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Abstract

Background: Gut microbial communities of mammals are thought to show stable differences between individuals. This
means that the properties imparted by the gut microbiota become a unique and constant characteristic of the host.
Manipulation of the microbiota has been proposed as a useful tool in health care, but a greater understanding of
mechanisms which lead to community stability is required. Here we have examined the impact of host immunoregulatory
phenotype on community dynamics.

Methods and Findings: Denaturing gradient gel electrophoresis was used to analyse the faecal bacterial community of
BALB/c and C57BL/6 mice and C57BL/6 mice deficient for either type I interferon (IFN) signalling (IRF9 KO mice) or type I and
type II IFN signalling (STAT1 KO mice). Temporal variation was found in all mouse strains. A measure of the ability for a
community structure characteristic of the host to be maintained over time, the individuality index, varied between mouse
strains and available data from pigs and human models. IRF9 KO mice had significantly higher temporal variation, and lower
individuality, than other mouse strains. Examination of the intestinal mucosa of the IRF9 KO mice revealed an increased
presence of T-cells and neutrophils in the absence of inflammation.

Significance: The high temporal variation observed in the gut microbiota of inbred laboratory mice has implications for
their use as experimental models for the human gut microbiota. The distinct IRF9 and STAT1 phenotypes suggest a role for
IRF9 in immune regulation within the gut mucosa and that further study of interferon responsive genes is necessary to
understand host-gut microbe relationships.
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Introduction

The gastro-intestinal tract of mammals is colonised with a

diverse range of micro-organisms. In recent years evidence has

accumulated to support the idea that the community structure of

the gut microbiota is a major contributor to the phenotype of the

host animal. This evidence comprises three distinct streams:

Firstly, available gut community dynamics studies have shown

high temporal constancy within, and distinct composition

between, adult individuals [1–3]. Secondly, the activity of gut

microbes directly contributes to a variety of physiological and

metabolic processes that are important to host function [4–6].

There is experimental evidence that the integration of microbial

activity into host metabolism, in conjunction with maintenance of

individual community differences, gives rise to microbiota-linked

phenotypes [7–9] including obesity [10] and drug response

[11,12]. Thirdly, gnotobiotic animal studies show that molecules

of microbial origin are essential for host developmental pathways

[13] and that different microbial strains can engender distinct host

responses [14]. Collectively these observations suggest important

roles for the gut community in health, however defining a healthy

gut community is difficult.

Microbial communities do not show absolute constancy of

structure and furthermore different members are predicted to turn

over at different rates. Consequently, observed differences in

composition between two gut community samples at any one time

point will reflect both transient differences (such as those due to

high turnover populations, changes in abundance or allochtho-

nous populations) and sustained differences (due to autochthonous

populations). It is the sustained differences that are most relevant

to microbiota-linked phenotypes, such as obesity. The phenom-

enon of sustained host-specific differences in microbial communi-

ties (referred to from here on as individuality) reflects the property

of ecological resilience and has two distinct aspects, temporal

constancy and constraints on composition. Understanding indi-

viduality is important since it also represents a barrier to

manipulating gut microbial communities. Resilient communities

resist change and if change results from disturbance they tend to

return to the previous state. We postulate that different aspects of

the host immune system may contribute to the different aspects of
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individuality and community stability. To explore this, we

examined mice that differ in their capacity to regulate immune

responses measuring both the constancy of community structure in

individual mouse gut communities and the differences in

community structure between mice, to derive a measure of the

relative importance of sustained and transient differences in gut

community between animals that we refer to as the individuality

index.

Adult mice of two different genetic backgrounds (BALB/c &

C57BL/6) were analysed. These strains have normal functional

immune systems but have well defined differences in their

immunophenotype including different MHC haplotypes and

immune responses that are biased to either a Th1 like (C57BL/

6) or a Th2 like (BALB/c) immune response [15]. We also

examined two strains of C57BL/6 mice deficient in interferon

(IFN) signalling pathways. Studies in the caecal epithelia of

gnotobiotic mice have shown that interferon-responsive genes are

among the host genes that respond more strongly to a bacterial

community than to mono-specific colonisations [14] and the

interferon pathway is a major part of the immune response to

many bacterial, parasitic and viral infections [16–20].

STAT1 KO mice [16] lack the signal transducer and activator

of transcription 1 (STAT1) which is essential for the signalling of

type I (IFN-a/b) and type II IFNs (IFN-c) [21]. In contrast,

interferon regulatory factor 9 (IRF9) is primarily involved in type I

IFN signalling and not IFN-c signalling [22]. Consequently, IRF9

KO mice [17] are predicted to be impaired in type I IFN but not

in IFN-c signalling. Constancy was assessed for each individual

mouse at both daily and 5 day time scales. The individuality index

was shown to vary between strains of different immunophenotype

supporting the hypothesis that immune function is an important

part of gut community individuality. Surprisingly the strongest

effect was observed in IRF9 KO mice, suggesting previously

unrecognised regulatory pathways may be involved.

Materials and Methods

Animals and sample collection
All mice were housed under specific pathogen free conditions

within the same room in the animal facilities at the University of

Sydney and handled according to the guidelines and approved

protocols of the University of Sydney Animal Ethics Committee.

Mice were given food and water ad libitum. A total of 19 individual

mice were used for this study from two different genetic

backgrounds and two gene deficient mouse strains. These were

wild type (WT) BALB/c (n = 5) and C57BL/6 mice (n = 5) and

STAT1 KO mice (n = 5) [16] and IRF9 KO (n = 4) [17], both on

a C57BL/6 background. All mice of the same strain were co-

housed in a filter top cage with the exception of the IRF9 KO mice

which were split into two cages (total of 5 cages for the four

strains). All mice were sampled at 17 weeks of age in the main

study. In a preliminary study, C57BL/6 mice were also sampled at

10 weeks of age. Each individual mouse was specifically tagged

and hence each faecal sample could be assigned to a particular

mouse. Faecal samples were collected every five days for 20 days

with additional samples collected daily between days 15 to 20

(Refer to supplementary Table S1). A total of 216 faecal samples

were obtained from 19 individuals. Samples were collected directly

from the animal upon defecation and immediately frozen at

220uC, prior to DNA extraction.

DNA extraction
Extraction of DNA from faecal samples was carried out using

the FastPrep system (Bio101, La Jolla, CA, USA) with modifica-

tions as described previously [23,24]. Briefly, faecal pellets were

homogenised in 500 ml TE buffer (10 mM Tris, 1 mM EDTA,

pH 7.5) prior to extraction. Cells were lysed with one 5mm glass

bead and 0.6 g of 150–600 mm glass beads (Sigma Aldrich, St

Louis, MO, USA) as per the protocol for the FastDNA Spin Kit

for soil (Bio101). The yield of DNA obtained from the mouse

faecal samples was between 10 ng to 100 ng per ml as determined

by agarose gel electrophoresis.

PCR
PCR primers F-968-GC and R-1401 [25] were used to amplify

the V6–V8 region of the 16S rRNA gene. Each 25 ml reaction

volume contained 16 Thermopol buffer (New England BioLabs,

USA), 5 mM deoxynucleoside triphosphates (New England

BioLabs), 20 pmoles F-968-GC, 10 pmoles R-1401, 1U Taq

Polymerase DNA (New England BioLabs) and 1 ml of faecal DNA.

The program used was as follows: 1 minute of initial denaturation

at 94uC, followed by 30 cycles of denaturation (94uC for

30 seconds), annealing (56uC for 30 seconds) and extension

(72uC for 1 minute) with a final extension for 7 minutes at 72uC.

DGGE
DGGE analysis was performed using the DCode system (Bio-

Rad Laboratories, USA). Electrophoresis was done using on a

16 cm616 cm 1 mm thick gel that contained 8% polyacrylamide

(ratio of acrylamide to bisacrylamide was 37.5:1) in 16TAE buffer

(40 mM Tris-acetate 1 mM EDTA; pH 7.4). A gradient of 40–

70% denaturant was used to separate PCR fragments where 100%

denaturant was defined as 7M urea and 40% (v/v) formamide.

The gels were run at 80V for 16 hours at 60uC and silver stained

as described in Sambrook and Russell [26]. Gels were scanned

using a GS-800 calibrated densitometer (Bio-Rad Laboratories,

USA). The digitised gel images were analysed using Quantity One

(version 4.6.1; Bio-Rad). The software was used to detect bands by

normalising against total intensity data for each lane. Bands with a

minimum density of 5% were detected in each lane and bands

were matched using a match tolerance of 2%. A similarity matrix

was constructed using Dice’s similarity coefficient. This is defined

as 2j= azbð Þ
h i

|100 where j is the number of bands in common

between two lanes and (a+b) is the total band number of both

lanes. Reproducibility was assessed by electrophoresis of indepen-

dent amplifications of the same DNA sample. This was found to be

very high for within-gel analyses [24], but not between gels as

previously reported in other studies [27,28]. Thus, all pairwise

comparisons of DGGE fingerprints were between samples that

were run on the same gel.

Statistical Analysis
Analysis of statistical significance was done using Prism (version

3.0; GraphPad Software, San Diego, CA). A two-tailed Student’s t

test was used to compare averages of the Dice coefficient when two

groups of mice were compared. Where more than two groups

were compared, the Kruskal-Wallis nonparametric ANOVA test

was used to assess significance.

In order to describe the impact of inter-individual differences

relative to temporal variation a simple calculation that we term the

individuality index (IIt) was derived.

Individuality Index(temporal scale)

~1{
(Ave: Similarity between individuals)

(Ave: similarity at temporal scale within individual)

Mouse Microbiota Instability
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A positive value signifies that the level of individual-to-individual

variation is greater than temporal changes within individuals at

that scale of observation. A negative value denotes that change

over time is greater than inter-individual variations. The

individuality index was calculated for all mouse strains using data

obtained at 5 day and daily sampling scales.

Tissue processing for histology
Mice were euthanized and the large intestines were removed for

histological and immunohistochemical examination. Tissues were

fixed in PBS-buffered 4% paraformaldehyde (pH 7.4, Sigma-

Aldrich) for 48 hours at 4uC prior to being embedded in paraffin.

For histology and immunohistochemistry, 5 mm thick sections

were prepared.

Histology and immunohistochemistry
Haematoxylin and eosin (H&E) stained sections were examined

to assess gross anatomical features of the large intestines of mice

from the four different strains. Stained H&E and unstained

sections were provided by the Histopathology Laboratory,

Department of Pathology, University of Sydney. Primary poly-

clonal antibodies specific for T-cells (human anti-CD3, Dako,

Botany, Australia), activated macrophages (mouse anti-Iba1,

Wako Chemicals, USA) and neutrophils (mouse anti-Gr-1,

Caltech, USA) were used for immunohistochemistry at a dilution

of 1:200. Paraffin sections were deparaffinized in xylene and

rehydrated in a series of graded ethanol. For staining against CD3,

slides were pretreated with proteinase K (Sigma Aldrich, 10 mg/

ml, 15 min at 37uC). For staining against Gr-1 and Iba1, slides

were immersed in 10mM sodium citrate buffer (pH 6.0) at a sub-

boiling temperature for 10 minutes, followed by cooling at room

temperature for 30 minutes. Following blocking with 10% normal

goat serum in PBS for 30 minutes slides were incubated overnight

at 4uC with the primary antibodies. Slides were washed in PBS-T

(PBS + 0.1% Tween20, pH 7.4) three times for 5 minutes and a

biotinylated secondary antibody (Vector Labs, Burlingame, CA

1:200, 45 minutes) and horseradish peroxidase coupled streptavi-

din (Vector Labs, 1:200, 30 minutes) were added successively.

Nova Red (Vector Labs, USA) was applied as the immunoper-

oxidase substrate according to the manufacturer’s instructions.

Sections were counterstained with haematoxylin (Sigma-Aldrich,

USA), dehydrated, cleared and coverslips were mounted prior to

examination by bright field microscopy (Leica DM4000B, Leica

Germany). Digital images were taken using a Spot Flex camera

and Spot V4.5 software (Diagnostic Instruments, USA).

For quantification of immuno-positive cells 10-high-power fields

(406 objective) per section were counted and mean and standard

error of the mean (s.e.m). determined. Statistical significant

differences were determined by one-way-ANOVA and Bonferro-

ni’s multiple comparison test using Prism 4 (GraphPad Software,

San Diego, USA).

Results

The gut microbiota of adult mice had relatively low
constancy of composition

We monitored temporal variation in the composition of the gut

microbiota of healthy mice that were housed under controlled

conditions. An estimate of community constancy was determined as

the average similarity of DGGE profiles of faecal samples obtained

at 5 day or at daily intervals for each individual. Figure 1 shows

examples of DGGE profiles over time in an individual mouse from

the C57BL/6 and IRF9 KO mouse strains. All mice showed

changes in community structure over time when sampled at either 5

day or daily intervals. Mean temporal variation was less for samples

taken on a daily basis than mean temporal variation for samples

taken every 5 days (P,0.02), indicating the importance of the

temporal scale of sampling in determining community constancy.

For the C57BL/6 mice this experiment was performed twice, at

ages 10 and 17 weeks and no significant difference was seen for

either daily or 5-day sample scales (data not shown).

The degree of change over time varied between mouse strains

(Figure 2). Comparisons between the WT mice indicated that

temporal stability was significantly higher in the BALB/c mice

compared to C57BL/6 mice when sampled at daily and 5 day

intervals (P,0.02). Temporal variation in IRF9 KO mice was

significantly higher compared to all other mouse strains when

sampled at 5 day intervals (P,0.01). When sampled daily, the

IRF9 KO mice also had the highest measure of temporal variation

but this was not significantly different from its WT equivalent. In

contrast, the degree of temporal variation in the other IFN-

signalling deficient mouse strain, STAT1 KO, was not signifi-

cantly different from the wild type mice of the same genetic

background when sampled at either 5 day or daily intervals

(P.0.05).

Mice have low individuality of gut community structure
Individual-to-individual variation within each of the four mouse

strains was compared by analysing the overall faecal community at

a single time point (day 0; all mice aged 17 weeks). All DGGE

fingerprints were non-identical indicating that each mouse had a

distinct faecal community (Figure 1). The individuality index

provides a framework to predict the relative contributions of

transient and resident populations when comparing differences

between two communities. IIN values were calculated for pigs

based on published data [24] and for all four mouse strains in this

study (Table 1). A negative IIN index for a system predicts that

differences between communities predominantly reflect transient

variation at that observational scale and a positive index predicts

observed differences reflect intrinsic properties of the system. For

our DGGE data set, the only time scale at which any mouse strains

had positive IIN was 1 day and at the longer time scale of 5 days all

4 mouse strains had negative IIN. In contrast calculations of the pig

II from previously published data are very strongly positive at time

scales of either 1 or 5 days. Of particular interest was that the IRF9

mice had a more negative IIN value at both time scales. This

implicates IRF9 function in maintenance of the individuality of the

gut microbiome in mice.

IRF9 KO mice show an increased presence of T-cells and
neutrophils in the intestinal mucosa and lymphatic
nodules

Haematoxylin and eosin (H&E)-stained tissue sections of the

large intestine showed no difference in the overall structural

features between mice (Figure 3). The mucosa was intact and

goblet cells were similar in number and appearance. Organised

lymphatic tissue in the mouse large intestine is arranged as

intramucosal and submucosal follicles, termed colonic lymphoid

patches (CLP). In all mice investigated, these were of similar size,

number and appearance. We found no evidence for an

inflammatory response such as accumulations of lymphocytes

around a blood vessel (perivascular lymphocyte cuffs).

In order to further characterize the cells in the CLPs and to

determine the number of intra-epithelial lymphocytes (IELs)

immunohistochemistry for CD3 (T-cells), Gr-1 (neutrophils) and

Iba1 (macrophages) was performed. No differences were observed

between the WT mice of both strains and the STAT1 KO mice.

Mouse Microbiota Instability
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Figure 1. Inter-individual and within-individual temporal variation in faecal communities. (A) DGGE profiles of the overall faecal
community of individual mice from the C57BL/6 and IRF9 KO mouse strains and examples of change over time when sampled at 5 day intervals for

Mouse Microbiota Instability
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However, IRF9 KO mice showed an increased presence of CD3

positive cells (T-cells) and Gr-1 positive cells (neutrophils) in the

mucosa (IELs) and CLPs (Figure 3) as compared with the other

mouse strains (Table 2). These histological features were present in

all of the IRF9 mice and none of the mice showed signs of illness

during the course of the study that could explain this variation. No

difference was observed in the number or localisation of the Iba1

positive macrophages.

Discussion

Our understanding of biological variation in the gut ecosystem

is central to exploring many aspects of the host-microbiota

relationship, yet has received relatively little attention. Temporal

variation is particularly relevant to understanding emergent

properties of microbial activity in the host system. A constant

community structure is likely to provide continuity of microbial

metabolic activities for the host and give rise to stable microbe-

dependent phenotypic traits. Identification of specific controls on

the structure of the gut community is anticipated to ultimately give

rise to mechanisms for re-engineering the composition of poorly

performing communities. Host factors such as the immune system

are postulated to have a role in promoting the stability of a gut

community with host-specific composition.

The gut microbiota of mice exhibits relatively low
individuality

Maintaining a stable gut community ensures that the properties

imparted by the gut microbiota become a unique and constant

characteristic of a host. Furthermore, the extent to which these

properties apply to the gastro-intestinal systems of different

mammals remains to be determined. In studies of the human

and pig gut microbiota, individuality is high and inter-individual

one mouse from each of the two strains. (B) Average similarity of DGGE profiles for the indicated comparisons of all mice of the same strain. (C)
Schematic representation of bands detected in each profile after image analysis (see methods) and calculated pairwise similarity. * indicates
significant difference at P,0.05 (see Fig 2).
doi:10.1371/journal.pone.0010335.g001

Figure 2. Box and whiskers graph of similarity coefficients calculated for the DGGE profiles of faecal communities of mice. The box
extends from the 25th percentile to the 75th percentile, with a line at the median (the 50th percentile). The whiskers extend above and below the
box to show the highest and lowest values. (A) Inter-individual variation was similar for each strain and is calculated by comparing the faecal DGGE
profiles of each mouse of the same strain at a single time point (17 weeks of age). Temporal variation (bacterial community turnover at each day) was
calculated comparing pair-wise similarity between adjacent faecal profiles at 5 day (B) and daily intervals (C). All mice showed change in community
structure over time. The highest level of constancy was observed in the BALB/c mice. The lowest level of constancy was observed in the IRF9 KO mice.
* indicates significant difference at P,0.05 for strains compared at the same temporal scale. Significance was determined using a Kruskal-Wallis
nonparametric ANOVA test.
doi:10.1371/journal.pone.0010335.g002
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differences are far greater than changes in community structure

within one individual over time [1,2,29,30]. In contrast, all mice in

this study showed a low degree of individuality and temporal

change was only less than the inter-individual variation when daily

samples were analyzed (Table 1). This was true of all mice

regardless of genotype or deficiency in IFN-signalling pathway

components. The consequence of this is that microbiota-

influenced traits in mice will potentially show stochastic variation

over time. Indeed recently profiles of microbially-derived metab-

olites were reported to show considerable variability over time in

healthy adult mice [31] and in another study populations of mice

that were split into separate housing facilities showed changes in

community fingerprints over time that correlated with their

environment [32].

With the exception of IRF9 KO mice that were kept in two

separate cages, mice of each strain were co-housed and we cannot

exclude that variation may result from differences in microbial

exposure from cage-mates. However, as the degree of variability

between the IRF9 KO mice was independent of housing, this

suggests that this factor may play a minor role. In addition,

temporal variability was observed in all mouse strains regardless of

genotype, housing or differences in family history. The relative

instability of the mouse gut microbiota observed here may be a

biological property of mice or could reflect environmental (specific

pathogen free housing conditions) or biological (inbred popula-

tions) aspects of our experimental design. Instability may also

result from anatomical differences. When compared to humans

and pigs, the mouse colon is shorter and the caecum is larger,

relative to colon size [33,34]. This results in differences in the time

taken by food to pass through the intestine and available data

suggest average transit time is shorter for mice (10 hours) than

humans (2–4 days) [33,35]. It is conceivable that higher turnover

of faecal material influences community dynamics. An alternate

hypothesis is that instability is a product of the inbred nature or

housing conditions of laboratory mice. Inbreeding is considered to

reduce immune function and increase disease propensity and

therefore may change the way the host responds to the gut

microbiota [36–38]. The microbial load received by laboratory

mice housed under pathogen free conditions is reduced as food

and bedding are autoclaved. The major microbial exposure of

individual mice is to the microbiota of other mice through contact

such as coprophagy [39]. Since exposure to microbes under these

conditions is confined largely to those that have also been seen by

other mice of similar genotype there may be less ecological

isolation. It is conceivable that the temporal variation observed

here reflects dynamics within a larger meta-community and might

not be observed in outbred populations with non-sterile food.

The degree of temporal variation was dependent on
genotype

Some differences in community dynamics were evident between

strains. In this study, BALB/c mice had significantly higher

constancy compared to C57BL/6 mice (Figure 2). These strains

have well defined differences in the regulation of their immune

responses including distinct MHC haplotypes and immune

responses that are biased to either a Th1 like (C57BL/6) or a

Th2 like (BALB/c) immune response [15]. This may potentially

influence the way each mouse strain responds to the gut

microbiota [40,41]. The skewing of the immune response to

either the Th1 or Th2 type response results in higher susceptibility

to autoimmune or allergic disease, respectively [42–46]. These

diseases are often accompanied by disturbances to the community

dynamics of the gut microbiota and indicate a possible role for the

immune system in regulation of the gut microbiota [47,48]. The

genotypic differences between C57BL/6 and BALB/c mice

evidently underpin different host response to bacterial antigens

[40,41,49,50] and may explain the difference in stability between

strains.

Interferons have a role in a variety of immune responses and

disruption of IFN function renders mice highly susceptible to

microbial infections. Studies in gnotobiotic mice have shown that

the host epithelial tissue response to co-colonization by

commensal bacteria is the synergistic induction of interferon-

responsive genes [14]. Furthermore, recent studies have

suggested the IFN-signalling molecules IRF9 and STAT1 to be

critical mediators of B cell responses including antibody isotype

switching and the expression and activation of nucleic acid

sensing Toll-like receptors (TLRs) [51]. These are functions

which have been linked to the regulation of the gut microbiota

[52,53]. Here we tested mice of two distinct interferon pathway

deficient genotypes for their ability to regulate community

dynamics. STAT1 is essential for signalling in both type I and II

IFN pathways whereas, IRF9 is involved in type I IFN signalling

where it acts in interaction with STAT1 and STAT2 in a

heterotrimeric complex termed ISGF3 [54,55]. An ISGF3-

independent role for IRF9 has been proposed, but remains

unclear [22]. Therefore it was surprising to find the IRF9 KO

mice had the highest temporal variability when compared to the

other mouse strains and no observable phenotype in the STAT1

KO mice (Figures 1 & 2). This phenomenon was consistent with

the distinctive mucosal histology of IRF9 KO mice whereby

increased numbers of T-cells and neutrophils dispersed in the

intestinal mucosa in the absence of obvious inflammation were

evident (Figure 3). Since temporal variation and loss of

individuality was increased only in the case of IRF9 deficiency,

it is likely that IRF9-regulated gene expression is involved in

host-microbe crosstalk. It is worth noting that in a recent study

aimed at identifying host genes specifically targeted by

commensal (as opposed to pathogenic) bacteria, IRF9 was one

of the most strongly up-regulated host genes by the oral

commensal bacterium Streptococcus salivarius K12 [56].

Table 1. Parameters of community variation for each mouse
strain sampled at 5 day and daily intervals compared to the
pig gut microbiota.

Strain

Ave. Similarity
between
individuals

Ave. Similarity within
individual over time

Individuality
index

II(5-day) BALB/c WT 79.9 77.3* 20.03

II(5-day) C57BL/6 WT 69.8 68.8 20.01

II(5-day) STAT1 KO 71.4 69.7 20.02

II(5-day) IRF9 KO 76.4 56.6* 20.35

II(daily) BALB/c WT 76.9 86.2* 0.11

II(daily) C57BL/6 WT 69.9 79.0 0.12

II(daily) STAT1 KO 71.9 78.8 0.09

II(daily) IRF9 KO 76.4 72.6 20.05

II(5-day) Piga 51.6 90.6 0.43

II(daily) Piga 51.6 97.6 0.47

WT (wild type).
*significant difference to strains sampled at the same time interval (P,0.05).
aData from the DGGE analysis of faecal samples obtained daily from a .30-day
old pig (Thompson et al., 2008).

doi:10.1371/journal.pone.0010335.t001
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Conclusions and implications of relative instability in the
mouse gut microbiota

Gut microbes contribute to physiological, metabolic and

developmental outcomes of the host and hence are an integral

part of the host phenotype. The high temporal variation and lack

of predictable stable differences observed in the gut microbiota of

inbred laboratory mice has implications for their use as

experimental models particularly in the study of phenotypes

influenced by microbial activity. Our observations indicate that

laboratory mice do show a degree of individuality in their gut

microbiota, but this is significantly less than that of humans. The

higher turnover of the mouse gut community relative to humans

(or pigs), suggests that links between microbial community

structure and host phenotype will be even stronger in humans

than they are in mice. It also means that individual mice may

exhibit microbiota-related phenotypic variation during the course

Figure 3. Representative images showing mucosal differences of IRF9 KO mice. The images shown are from C57BL/6 WT and IRF9 KO mice
(Tissue sections from BALB/c and STAT1 KO mice were equivalent to C57BL/6 WT mice in all cases and are not shown). Relative to the other strains,
IRF9 KO mice showed a marked increase in presence of brown stained CD3 positive cells (T-cells) and Gr-1 positive cells (neutrophils) in both the
mucosa and lymphatic nodules of the large intestine. No discernible differences were seen between the four mouse stains in H&E- or Iba1-stained
(macrophage) sections of the large intestine. Images taken at 636magnification.
doi:10.1371/journal.pone.0010335.g003
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of longer studies with implications for study design. This area

requires further investigation and is particularly important in the

case of mouse models that have been developed to look at health

issues closely related to the human gut system including

inflammatory bowel disease models in IL-2 and IL-10 KO mice

[57,58] that develop colitis in the presence of a gut microbiota

[59,60] and inbred mouse models used for studying drug

metabolism and obesity [9,11].

The concept of the community individuality index provides a

basis to recognize a ‘tipping point’ when community stability

becomes too low to contribute meaningfully to host phenotype.

We found laboratory mice did show gut microbiota individuality,

hence they are valid models for emergent phenotypes. However,

mouse gut community individuality was low relative to other

systems and we predict use of inbred laboratory mice as models for

gut microbiota-related characteristics of the host will underesti-

mate the importance of such effects in humans. The low stability of

the mouse gut microbiota observed here could be a consequence

of the inbred nature of laboratory mice or an inherent feature of

mouse biology. Our observation that individuality was lowest in

the IRF9 KO mice suggests IRF9 KO mice will be a useful model

to assess the importance of stability for microbial-influenced

phenotypes and that identification of IRF9-regulated genes may

result in targets for manipulation of the gut microbiota

composition.

Supporting Information

Table S1 Faecal sample collection from four mouse strains.
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