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Abstract

Enhanced production of a 42-residue beta amyloid peptide (Ab42) in affected parts of the brain has been suggested to be
the main causative factor for the development of Alzheimer’s Disease (AD). The severity of the disease depends not only on
the amount of the peptide but also its conformational transition leading to the formation of oligomeric amyloid-derived
diffusible ligands (ADDLs) in the brain of AD patients. Despite being significant to the understanding of AD mechanism, no
atomic-resolution structures are available for these species due to the evanescent nature of ADDLs that hinders most
structural biophysical investigations. Based on our molecular modeling and computational studies, we have designed
Met35Nle and G37p mutations in the Ab42 peptide (Ab42Nle35p37) that appear to organize Ab42 into stable oligomers. 2D
NMR on the Ab42Nle35p37 peptide revealed the occurrence of two b-turns in the V24-N27 and V36-V39 stretches that could
be the possible cause for the oligomer stability. We did not observe corresponding NOEs for the V24-N27 turn in the Ab21–

43Nle35p37 fragment suggesting the need for the longer length amyloid peptide to form the stable oligomer promoting
conformation. Because of the presence of two turns in the mutant peptide which were absent in solid state NMR structures
for the fibrils, we propose, fibril formation might be hindered. The biophysical information obtained in this work could aid in
the development of structural models for toxic oligomer formation that could facilitate the development of therapeutic
approaches to AD.
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Introduction

The molecular pathology of Alzheimer’s disease (AD) is

characterized by increased accumulation of 39 to 43 residue long

beta-amyloid peptides (Ab) in plaques in the brains of Alzheimer’s

disease (AD) patients. Interestingly, individuals of nearly all ages

have moderate amounts of matured amyloid peptide fibrils present

in their brains, but only a certain percentage of them develop AD.

Previous work in this area has indicated that the presence of

oligomeric forms (amyloid-derived diffusible ligands, ADDL) of

the 42 residue beta-amyloid peptides, rather than fibrils, are

responsible for the neuronal damage and synaptic plasticity in the

central nervous system in AD [1,2]. It has also been shown that the

severity of neuronal damage is well correlated with the ADDL

content of Ab peptides in the Alzheimer’s diseased brain [3].

Monomers of the wild type form of Ab42 (Ab42WT) associate

into unstructured assemblies with variable aggregation numbers

[4,5]. Both oligomers and fibrils originate from these unstructured

intermediates. Ultimately, ADDLs are unstructured intermediates

leaving only matured fibrils as the most stable entities [6,7]. Much

effort has been undertaken to probe the Ab fibril state utilizing

solid-state NMR [8], X-ray [9], Cryo EM [10], electron

microscopy [11], neutron scattering [12], atomic force microscopy

[13] and other spectroscopic methods [14,15].

Very little is known about the structure of the ADDL form of

the beta-amyloid peptide. The inherent formation of higher order

aggregates by Ab is a great challenge for the experimental

characterization of ADDLs. Researchers working in this area are

hampered by the difficulties of obtaining sufficient concentrations

of ADDL for spectroscopic measurements [16]. Efforts have been

made to search for means to stabilize the oligomeric, ADDL,

species. For example, Wetzel et al. and others have identified small

molecules that stabilize the Ab42WT in the proto-fibrillar forms

[17,18]. The work of Selkoe et al. [19] comparing neurotoxic

properties of Ab42WT and the Arctic mutant E22G Abs, proposed

that the stability of ADDLs is inversely correlated to the nucleation

rate of the formation of fibrillar aggregates. Using photo-induced

cross-linking and gel electrophoresis, Bitan et al. suggested the

predominant ADDL species of Ab42WT are monomers, dimers,

trimers, pentamers, and hexamers [20]. They have also observed
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that tetramers are rare and thought to be unstable intermediate

species in the oligomerization pathway. A predominantly ADDL

forming mutant of Ab is yet to be known in the literature.

Based on our earlier in silico modeling studies, and supported by

other work suggesting the formation of b–strand character in the

C-terminus of Ab, we propose an Ab variant with two point

mutations (Met35 to norleucine, and Gly37 to D-proline) to form

stable, soluble oligomers [21,22,23]. Previous work has demon-

strated the ability of single substitutions in the Ab sequence to alter

stability and morphology of Ab assemblies [24]. First, we

substituted the isosteric norleucine in place of Met35 to act as a

non-perturbing replacement which would remove issues that could

result from the variability of the oxidation state of Met35.

Secondly, we substituted a D-proline for G37 in order to stabilize

the oligomeric structure seen in simulations, i.e. a C-terminal beta

hairpin with a turn at residues 37–38 [23]. In this paper, we probe

structural properties of Ab42Nle35p37 and its truncated version

Ab21–43Nle35p37 using different biophysical techniques. In

particular, we have used Nuclear Magnetic Resonance (NMR)

spectroscopy to determine structural properties of ADDL form,

and finally use this data in molecular modeling to refine observed

structural features.

Results

Mutant peptide Ab42Nle35P37 forms stable oligomers in
solution

In a previous computational study, Kelley et al hypothesized that

a turn promoting mutation such as G37p would stabilize trimeric

Ab oligomers [23]. In agreement with this prediction, the mutant

peptide, Ab42Nle35p37, was found to adopt a significantly higher

yield of soluble oligomer than that of Ab42WT. This is seen in the

one-dimensional 1H NMR spectra of Ab42WT (Figure 1A) and

Ab42Nle35p37 (Figure 1B) for samples prepared in the same

manner. The Ab42WT spectrum has very little observable signal

consistent with the peptide having precipitated from solution (no

signal to detect) and/or formed very large molecular weight

aggregates (significant line-broadening). Whereas the same

spectral region for Ab42Nle35p37 shows amide and aromatic

resonances characteristic of soluble, non-aggregating peptides/

proteins.

Conformational analyses of the mutant and Ab42WT peptides

were also carried out by Circular Dichroism (CD) spectroscopy. A

representative CD trace of Ab42WT aggregate is observed to

develop into b-sheet rich, mature fibrils over a period of 12 hours

with the characteristic strong absorbance at ,220 nm (Figure 2,

Curve WT). However, in the case of the Ab42Nle35p37 mutant,

no change was observed in the CD spectrum after one week.

Figure 2, Curve Mut shows the CD spectrum of Ab42Nle35p37

having a strong absorbance around 197 nm typical of random-

coil, disordered states in solution.

Thioflavin T fluorescence was used to assess aggregation and

mature fibril formation as b-sheet content is directly correlated

with fluorescence intensity of the dye. We observed about four

times more Thioflavin T fluorescence in the Ab42WT peptide

when compared to Ab42Nle35p37 (Figure 2 inset) confirming the

aggregating and non-aggregating nature of the WT and mutant

peptides, respectively.

High-resolution analysis of the peptide solution preparations

were carried out using atomic force microscopy (AFM). Figure 3

shows AFM images of the soluble form of Ab42WT and

Ab42Nle35p37 peptide preparations deposited onto clean silicon

wafers. The wafers for Ab42WT wildtype preparations showed

particles with a mean globular structure height of 4.32 nm but

with a variation of particle sizes ranging from 2.06 to 14.79 nm.

Notably, particles appeared to be adhered to each other or

connected by thin fibrils suggesting they were in the process of

forming larger aggregates. The wafers for the Ab42Nle35p37

mutant preparations showed particles with a similar mean globular

structure height of 4.00 nm compared to wildtype, however the

distribution of heights was much smaller at 2.29 to 4.84 nm. This,

along with the relatively uniform density of globular structures

observed, suggests the mutant peptide is stabilized in smaller

oligomers.

Identification of turns and hairpins in Ab42Nle35p37 and
Ab21–43Nle35p37 by NMR

Having demonstrated that the full-length mutant Ab42Nle35p37

peptide forms assumes a stable, low-molecular weight form in

solution we proceeded with multi-dimensional NMR experiments

on the mutant peptide. The quality of two-dimensional 1H-1H

TOCSY and NOESY spectra were marginal due to signal overlap

and line-broadening (Figure 4ABC) likely caused by a combination

of low-level aggregation, conformational heterogeneity, and

conformational averaging between transiently structured confor-

mations.

In order to aid the assignment problem, we built on previous

work suggestive that the N-terminal residues of the Ab sequence

are flexible and unstructured by working with a truncated form of

the mutant peptide, Ab21–43Nle35p37 [23,25]. When HFIP film of

this truncated mutant peptide was dissolved, we observed higher

Figure 1. One-dimensional NMR proton spectra of Ab peptides.
Aromatic/amide regions of A) Ab42WT and B) Ab42Nle35p37 in 10%
DMSO/PBS, pH 7.2, at 25uC.
doi:10.1371/journal.pone.0021776.g001

Figure 2. CD spectroscopy of the Ab42Nle35p37 and Ab42WT
peptides. Ab42WT takes beta-sheet rich fibrils (curve WT) while
Ab42Nle35p37 shows a large negative peak around 197 nm indicating
disordered structure (curve Mut). Thioflavin T fluorescence of Ab42WT
and Ab42Nle35p37 peptides are shown in the inset. Data was measured
at 25uC.
doi:10.1371/journal.pone.0021776.g002

Ab Mutant Stabilizes b-Turn and Forms Oligomers
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solubility (.4 mg/ml) compared to the full-length mutant peptide

(,1 mg/ml). This truncated peptide remained in solution without

any fibril formation, similar to the full-length mutant, for a period

of more than 6 months (data not shown).

The TOCSY and NOESY spectra of the truncated peptide

gave slightly better quality data (Figure 4DEF) when compared to

the full-length mutant peptide. Assignments, though not trivial,

were more tractable on this construct. Working with the

information gleaned from the truncated form allowed a degree

of validation for the full-length mutant assignments (the spectral

profiles showed similarities though not one-for-one overlays).

Interestingly, save for Y10 and K16, the N-terminal residues in the

full-length mutant peptide, Ab42Nle35p37, were not readily

assigned, consistent with the N-terminus being flexible and

unstructured. Assignments are given in Tables 1 and 2 for

Ab42Nle35p37 and Ab21–43Nle35p37, respectively.

A wealth of significant NOE crosspeaks was not expected from

these peptides but the few that we observed were rather

interesting. Comparative intensities of NOEs for Ha-NH (i, i+1)

and Ha-NH (i, i) are indicative of turn conformation [26,27,28].

Specifically, residues that have extended conformation show

higher Ha-NH (i, i+1) NOE intensity compared to that of Ha-NH

(i, i), while residues involved in turn conformation show higher

Ha-NH (i, i) intensity than the corresponding Ha-NH (i, i+1)

intensity. For the full length mutant Ab42Nle35p37 peptide, Ha-

NH (i,i) NOE cross peaks are observed for G25-S26 and G38-

V39. Also observed are NH-NH (V24-G25) and NH-NH (G25-

S26) NOEs suggesting a type I turn in the region of V24-N27. Ha-

NH (p37-G38) and NH-NH (G38-V39) NOEs suggest that the

p37-G38 segment forms a type II9 b-turn. The Ha-Hd (V36-p37)

cross peak observed between V36 and p37 indicates that p37 is in

the trans conformation. Earlier work on Ab42WT monomers

suggests turns around D7-Y10 and V24-N27 [29,30]. Our data

supports the existence of this second turn. Though we do not

observe the first turn, we cannot discount the possibility of its

presence being very transient in nature given the difference in

spectral properties observed between the full-length and truncated

mutant peptides.

Figure 4. Two-dimensional NMR proton spectra of Ab peptides.
2D 1H-1H spectra of Ab42Nle35p37 (A, B, C) and Ab21–43Nle35p37 (D, E,
F). TOCSY of (NH-Ha) region of the Ab42Nle35p37 (A) and Ab21–

43Nle35p37 (D). NOESY of (NH-Ha) region of Ab42Nle35p37 (B) and
Ab21–43Nle35p37 (E). NOESY of (NH-NH) region of Ab42Nle35p37 (C) and
Ab21–43Nle35p37 (F). Data was measured at 15uC in 10% DMSO-d6, PBS,
pH 7.2.
doi:10.1371/journal.pone.0021776.g004

Figure 3. AFM images of Ab peptide preparations. A) Represen-
tative 1.061.0-mm x-y, 10-nm total z-range AFM micrograph of Ab42WT
preparation. Observed are irregularly shaped and sized aggregate
particles, some connected by fibrils. B) A surface plot of the boxed
region of (A) clearly showing the aggregate with connected fibril.
C) Representative 1.061.0-mm x-y, 10-nm total z-range AFM micrograph
of Ab42Nle35p37 preparation showing discrete globular aggregates of
uniform size and density.
doi:10.1371/journal.pone.0021776.g003

Ab Mutant Stabilizes b-Turn and Forms Oligomers
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For the truncated mutant Ab21–43Nle35p37 peptide, as in the

full-length mutant, we observed Ha-NH (p37-G38) and NH-NH

(G38-V39) NOE cross peaks suggesting a type II9 b-turn involving

residues V36-V39. Similarly, an Ha-Hd (V36, p37) cross peak

suggests the presence of trans conformation for p37. We do not

observe NH-NH NOEs for the turn around V24-N27, but this

may be the result of N-terminal flexibility in this truncated

construct.

Results from computational structure refinement
Refinement via molecular dynamics using the NMR constraints

was used to produce an ensemble of structures for the NOE

containing regions of the full length mutant Ab42Nle35p37

peptide. (Figure 5, PDB S1 and PDB S2) We see the existence

of two definite turns – the D-proline induced beta-hairpin (residues

V36-V39) and a more N-terminal turn consisting of residues V24-

N27, which is in agreement with the available SS-NMR fibril

studies and complimentary unconstrained MD simulations

[6,31,32,33].

Mutant peptide decreases fibril content of WT aggregate
mixtures

Ab42WT was found to adopt a soluble oligomeric form to a

much greater extent when mixed with the mutant. By co-

solubilizing Ab42WT with Ab42Nle35p37 in 1:4 and 4:1 ratios, the

mixtures resulted in one-dimensional 1H NMR spectra very

similar to that acquired on Ab42Nle35p37 alone (Figure 6AB). To

ensure the spectra observed were not simply the result of all

Ab42WT precipitating, oligomerizing, or aggregating to itself

leaving only mutant Ab42Nle35p37 peptide observable by NMR,

we also produced the same WT: mutant peptide mixtures using

uniformly 15N-labeled Ab42WT. We were able to observe resolved
1H{15N} HSQC spectra (Figure 6C) verifying the ability of the

mutant peptide stabilizing the WT in solution, and suggesting that

the mutant peptide could act as an inhibitor to fibril formation of

Ab42WT. Acquiring two-dimensional TOCSY experiments on the

mixture samples found similarities in CaH chemical shifts to the

mutant peptide alone (Figure 6D) suggestive that the Ab42WT

adopts a similar conformation to the Ab42Nle35p37 mutant when

the two are mixed.

Discussion

In our effort to design a soluble oligomer-forming mutant, we

have previously predicted that the mutation of G37p will result in

enhanced b hairpin formation and increased oligomer stability.

Two-turn structures were obtained using NOE refinement. The

occurrence of the first turn at V24-N27 is in agreement with the

available SS-NMR fibril studies. The second turn consisting of

residues V36-V39, absent in previous studies, is introduced here

by the mutation. In the nucleated polymerization model fibrils are

likely to grow by monomer addition [34]. The two-turn structure

of the mutant possibly depletes monomer content by diverting

peptide into a stable oligomer formation.

Earlier NMR studies showed that Ab monomers adopts a

collapsed coil (mostly random) with a well-defined central

hydrophobic cluster (L17-A21) and turn- or bend-like structures

(D7-E11 and A21-S26) [35]. The data presented here are

consistent with these previous observations. Additionally, we have

Table 1. Chemical shift assignments of Ab42Nle35p37.

Amino acid NH aH bH Others

Y10 8.02 4.554 2.95, 3.08

K16 8.242 4.317 1.554, 1.662 dH 1,405

E22 8.18 4.355 2.218

D23 8.349 4.672 2.685

V24 8.379 4.292 1.806 cH 0.9618

G25 8.143 4.01

S26 8.203 3.927 4.484

N27 8.339 4.616 3.063

K28 8.475 3.97 - eH 2.293

G29 8.64 3.898

A30 8.082 4.366 1.406

I31 8.165 4.196 1.909 eH 0.9618

I32 8.627 4.17 1.9 eH 0.9591

G33 8.602 4.026

L34 8.143 4.445 1.627 -

NL35 8.301 4.63 1.616 cH1.227, eH1.105

V36 8.7 4.583 2.021 cH 0.9852

dP37 4.22 2.39 cH 2.081, 2.143

dH 3.885

G38 8.494 3.791

V39 7.88 4.3 2.12 cH 0.94

V40 8.488 4.235 2.248 cH 0.9513

I41 8.678 4.291 2.016 eH 0.981

A42 7.989 4.36 1.401

doi:10.1371/journal.pone.0021776.t001

Table 2. Chemical shift assignments of Aß21–43Nle35p37.

Amino acid NH aH bH others

E22 8.543 4.743 1.92 cH 1.268

D23 8.47 4.455 2.795

V24 8.275 4.17 1.873 cH 0.926

G25 8.418 3.788

S26 8.214 3.9 4.451

N27 8.644 4.661 2.682

K28 8.464 4.665 1.978,1.885 cH 1.423 eH 2.8

G29 8.616 3.993

A30 8.068 4.333 1.374

I31 8.179 4.172 1.874 cH 1.202 eH 0.889

I32 8.54 4.218 1.91 eH 0.93

G33 8.464 3.949

L34 8.141 4.428 1.642 dH 0.9494

NL35 8.242 4.675 1.606

V36 8.648 4.537 2.023 cH 0.957

dP37 4.423 2.373 cH 2.006 , 2.1

dH 3.892

G38 8.401 3.97

V39 7.853 4.274 2.88 cH 0.92

V40 8.446 4.487 1.98 cH 0.9118

I41 8.314 4.168 2.191 cH 0.9655

A42 8.442 4.178 1.418

doi:10.1371/journal.pone.0021776.t002

Ab Mutant Stabilizes b-Turn and Forms Oligomers

PLoS ONE | www.plosone.org 4 July 2011 | Volume 6 | Issue 7 | e21776



shown a b-turn in the C-terminal region of the peptide. Wuthrich

et al. have also studied the structure of the oxidized form of

Met35ox Ab40 and Ab42 peptides in aqueous Tris-HCl buffered

solutions at pH 6.4–8.2 [36]. They showed unstructured peptide

strands punctuated by turns around S8-V12 and F20-V24 regions.

Their 15N{1H} NOE data showed that the Ab42Met35ox has

reduced flexibility at the C-terminus relative to the Ab40 Met35ox

suggesting insipient structure around this region, consistent with

our hypothesis of a beta hairpin in the same region.

How does this structural data compare to previous SS-NMR

data studies on fibril structure? Almost all fibrillar studies show a

hairpin turn forming somewhere between residues 24 and 30.

Examining three of the most recent and notable studies, we find

three different sets of amino acids forming the turn location,

although it is arguable that this may be attributed to the

differences in information content for the various methods and

their corresponding sensitivity to structural disorder [6]. Ohman’s

2006 study of residues 1–42 predict a turn consisting of residues

25–28 or GSNK in the sequence [31]. Riek’s predicted turn of the

same chain is shifted two amino acids towards the N-terminus at

residues 27–30 and sequence NKGA [32]. Tycko’s recent work

concerning Ab40WT has found a turn at residues V24-N27 with

sequence VGSN [6]. This turn location is in agreement with our

oligomer data. Moreover, our ensemble highly resembles an

unconstrained MD study of the same chain, in which the ensemble

was clustered and the most populated node was presented [33].

Our refined ensemble shows a less static ensemble than the SS-

NMR fibril studies. The d-Pro induced turn at residues V36-V39

disrupts the inter-chain contacts present in the fibril models by

changing the monomer topology. This leaves the VGS turn sequence

to stabilize itself exclusively via intra-chain contacts, and we suggest

this to be the reason we see greater flexibility in this region.

The AFM data for the mutant Ab42Nle35p37 peptide suggest

that it forms predominantly low molecular weight species in

solution. The 4 nm mean AFM particle height would be in the

range of five- to eight-mer complexes by a statistical analysis

performed by Lobanov et al. on the radius of gyration of .3500

protein domains in the SCOP database [37]. But notably, the

domains in the Lobanov study were compact, folded, a and/or b
containing proteins. The likelihood of the Ab mutant peptide

being in a loose, predominantly undefined structure, would

possibly reduce the number of monomer units present per

complex.

Conclusions
The data presented in this paper indicate the structurally

disordered oligomeric assemblages of Ab42WT and mutant differ

in their propensity to form oligomers and fibrils. Ab42WT peptide

formed fibrils at the concentration of 0.4 mM at 10% DMSO/

PBS. The mutant preparation resulted entirely in low molecular

weight entities. NMR studies on Ab42Nle35p37 showed occur-

rence of two b-turns in the stretches V24-N27 and V36-V39.

Upon mixing Ab42Nle35p37 mutant with Ab42WT, Ab42WT

peptide is stabilized in solution suggesting a significant reduction in

fibril formation. Presumably such reduced fibril formation is due

to the engineered b-turn of the mutant (V36-V39) hindering the

formation of the C-terminal b-turn (V24-A30) found in the fibril

SS-NMR structure. Although our finding implies the existence of a

stabilizing structure for the ADDLs in the mutant peptide, we were

not able to detect any known secondary structure stretches, other

than the two b-turns, by 1H-NMR and CD spectroscopy. This

suggests that b-sheet or a-helix formation is not required for the

ADDL stability. Finally, the ability of this mutant to inhibit the

aggregation of WT Ab peptide opens a door to another use for this

mutant peptide, since a variant of this peptide or a small molecule

peptide mimic could potentially serve as a means to inhibit Ab
aggregation.

How are these results useful in gaining insight into the nature of

WT Ab? While our NMR structural data of the mutant does not

directly give structural data regarding the WT, the fact that the

mutant mixed with the WT has slowed aggregation suggests that

the C terminal beta hairpin presumably stabilized by the mutant

does have structural relevance for understanding the nature of the

aggregation of WT Ab. Future work could either use the C

terminal beta hairpin motif for small molecule drug discovery in

order to find novel small molecule inhibitors of Ab aggregation.

Materials and Methods

Sample preparation
Synthetic peptide Ab42Nle35p37 of the sequence DAEFRHDS-

GY10EVHHQKLVFF20AEDVGSNKGA30IIGLNLVDpGVV40IA

Figure 5. NOE refinement ensembles. 5 structures were taken at
1 ns intervals from the computational structure refinements. Shown are
the six residues around the turns (solid color rendering for the four
residues around the turns, semi-transparent for the leading and trailing
residues), backbone heavy-atoms shown for all residues, and side-chain
heavy-atoms included for the four residues around the turns. (A) The
V24-N27 turn is observed in most SS-NMR studies, and as show here has
a conformation similar to previous unconstrained MD simulations. (B)
The induced beta-turn from the d-Pro mutation, V36-V39, is clearly
defined.
doi:10.1371/journal.pone.0021776.g005

Ab Mutant Stabilizes b-Turn and Forms Oligomers

PLoS ONE | www.plosone.org 5 July 2011 | Volume 6 | Issue 7 | e21776



was synthesized and purified by Anaspec (San Jose, CA).

AEDVGSNKGA30IIGLNLVDpGVV40IAT (Ab21–43Nle35p37) was

synthesized and purified by the Stanford Protein and Nucleic Acid

Facility. Recombinant purified Ab42WT, both unlabeled and 15N-

labeled, peptides (.95%) were obtained from rPeptide (Bogart, GA).

All peptides were used as supplied. Solution samples of the peptides

were prepared as follows. Peptides were dissolved in 1,1,1,3,3,3-

hexafluoro-2-propanol (HFIP) to concentrations of 1 mM HFIP,

evaporated over nitrogen, and then dried in a Savant Speed Vac for

1 hr. The resultant peptide films were further kept under vacuum for

a few hours to remove solvent traces. The films were stored at 280uC
until use. Peptide films were dissolved to ,0.5 mM concentrations in

10% d6-DMSO/10 mM PBS buffer to a final pH of 7.2. The

solutions were incubated at 4uC for 12 hours, and then transferred to

37uC for 4 hours. The resulting solutions were centrifuged at

13000 rpm in a desktop centrifuge (Eppendorf) at 4uC for 30 min to

remove any precipitated gel-form of the peptides. After centrifuga-

tion, the peptide concentrations were adjusted to 0.4 mM (concen-

trations were checked by UV visible spectroscopy), 0.05% sodium

azide added as a bacteriostat and transferred to 5 mm NMR tubes.

Mixtures (4:1 and 1:4) of Ab42Nle35p37:Ab42WT (total peptide

concentration of 1 mM) were prepared in HFIP. The solvent was

evaporated using speed-vac and resultant peptide films were dissolved

in 10% d6-DMSO/10 mM PBS buffer and processed as above.

d6-DMSO was purchased from Cambridge Isotope Labora-

tories (Cambridge, MA). Tris(2,29-bipyridyl)dichloro ruthenium(II)

(Ru(Bpy)) and ammonium persulfate (APS) were purchased from

Sigma.

Figure 6. One- and two-dimensional NMR spectra of Ab peptide mixtures. 1D proton spectra of the aromatic/amide regions of 1:4 (A) and
4:1 (B) mixtures of Ab42Nle35p37:Ab42WT. (C) 2D 1H-15N HSQC (Heteronuclear Single Quantum Coherence) experiment of the 4:1
Ab42Nle35p37:Ab42WT mixture (Ab42WT uniformly 15N-labeled), in 10% DMSO/PBS, pH 7.2, at 25uC. (D) 2D 1H-1H TOCSY (NH-Ha) region of the 4:1
Ab42Nle35p37:Ab42WT mixture, in 10% DMSO/PBS, pH 7.2.
doi:10.1371/journal.pone.0021776.g006

Ab Mutant Stabilizes b-Turn and Forms Oligomers
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Circular Dichroism Spectroscopy (CD) and Thioflavin T
binding studies

Ab42Nle35p37, having been dissolved and processed above

(10% DMSO/PBS buffer), was passed through a 10/30 Superdex

75 HR column to remove DMSO and immediately analyzed by

CD. An Ab42WT sample was prepared into PBS buffer in order to

demonstrate a representative beta-sheet rich CD trace. The fibrils

from the Ab42WT preparation were centrifuged at 12000 rpm for

15 min to separate from any remaining monomer and the pellet

was re-suspended in 10 mM phosphate pH 7.2 for CD measure-

ment. CD measurements were performed using a 0.1 mm path

length quartz cell in an Aviv 62A DS Circular Dichroism

spectrometer (Aviv Associates, Lakewood, NJ) at 22uC.

Mean residue ellipticity (h) was determined according to the

equation h= hObs N MRW/(10 N l N c); where hObs is observed

ellipticity, MRW is mean residue weight of the peptide, c is peptide

concentration (g/L), and l is optical path length (cm). The

thioflavin T (ThT) binding studies of Ab42WT and mutant

peptides were carried out by incubating precipitated fibrils of the

Ab42WT or eluted oligomer preparation from the SEC column.

The 25 mM amyloid fibrils (Ab42WT) or oligomers of mutant were

mixed with 5 mM of ThT dye concentration. After 2 h incubation,

the fluorescence of the sample solutions were recorded by exciting

at 440 nm and the intensity at 480 nm is monitored using Perkin-

Elmer LC 55B spectrofluorimeter. The bandwidths of excitation/

emission wavelengths were 5 nm/each.

Atomic Force Microscopy
AFM topography images were acquired in the light tapping

mode regime using a Multimode AFM (Veeco, USA). Resonant

frequencies of the uncoated silicon tips (MikroMasch, USA) were

roughly 150 kHz, with scan rates around 5–8 mm/s. Peptide

samples were prepared using the protocol described above and

diluted to 25 mM before application. Peptide solutions were

adsorbed by incubating onto Pirahna cleaned silicon wafers with

molecular smoothness (,1 Å RMS roughness) as determined by

AFM. After incubating for 10 min, the wafers are gently washed

repeatededly with MilliQ water.

NMR Spectroscopy
NMR spectra were acquired at the Stanford Magnetic

Resonance Laboratory on a Bruker Avance 500 MHz spectrom-

eter running TopSpin v1.3 and equipped with a 5 mm H{CN} Z-

axis gradient CryoProbe. Peptide samples were prepared as

described above in 10% d6-DMSO/10 mM PBS buffer of pH 5.5

or 7.2. One-dimensional 1H experiments were acquired with

16384 total data points, 12 ppm spectral window, and number of

scans ranging from 64 to 256. Two-dimensional 1H-1H TOCSY

(TOtal Correlation SpectroscopY) experiments were acquired with

2048 total data points, 11 ppm spectral windows, 60 or 80 ms

dipsi2 mixing times, for 256 to 512 increments of 32 to 128 scans

per increment. Two-dimensional 1H-1H NOESY (Nuclear Over-

hauser Effect SpectroscopY) experiments were acquired with 2048

total data points, 11 ppm spectral windows, 100, 150, 200 or

400 ms mixing times, for 128 increments of 128 scans per

increment. The two-dimensional 1H-15N HSQC (Heteronuclear

Single Quantum Coherence) experiment was acquired with 1024

total data points, 12 ppm (1H) and 40 ppm (15N) spectral windows,

for 128 increments of 256 scans per increment. Sample

temperatures were regulated from 15 to 30uC. Water suppression

was accomplished with WATERGATE in each experiment. The

data was processed in TopSpin and analyzed with SPARKY [38].

Computational Structure Refinement
Atomic level structures for the 2 predicted turns were obtained

using molecular dynamics. Chains of eight amino acids long at the

site of each turn were created in an extended coil conformation.

Each chain was capped with an acetyl group on the N-terminus

and a N-methyl on the C-terminus to avoid any termini

association due to charge effects. Chains were then solvated with

tip3p water in a dodecahedral box, with dimensions allowing a

1.5 nm separation between peptide atoms and the edge of the box.

After an energy minimization, a harmonic potential was added

based on the NOE data. The spring constant for this potential was

set to 1250 kJ/mol, and applied outside of the accepted range of

0.5 nm, with a truncation creating a constant maximum force

beyond 0.6 nm. NOE distances were allowed to fluctuate and

updated every 10 ps, allowing the capability for multiple

constraints on each atom. Forces contributing to the hydrogen-

bond distances were applied at every step for a more rigid

network. The peptides were simulated using Gromacs and the

Amber 2003 force field [39,40,41,42]. After 3 ns equilibration

time, each system was run for 5 ns with structures taken every

1 ns, producing an ensemble.

Supporting Information

PDB S1 PDB file of five snapshots of the V24-N27 turn from

NMR refinement, as displayed in Figure 5a.

(PDB)

PDB S2 PDB file of five snapshots of the V36-V38 turn from

NMR refinement, as displayed in Figure 5b.

(PDB)
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