**

Group mean value for each selected feature was calculated by averaging the feature values, the inter-regional functional connections, across all subjects in the VaD
group or in the control group. Positive or negative feature values represent inter-regional functional correlations or anticorrelations, respectively. Statistical comparisons
of the feature values between the VaD patients and the controls were estimated based on a two samples t-test. A positive (negative) t-value stands for a feature that
was significantly increased (decreased) in the VaD group compared with the control group. The features are listed in order of decreasing weighted rank in the pattern
discrimination. The symbol ‘‘**’’ represents significant difference determined by p,0.01 and ‘‘*’’ determined by p,0.05.
doi:10.1371/journal.pone.0054512.t004
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previous studies have examined the rsfMRI dataset by decompos-

ing the BOLD signal into different frequency bands [15,17–21]

and have demonstrated that the power to analyze brain functional

properties varies between different frequency bands. The re-

liability of frequency-specific spatiotemporal structures has also

been tested [15]. Consistent with these previous studies, our study

indicated that brain spontaneous BOLD fluctuations exhibit

frequency-specific spatiotemporal patterns in whole-brain func-

tional networks derived from BOLD-based rsfMRI datasets.

Selected Features and Abnormal Connections in the VaD
Brain
The present study showed that rsFC can be used to discriminate

VaD brains from healthy ones by using the MVPA approach. The

selected features (Table 4 and Fig. 4) indicated the presence of

abnormal functional connections in the VaD patients compared

with the controls in the three frequency bands. These abnormal

inter-regional functional connections may reflect the pathogenesis

of VaD brain function.

We observed decreased functional connectivity in the VaD

group in the vision related regions (CAL, IPL, and LING) in all

three frequency bands (Table 2). This may indicate that

spontaneous activation in the visual cortex is independent of the

frequency band, even though the visual cortex had substantial

levels of spontaneous activation, especially in the primary visual

and related regions. This result was consistent with a previous

study, in which Salvador et al. [18] used inter-regional mutual

information to measure brain functional connectivity in different

frequency domains and showed that the occipital cortex had

substantial levels of mutual information at low and high

frequencies, especially in the primary visual and related regions,

such as the calcarine and lingual cortices.

In this study, we also found significantly increased functional

connectivity in terms of the intensity in the VaD brains in the three

frequency bands (Fig. 4 and Table 4). This may reflect

compensation by the brain for the functional disconnection in

the visual cortex of the VaD patients. We detected increased inter-

regional connections in the frontal cortex for the slow-4 band

(Fig. 4). This finding was consistent with previous studies of

cognitive decline with age in older adults [39], which suggested

that age-related reduction in occipital activity was coupled with

age-related increased frontal activity. According to the opinion of

Grady and collaborators [40,41], the increased frontal region

activity in older adults may be an attempt to compensate for

sensory processing deficits in the occipitotemporal regions. For the

slow-5 band, we detected increased functional connectivity to the

regions of the default-mode network (DMN) (Table 4), which is

also consistent with previous studies [42,43]. Attenuated deactiva-

tions of the DMN have been shown in several populations,

including Alzheimer’s [44] and amnesia [45]. For patients with

VaD, the reduced cerebral blood ow (CBF) may influence the

BOLD fMRI signal [46] causing abnormal DMN connectivity,

such as the functional connectivity between the left middle frontal

gyrus (MFG.L) and the right posterior cingulate gyrus (PCG.R)

which were observed in the present study.

This result may provide a novel insight into the decline in

multiple cognitive functions in VaD patients. The cause of the

VaD symptoms may not only lie in the abnormal functional

connectivity but also in compensatory adaptations in the brain

systems [39]. The brain functions of VaD patients may be

damaged extensively by the blood vessel infarction [47]. The

changes could include executive and visuospatial dysfunction,

fluctuations in attention, visual hallucinations, language problems,

delusions and confusion [48] and memory related problems

[39,49,50]. We found that the brain regions that have been

selected for accurate detection of individuals with VaD include

parts of the prefrontal cortex [50,51], medial temporal lobe

[52,53], parietal [54,55], and occipital regions [40,56], as well as

various subcortical regions [57,58]. Previous neuroimaging studies

[52,58,59] have suggested that brain function decline, especially

memory-related functional decline, is accompanied by widely

distributed focal neuronal activity changes in these brain regions,

and the symptoms of VaD relate to the failure to integrate down-

up information from the sensory cortex and top-down expectations

from the high level cortex. Our method was blind to prior

knowledge about the brain regions associated with VaD, yet the

selected regions coincided well with those reported in the

literature. Previous studies have indicated that most cognitive

functions require the active participation of multiple cortical areas

rather than a simple focal brain region [59–61]. The present study

provided evidence that the rsFC in a VaD brain is widely

disrupted compared to the rsFC in a normal, healthy brain and

that the compensatory adaptations reflected in the rsFC patterns

vary between frequency bands.

Frequency-specific Whole Brain Functional Networks
We found that each of selected features corresponded to

significantly change inter-regional connections in the VaD brain in

the slow-5 and whole bands (Table 3). But in the slow-4 band, we

obtained fourteen features for the rsFC pattern classification, but

only seven appeared to represent abnormal connections in the

VaD brains (Table 4). We noticed that not only the selected

features but also the significantly changed inter-regional connec-

tions in the VaD brains were different in the three frequency

bands. Fig. 4 and Table 4 show that most of the abnormal

connections in the VaD brains were located in the left hemisphere

for the slow-5 band, in the frontal cortex and the visual cortex for

the slow-4 band, and in both the hemispheres for the whole-band

frequency. This suggests that alterations in the whole brain

functional network in VaD brains are also frequency specific.

Limitations of the Present Study
Several limiting factors need to be addressed. The somewhat

small sample size in this study may have been an issue.

Additionally, a possible overlap between early AD and VaD in

our patients cannot be completely excluded. Since VaD and AD

are both common in old age, they can co-occur and may have

among our patients. Therefore, unsurprisingly, our results are

fairly consistent with previous findings involving AD [17,22].

Another issue is that all of the VaD patients had lacunar infarcts,

small white matter hyperintensities, significant grey matter re-

duction, and potential grey matter volume atrophy. The existence

of grey matter volume atrophy in the VaD brains may affect the

normalization and parcellation which could have a potential

impact on the brain functional connectivity [62] and on our

results. How to reduce the potential confounds stemming from

brain anatomical differences or registration errors is a fundamental

issue in functional studies of patients with brain atrophy [63,64].

In the present study, we have tried several measures to reduce

the influence of the brain atrophy on the ability to use patterns to

discriminate VaD brains from healthy ones. First of all, we

excluded patients that showed obvious atrophy. Then, in the data

preprocessing, we regressed out whole brain, white matter, and

CSF signals as covariates. Further, during the realignment process

in order to normalize the rsfMRI data into the MNI space, we

compared two different co-registration methods: a two step co-

registration, in which we first registered the rsfMRI data to the T1-

weighted brain structural images and then registered them to the
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MNI-152 template, and a one step co-registration, in which we

registered the rsfMRI data to the EPI template. After comparing

the co-registrations, we chose the one step process and applied the

EPI template to normalize the functional data into the MNI space.

In fact, several previous studies have applied the registration with

the EPI template in the brain network studies of stroke [65], major

depressive disorder (MDD) [66], Alzheimer’s disease (AD) [67],

and schizophrenia [68]. In most of these studies, the brain atrophy

was observed. Similar to these previous studies, we found that the

EPI template was also appropriate for performing the functional

images registration in the VaD brains. Although the classifier we

trained using the method reported in this paper performed well by

efficiently discriminating VaD patients from the controls, the

influence of the co-registration method on the result must be

considered in future studies.

Another potential limitation is that the final results might have

been influenced by the way we defined the nodes and edges of the

functional networks. We constructed the whole brain functional

networks using the AAL template to define the nodes and inter-

regional Pearson’s correlation coefficients as the weight of the

edges. However, several different brain templates, such as the

Automatic Nonlinear Imaging Matching and Anatomical Labeling

(ANIMAL) [69] and the Harvard-Oxford atlas (HOA) [70], can be

used to define nodes, and several different ways, including partial

correlations, wavelet correlations, and mutual information, can be

used to define edges [71]. Using different definitions of nodes and

edges could influence the selected features in the rsFC pattern

classification. In this study, we constituted ROI-based large-scale

functional networks rather than voxel-based functional networks.

This could potentially reduce the accuracy of the determination

due to the above mentioned co-registration errors. Last, but not

least, during data processing we performed ROI-based averaging

without performing any spatial smoothing in order to preserve the

spatial information in the BOLD signal. Although the question

remains open as to whether spatial smoothing needs to be

performed or not in MVPA, this study did not compare the

influence of spatial smoothing on the determination accuracy.

In summary, we proposed a data-driven SVM method to

distinguish VaD patients from normal controls. The results suggest

that whole brain functional networks may be able to provide

neurobiological information about VaD brain states. Thus, the

SVM classifier was very useful in distinguishing the VaD brain

state from the healthy brain state based on altered neurobiological

information. To our knowledge, this study was the first to compare

the contributions of different frequency bands to brain functional

networks and their component features in VaD patients. It also

showed that the neurobiological information contained in the

brain functional networks is frequency-dependent. Our findings,

obtained using the MVPA approach, revealed the necessity of

detecting VaD brain oscillations in different frequency bands apart

from the whole band. The slow-5 (0.01,0.027 Hz) frequency

window showed greater discriminatory power in separating the

VaD patients from the controls. How other frequency bands affect

the organization of functional networks and the rsFC pattern

classification needs further study. Although exploring the nature of

abnormal functional connectivity in VaD brains will need more

direct evidence, our findings suggest that functional connectivity

can offer frequency-specific neurobiological information about

VaD patients and that this study was helpful for increasing the

understanding of the neural mechanisms in VaD.
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