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Abstract

Scientific management of wildlife requires confronting the complexities of natural and social systems. Uncertainty poses a
central problem. Whereas the importance of considering uncertainty has been widely discussed, studies of the effects of
unaddressed uncertainty on real management systems have been rare. We examined the effects of outcome uncertainty
and components of biological uncertainty on hunt management performance, illustrated with grizzly bears (Ursus arctos
horribilis) in British Columbia, Canada. We found that both forms of uncertainty can have serious impacts on management
performance. Outcome uncertainty alone – discrepancy between expected and realized mortality levels – led to excess
mortality in 19% of cases (population-years) examined. Accounting for uncertainty around estimated biological parameters
(i.e., biological uncertainty) revealed that excess mortality might have occurred in up to 70% of cases. We offer a general
method for identifying targets for exploited species that incorporates uncertainty and maintains the probability of
exceeding mortality limits below specified thresholds. Setting targets in our focal system using this method at thresholds of
25% and 5% probability of overmortality would require average target mortality reductions of 47% and 81%, respectively.
Application of our transparent and generalizable framework to this or other systems could improve management
performance in the presence of uncertainty.
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Introduction

Confronting uncertainty poses a central problem in the

management of wildlife. Decisions made without proper consid-

eration of uncertainty can have undesirable consequences, and

have been implicated, for example, in widespread overfishing [1].

Although often poorly accounted for or ignored, uncertainty exists

about the ‘‘true’’ value of estimated biological parameters [2], [3],

[4], [5]. Parameter uncertainty propagates to uncertainty in

important management estimates, including the magnitude of

mortality a population can withstand without experiencing long-

term declines or other deleterious effects (hereafter ‘‘mortality limit

uncertainty’’) [6], [7]. Management performance can also be

compromised by outcome uncertainty, defined as the difference

between targeted and realized (i.e., known after the period of

exploitation) mortality levels [8]. Remarkably, however, scholarly

and independent retrospective examination of wildlife or fisheries

management performance – in the presence of uncertainty, or, in

general – is rarely conducted (but see [8], [9], [10]).

Several methods can account for and incorporate uncertainty

into decision-making, estimating a priori the probability that

specific scenarios will lead to over-exploitation [1], [2]. Key to

implementing these approaches is distinguishing between targets

(mortality levels management aims to achieve) and limits (mortality

levels management should never exceed). Given that there is

always some chance of exceeding a target, management should

avoid setting targets as high as limits, or conflating the two [6], [7].

Grizzly bears (Ursus arctos horribilis) provide an ideal model

species for assessing uncertainty in the management of wildlife.

Management of most populations occurs with limited demograph-

ic information [11], [12], [13]. Moreover, grizzly bears have life-

history characteristics – including long lifespans, low reproductive

rates, delayed reproductive maturity, and slow population growth

rates [11]– that cause high vulnerability to population declines in

many other taxa [14]. Finally, as with many vertebrate taxa [15],

mortality is primarily human-caused [11], [16], [17]. As such,

management decisions can have considerable influence on

population viability [13], [18].

Management of grizzly bear mortality in British Columbia (BC)

provides a particularly useful case study for examining effects of

uncertainty on management performance. Most populations are

managed for sustained yield whereby, in theory, a maximum
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number of bears (‘‘mortality limit’’) can be killed each year by

humans, mostly by hunting (Legends Figure 1), without causing

population declines [19], [20], [21]. However, uncertainty in

mortality limits is only partially addressed by managers in BC;

biological parameters and calculated mortality limits are treated as

point estimates, with uncertainty adjustments dictated by profes-

sional judgement [22], not probabilistic assessments. As such,

‘‘true’’ mortality limits might be lower than suggested [12], [13].

Furthermore, outcome uncertainty is not incorporated; mortality

limits are used as mortality targets [20], [23] thereby conflating

targets with limits.

Debate about large carnivore management is often contentious

and the situation with BC grizzly bears is no exception.

Independent scientists have recommended more conservative

management [13], [24]. Grizzly bears have been extirpated from

a large portion of the province, and, citing sustainability concerns,

the European Union has banned the import of BC grizzly bear

parts since 2002 [24], [25]. Despite concerns, and concurrent with

an increasing number of populations gaining threatened status,

hunting mortality increased across the province from 2001–2011

(Legends Figure 1; [26], unpublished data).

We use grizzly bear management in BC from 2001–2011 to

explore the potential effects of unaddressed uncertainty on

management performance (in our case, the ability to maintain

mortality below acceptable limits) and to illustrate general methods

for confronting uncertainty in management. Others have high-

lighted the need to quantitatively address various aspects of

uncertainty in management [13], [18], [24]; we add empirical

insight by retrospectively assessing historical management. Specif-

ically, we assessed outcome uncertainty by comparing known

human-caused mortality with targeted levels. We then used

simulation modeling to estimate the biological uncertainty around

mortality limit point estimates based on parameter uncertainty and

assessed how mortality limit uncertainty might affect overmortality

probabilities. Finally, we incorporated outcome and mortality limit

uncertainty into a generalizable and transparent method for

identifying mortality targets that maintain the probability of

overmortality below pre-determined thresholds. We discuss how

this general approach might help inform population management

of other exploited species.

Methods

We conducted our analyses at the Grizzly Bear Population Unit

(hereafter ‘‘population unit’’) spatial scale, thought to reflect

ecologically and demographically relevant sub-populations [21].

We divided our study period into the same multi-year allocation

periods (2001–2003, 2004–2006, and 2007–2011) used by the

British Columbia Ministry of Environment (hereafter ‘‘govern-

ment’’; [21]). We calculated known mortality for each population

unit and each allocation period using a government database

(‘‘Compulsory Inspection Database’’) of all known human-caused

mortality including licensed hunting, animal control kills, road and

rail accidents, and known poaching [21]. Additionally, we

followed government procedures for calculating mortality limits

(in units of bears per allocation period) based on estimates of

population size, annual allowable mortality (AAM; proportion of a

population that can theoretically be removed without causing

population declines), and unreported mortality (from rates

observed in one population unit and extrapolated to other

population units based on four variables thought to correlate with

unreported mortality; See Appendix S1). In our outcome

uncertainty analyses we applied the government’s ‘‘uncertainty

correction factors’’ to population estimates, whereas in subsequent

analyses we used an empirical and probabilistic approach to

address uncertainty. In most population units, the correction

factors used by BC managers are deterministic values, based on

expert judgement, that are inversely proportional to estimated

population sizes (Appendix S1, [23]). Our analyses followed the

government practice of calculating mortality limits for the entire

population (Eq 1) and for females separately (Eq 2) to account for

the sensitivity of populations to female mortality [19], [21], [27].

We also calculated female mortality as a percentage of total

mortality. The government subtracts predicted non-hunt mortality

(e.g. road kill, animal control kills, and illegal hunting) estimates

from mortality limits and allocates the remaining mortality to

hunting. We note, however, that by allocating mortality right up to

mortality limits, BC managers treat limits as targets, conflating the

two; we hereafter refer to true targeted mortality levels (whether or

not they are conflated with mortality limits by managers) as

‘‘targets’’ and true, biologically-determined mortality limits as

‘‘limits’’. Details on mortality limit calculations, and on how they

differed among periods, are provided in Appendices S1 and S2,

respectively.

total mortality limit ~ population estimate |

uncertainty correction factor| annual allowable mortality �ð

estimated unreported mortalityÞ| period length{

previous period total overmortalities:

ð1Þ

female mortality limit~0:3|population estimate|

uncertainty correction factor| annual allowable mortalityð

�estimated unreported mortalityÞ|period length�

previous period female overmortalities:

ð2Þ
Figure 1. Total grizzly bear (U. arctos horribilis) mortality from
hunting (solid-black line) and non-hunting sources (dashed
line) in British Columbia, Canada, from 2001–2011. A province-
wide moratorium on the trophy hunt during one of two hunting
seasons caused lower hunting mortality in 2001.
doi:10.1371/journal.pone.0078041.g001
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Outcome Uncertainty and Mortality Patterns
We assessed outcome uncertainty across population units and

across study periods by calculating the difference between known

mortality (from the Compulsory Inspection Database) and targeted

mortality:

percent difference ~

100 |
known mortality { targeted mortality

targeted mortality

ð3Þ

We further explored patterns of mortality types associated with

overmortality events.

We characterized outcome uncertainty as a function of targeted

mortality. Using maximum likelihood estimation, we fit Michaelis-

Menton curves to model known mortality as a function of targeted

mortality, for each period, and for total and female mortality:

known mortalityi~

az
b targeted mortalityið Þ
cztargeted mortalityið Þz ei,

ei*Negbin 0, kð Þ

ð4Þ

where i represents a population unit-period; a, b, c, are estimated

parameters of the curve; ei represents residual error; and k is the

estimated size parameter of a negative binomial error distribution

with a mean of 0. We used this error distribution because targets must

be positive integer values. We fit the models using optim in R 2.14.1 (R

Core Team 2012, R Foundation for Statistical Computing) with the

Nelder-Mead method and with estimated parameters in log space.

Mortality Limit Uncertainty and Probability of
Overmortality

Whereas current management procedure (above) treats mortal-

ity limits as point estimate, we propagated biological parameter

uncertainty to estimate cumulative uncertainty around mortality

limits using simulation modeling [28], [29] and assessed how this

uncertainty might affect the probability of overmortality. We

focused on three key parameters currently treated as point

estimates by managers. Because empirically derived uncertainty

estimates are lacking for most BC populations, we derived

parameter uncertainty estimates from a literature review (Appen-

dix S3). For each parameter, we took random draws from a

continuous uniform distribution centered on existing point

estimates. The distributions were bounded by: population

estimates: +/240% of point estimate; AAM: +/22% of

Figure 2. Illustration of method for estimating the probability
of overmortality in an individual Grizzly Bear (U. arctos
horribilis) Population Unit (‘‘population unit’’) and period. Blue
vertical line represents the mortality limit point estimate used by
government. Entire distribution (in this example a hypothetical normal
distribution used for simplicity) represents the distribution of mortality
limit uncertainty, or the distribution of simulated mortality limits. Red
dashed line represents the known mortality for the same population
unit-period. Red portion of the distribution represents the proportion of
simulated mortality limits that fell below known mortality levels in the
population unit-period. The percent area of the overall distribution
occupied by the red portion provides a proxy for the probability that
overmortality occurred. See also Video S1.
doi:10.1371/journal.pone.0078041.g002

Figure 3. Outcome uncertainty for A) total and B) female mortality in Grizzly Bear (U. arctos horribilis) Population Units (‘‘population
units’’) in British Columbia, Canada, 2007–2011 (see SI for additional periods). Black curve is a Michaelis-Menten curve fitted by maximum
likelihood, assuming a negative binomial error distribution. Red dashed line indicates a 1:1 relationship; solid red dots above this line signal
population unit-level overmortality events. Dark and light grey-shaded regions encompass the 50% and 80% prediction intervals, respectively
(smoothed for visual purposes). Inset histograms show the distribution of GBPU-level percent difference between known mortalities and mortality
targets (conflated with limits under mortality management policy); red bars to the right of red dashed lines indicate overmortality events.
doi:10.1371/journal.pone.0078041.g003
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population estimate (because AAM is a percentage of population

estimate); and unreported mortality: from 50% (i.e. half) to 200%

(i.e., double) of the point estimate (Appendix S3). We calculated

simulated female and total mortality limits by substituting

randomly drawn parameter values into Eq 1 and Eq 2. We did

not incorporate the government’s estimated uncertainty correction

factors in these calculations. We repeated these simulations 1000

times in each population unit and period to construct a distribution

of realistic mortality limits (the simulated breadth of mortality limit

uncertainty). We used the percentage of simulations in which

simulated mortality limits fell below known mortalities as a proxy for

overmortality probability (Figure 2, Video S1).

Identifying Targets that Incorporate Outcome and
Mortality Limit Uncertainty

We used derived distributions of outcome and mortality limit

uncertainty to calculate targets for each population unit that

maintained the probability of overmortality below 5% (low risk-

tolerant, conservation-prioritizing scenario) or 25% (higher risk-

tolerant, exploitation-prioritizing scenario), using data from 2007–

2011. For a given target, we used a ‘‘plug-in’’ approach [30] to

estimate outcome uncertainty. This approach estimates outcome

uncertainty from the stochastic component (the negative binomial

error) of Eq 4, assuming that the deterministic component (the

Michaelis-Menten curve) was fixed at the maximum likelihood

estimate. For each population unit, we calculated the intersection of

the resultant outcome uncertainty and mortality limit distributions

for all possible target values, keeping mortality limit distributions

fixed, to find the highest target for which the resultant outcome

uncertainty distribution intersected with less than the maximum

area (the given thresholds, 5% or 25%) of the mortality limit

distribution (Video S2). We performed all analyses with R 2.14.1 (R

Core Team 2012, R Foundation for Statistical Computing).

Figure 4. Number of allocation periods (2001–2003, 2004–2006, or 2007–2011) in which female or total overmortality occurred in
Grizzly Bear (U. arctos horribilis) Population Units (‘‘population units’’) of British Columbia, Canada. Shown are 2009 population unit
boundaries. Hunting is not allowed in areas denoted as ‘‘threatened’’, ‘‘extirpated’’, or ‘‘closed to hunting’’. One additional population unit
(Blackwater-West Chilcotin) has been reclassified as threatened as of 2012.
doi:10.1371/journal.pone.0078041.g004
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Results

Outcome Uncertainty and Mortality Patterns
Outcome uncertainty varied across population units and periods,

with discrepancies between targeted and known mortality being more

pronounced for female mortalities than total mortalities (Figure 3, S1,

and S2). Because government procedures conflated targets with

limits, cases in which targets were exceeded also constituted

overmortalities. While mortality fell mostly below targets, over-

mortalities occurred in at least one period in 26 of the approximately

50 population units open for hunting, and most frequently in

southern and eastern BC (Figure 4). Overmortalities (18 total cases

and 33 female cases from 2001–2011) occurred more frequently in

population units with smaller targets (Figure 3, S1, S2, and S3). In

seven population units, overmortality events occurred in two periods,

whereas in three population units they occurred in all three periods

(Figure 4). Overmortality events ranged from one to 24 bears. Finally,

targets were also frequently approached but not exceeded (Figure S3).

The most common factor associated with total overmortalities

was unpredicted non-hunting mortality. However, most of the total

overmortalities from 2001–2011 (17 of 18, or 94%) could have been

avoided with reduced hunting mortality (Figure S3). The most

common factor associated with female overmortalities was hunting

mortality. Most female overmortalities (25 of 33, or 76%) could

have been avoided with reduced hunting mortality (Figure S3).

The female component exceeded 30% of total mortality (from

hunting and non-hunting sources combined) in 55% of all cases

and in 94% of all female overmortality events (Figure 5 A and B,

respectively). The female component exceeded 30% of total hunting

mortality in 50% of all cases and in 82% of all female

overmortality cases (Figure 5 C and D, respectively).

Mortality Limit Uncertainty and Probability of
Overmortality

Accounting for components of biological uncertainty revealed

that overmortalities might have occurred in 90 of 127 (71%)

examined female cases and 89 of 127 (70%) examined total cases.

This comprised an additional 45% of female cases and 56% of

total cases relative to overmortality assessments that did not

consider uncertainty (Figures 6 A and B, S4 A and B, and S5 A

and B). Even in the face of uncertainty, reducing hunting by half

would have reduced the probability of overmortality by an average

of 85% for total and 75% for female overmortality cases

(Figures 6C, S4C, and S5C), whereas completely eliminating

hunting would have reduced the probability of overmortality by an

average of 96% for total and 89% for female overmortality cases

(Figures 6D, S4D, and S5D).

Identifying Targets that Incorporate Outcome
Uncertainty and Mortality Limit Uncertainty

To maintain the probability of overmortality below a 5%

threshold, mortality targets would need to be reduced by an

average of 81% across all population units relative to 2007–2011

targets, and by 100% in 15 (Figure 7 A, B and E). For the

exploitation-prioritizing 25% threshold, mortality targets would

still need to be reduced by an average of 47% across all population

units, and by 100% in four population units (Figure 7 C, D, and F).

Discussion

Our analysis illustrates the importance of assessing management

performance and uncertainty. Specifically, we found that unad-

dressed uncertainty could compromise management performance

by leading to excessive mortalities in hunted species. We found

that grizzly bear overmortalities in British Columbia, Canada,

were spatially widespread, occurred repeatedly, and were more

frequent in females. Considering biological uncertainty around

mortality limits revealed that many additional populations might

have experienced overmortalities. A target-setting framework that

incorporates outcome and mortality limit uncertainty shows that

considerable reductions in targeted mortality would be required to

improve management performance.

Considerations
We used grizzly bears to illustrate general issues applicable to

many other taxa, rather than prescribing specific management

actions for this particular species. Moreover, mortality limit

simulations used uniform distributions with ranges considerably

narrower than the full extent suggested in the literature (see

Appendix S3 for full ranges). We had insufficient data to

determine clearly which particular distribution best approximated

such parameters; however, the use of such limited ranges of

uncertainty suggests our estimates of overmortality risks and target

reductions were underestimated even if the true error structure

followed a different distribution (e.g. normal or log-normal).

Importantly, estimated probabilities of overmortality and reduc-

tions in targeted mortalities would change if empirically derived

and area-specific ranges and distributions of uncertainty were

known for each population unit. Similarly, given that the outcome

uncertainty was estimated from management performance over a

short time, our derived distributions likely underestimated the true

range of uncertainty. Additionally, the relationship between

targeted and known mortality changes through time (as might

be expected given the fluidity of political, social, and ecological

contexts, for example), which potentially affects the ability to

predict the future using historical data. However, by frequently

Figure 5. Female mortality as percent of total mortality across
Grizzly Bear (U. arctos horriblis) Population Units (‘‘population
units’’) in British Columbia, Canada, and allocation periods
(2001–2003, 2004–2006, and 2007–2011). (A) female mortality as
percent of all mortality, (B) female mortality as percent of all mortality in
female overmortality events, (C) female hunting mortality as percent of
all hunting mortality, and (D) female hunting mortality as a percent of
all hunting mortality in female overmortality events. Vertical red lines
indicate 30%, the threshold below which female mortality must remain
for total mortality limits to be theoretically sustainable according to the
BC government’s mortality management procedure.
doi:10.1371/journal.pone.0078041.g005
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and iteratively re-evaluating management performance, managers

adopting this approach could detect such changes and respond by

updating outcome uncertainty distributions. Finally, our analyses

did not address assumptions used by management in setting

specific parameter point estimates for each area, or in adjusting

estimates among periods, which could have affected our ability to

detect overmortalities (Appendix S2). Given these considerations,

our results could provide minimal requirements for improving

performance in this particular system; we recommend that

management systems adapting this approach obtain geographi-

cally-explicit data, and characterize and incorporate uncertainty.

We also recommend that management be re-evaluated, updated,

and refined iteratively to account for possible changes in dynamics

in targeted species and hunter behaviour.

Additional Sources of Uncertainty
Our analyses addressed only a subset of uncertainty in the

management of wildlife. For example, there is additional

uncertainty about the appropriateness of models used in setting

limits (‘‘model selection error’’; [1]); genetic, phenotypic, or social

effects of exploitation on hunted populations (e.g. [31], [32], [33]);

time required for population recovery [14]; effects of declining

food availability [34]; and the cumulative effect of other

anthropogenic disturbances such as logging, mineral extraction,

roads, and development [12], [24], [35]. Despite examining only a

subset of uncertainty, our work empirically illustrates potential

effects on management performance, and suggests methods

management agencies could consider.

Management Performance and Outcome Uncertainty
Multiple processes may contribute to outcome uncertainty. For

instance, in the case of grizzly management, hunting mortality,

especially in females, was often higher than targeted. Guidelines that

encourage hunters to avoid females seem inadequate given that

female mortality consistently exceeded the 30% threshold dictated

by government procedures [21], [23], [27]. Similar barriers to

limiting female mortality might also apply to other wildlife species in

which sexes are not particularly dimorphic, with similar concerns

about population dynamics (e.g. caribou Rangifer tarandus, [36]).

Additionally, although most total and female overmortality events

could have been prevented through hunting reductions, mortality

sources beyond management control might also contribute to

outcome uncertainty. In our analysis road kill, animal control kills,

and illegal hunting were important, highlighting that measures

beyond hunt reductions are likely required to safeguard populations.

Importantly, not explicitly incorporating outcome uncertainty into

procedures for management of wildlife could result not only in

sporadic and isolated, but also chronic and repeated, overmortality

Figure 6. Total and female overmortalities of Grizzly Bear (U. arctos horribilis) Population Units (‘‘population units’’) of British
Columbia, Canada, from 2007–2011 (see SI for additional periods). A) Overmortalities detected given known hunting mortality levels and
without consideration of mortality limit uncertainty. Blue indicates population units with detected overmortality whereas white indicates population
units without. B–D) Simulated probability of total or female overmortality, incorporating uncertainty around mortality limits. Panel B shows simulated
probability of overmortality given known mortality rates; panels C and D show what the probability of overmortality would be had hunting mortality
been reduced by 50% or 100%, respectively, assuming other sources of mortality remained unchanged. Increasingly dark red indicates an increasing
probability of overmortality in a given period. Grizzly bears have been extirpated from dark-grey areas. Light-grey areas indicate population units in
which populations are either threatened or were closed to hunting during the study period.
doi:10.1371/journal.pone.0078041.g006
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events, as highlighted in our study period in which overmortalities

occurred repeatedly in many areas.

Mortality Limit Uncertainty
In addition to outcome uncertainty, uncertainty not explicitly

accounted for in estimating biological parameters, such as mortality

limits, can also lead to excessive mortality. For example, by

accounting for mortality limit uncertainty, our simulations revealed

that overmortality events might have occurred in many cases in

which mortality did not exceed government-determined mortality

limits. We found that the probability of overmortality would have

decreased considerably had hunting been reduced or eliminated, as

expected for any system in which hunting constitutes most

mortality. This result provides management a direct and easily

controlled route to reducing the probability of over-exploitation.

Identifying Targets that Incorporate Uncertainty
Our framework for transparently incorporating uncertainty

identified targets that reduce the probability of over-exploitation.

This approach is a considerable improvement from the determin-

istic and ad hoc ‘‘uncertainty correction factors’’ used in previous

management. In our approach, uncertainty is incorporated in a

repeatable, quantitative and transparent fashion, and can readily

include new data as they become available. Of particular

relevance to managers, the public, and decision-makers is how

mortality management might change if this approach were

implemented. Our simulations revealed that careful management

would require considerable target reductions, consistent with the

conservative ‘bet-hedging’ recommended for cautious manage-

ment [2], [12]. Importantly, given that female mortality seems

difficult to control independently of total mortality, a given

population unit’s total target mortality would need to be reduced

sufficiently to maintain total and female overmortality probabilities

below thresholds. Recommended targets changed considerably

depending on the threshold used, highlighting the importance of

careful consideration and engagement of stakeholders when setting

targets. Although the acceptable probabilities of overmortality

used in our approach (5% or 25%) were arbitrary, they might

represent thresholds for a low risk-tolerant, conservation prioritiz-

ing scenario and a higher risk-tolerant, exploitation-prioritizing

scenario, respectively. Notably, hunting reductions would be

required even in the exploitation-prioritizing scenario.

Identifying Targets in Other Scenarios
Our case study illustrated an approach for reducing the risk of

overmortality of species managed for long-term population

viability. This approach could also be used for reducing the risk

of undermortality of species managed for population reduction or

elimination, such as in the control or eradication of invasive

species (e.g. control of invasive lionfish through exploitation [37]).

In such cases targets would be set sufficiently high to ensure they do

not fall below levels needed to obtain population reductions

required. This approach provides the first steps to a full decision

analysis framework, a quantitative approach for weighing various

management options that might be appropriate in future

management deliberations [2], [29].

Importance of Incorporating Best-practices from Other
Disciplines

This study illustrates the merit of incorporating approaches

from other disciplines and taxa into wildlife management.

Whereas BC grizzly bear management incorporates data and

management techniques from grizzly bear management in other

jurisdictions [19], [21], it does not incorporate some promising

methods from other disciplines. For example, our approach, which

relies on the principle that targets should be set sufficiently low to

account for uncertainty (and lower than most of the estimated

range of mortality limits; [2], [6], [7]) is used in fisheries but far less

commonly in wildlife management, highlighting the need for

better integration of best practices across taxa and disciplines.

Figure 7. Illustration of our method for setting female (A and C) and total (B and D) mortality targets, with maximum probability of
overmortality of 5% (A and B) or 25% (C and D) by integrating outcome uncertainty (grey distribution) and mortality limit
uncertainty (red distribution), using the Stewart Grizzly Bear (U. arctos horribilis) Population Unit as an example. Targets (dashed black
lines) from this approach are set so that the resulting outcome uncertainty distribution (grey distribution) overlaps with a maximum of 5% or 25% of
the mortality limit uncertainty distribution (red distribution). Red vertical lines represent mortality limits (conflated with targets in previous periods
under mortality management policy) set by the government in 2007–2011. Magnitudes of recommended target reductions are shown by black
double-headed arrows. E-F) Reduction in mortality targets, relative to 2007–2011 targets (conflated with limits under mortality management policy),
required to maintain the probability of both female and total overmortality below E) 5% or F) 25%. Increasingly dark red indicates increasing target
reductions identified.
doi:10.1371/journal.pone.0078041.g007
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Conclusion

Science can provide valuable insight into management issues

often mired in heated debate. Management often occurs within

contentious social environments, with interest groups advocating

strongly for different scenarios, informed by varying ethical

perspectives and philosophies [10], [38], [39], [40], [41]. Science

can inform such debate by assessing the ability of management to

achieve objectives and by transparently communicating risks

associated with various scenarios. We suggest that many manage-

ment systems might benefit from retrospective and empirical

examinations that can inform present and future management.

These could be conducted as a part of the management process or,

as in this study, by third parties. Results and predictions from such

examinations in any system could help to communicate likely

outcomes while simultaneously improving future management

performance.

Supporting Information

Figure S1 Outcome uncertainty for A) total and B)
female mortality in Grizzly Bear (U. arctos horribilis)
Population Units (‘‘population units’’) in British Colum-
bia, Canada, 2001–2003 (see SI for additional periods).
Black curve is a Michaelis-Menten curve fitted by maximum

likelihood, assuming a negative binomial error distribution. Red

dashed line indicates a 1:1 relationship; solid red dots above this

line signal population unit-level overmortality events. Dark and

light grey-shaded regions encompass the 50% and 80% prediction

intervals, respectively (smoothed for visual purposes). Inset

histograms show the distribution of GBPU-level percent difference

between known mortalities and mortality limits (conflated with

limits under mortality management policy); red bars to the right of

red dashed lines indicate overmortality events.

(TIF)

Figure S2 Outcome uncertainty for A) total and B)
female mortality in Grizzly Bear (U. arctos horribilis)
Population Units (‘‘population units’’) in British Colum-
bia, Canada, 2004–2006. Black curve is a Michaelis-Menten

curve fitted by maximum likelihood, assuming a negative binomial

error distribution. Red dashed line indicates a 1:1 relationship;

solid red dots above this line signal population unit-level

overmortality events. Dark and light grey-shaded regions encom-

pass the 50% and 80% prediction intervals, respectively (smoothed

for visual purposes). Inset histograms show the distribution of

GBPU-level percent difference between known mortalities and

mortality targets (conflated with limits under mortality manage-

ment policy); red bars to the right of red dashed lines indicate

overmortality events.

(TIF)

Figure S3 Mortality targets (conflated with limits under
mortality management policy) and known mortalities
for each Grizzly Bear (U. arctos horribilis) Population
Unit (population unit) in British Columbia, Canada,
during A) 2001–2003, B) 2004–2004, and C) 2007–2011
allocation periods. Green and orange bars represent number of

bears killed by non-hunting and hunting sources, respectively.

Vertical grey lines denote mortality targets and vertical black lines

denote predicted non-hunt mortality for each period. Population

unit rows in which known mortality exceeded mortality targets

(‘overmortality’) are shown with grey highlighting. Open blue

circles denote population units in which hunting mortality alone

exceeded the mortality targets for all sources combined; filled blue

circles denote areas in which the unpredicted non-hunting

mortality (difference between known and predicted non-hunting

mortality) exceeded the excess mortality.

(TIF)

Figure S4 Total and female overmortalities of Grizzly
Bear (U. arctos horribilis) Population Units (‘‘population
units’’) of British Columbia, Canada, from 2001–2003. A)

Overmortalities detected given known hunting mortality levels and

without consideration of mortality limit uncertainty. Blue indicates

population units with detected overmortality whereas white

indicates population units without. B–D) Simulated probability of

total or female overmortality, incorporating uncertainty around

mortality limits. Panel B shows simulated probability of over-

mortality given known mortality rates; panels C and D show what

the probability of overmortality would be had hunting mortality

been reduced by 50% or 100%, respectively, assuming other

sources of mortality remained unchanged. Increasingly dark red

indicates an increasing probability of overmortality in a given

period. Grizzly bears have been extirpated from dark-grey areas.

Light-grey areas indicate population units in which populations are

either threatened or were closed to hunting during the study period.

(TIF)

Figure S5 Total and female overmortalities of Grizzly
Bear (U. arctos horribilis) Population Units (‘‘population
units’’) of British Columbia, Canada, from 2004–2006. A)

Overmortalities detected given known hunting mortality levels and

without consideration of mortality limit uncertainty. Blue indicates

population units with detected overmortality whereas white

indicates population units without. B–D) Simulated probability of

total or female overmortality, incorporating uncertainty around

mortality limits. Panel B shows simulated probability of over-

mortality given known mortality rates; panels C and D show what

the probability of overmortality would be had hunting mortality

been reduced by 50% or 100%, respectively, assuming other

sources of mortality remained unchanged. Increasingly dark red

indicates an increasing probability of overmortality in a given

period. Grizzly bears have been extirpated from dark-grey areas.

Light-grey areas indicate population units in which populations are

either threatened or were closed to hunting during the study period.

(TIF)
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