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Background. Meta-analysis is the systematic and quantitative synthesis of effect sizes and the exploration of their
diversity across different studies. Meta-analyses are increasingly applied to synthesize data from genome-wide association
(GWA) studies and from other teams that try to replicate the genetic variants that emerge from such investigations.
Between-study heterogeneity is important to document and may point to interesting leads. Methodology/Principal

Findings. To exemplify these issues, we used data from three GWA studies on type 2 diabetes and their replication
efforts where meta-analyses of all data using fixed effects methods (not incorporating between-study heterogeneity)
have already been published. We considered 11 polymorphisms that at least one of the three teams has suggested as
susceptibility loci for type 2 diabetes. The I2 inconsistency metric (measuring the amount of heterogeneity not due to
chance) was different from 0 (no detectable heterogeneity) for 6 of the 11 genetic variants; inconsistency was moderate
to very large (I2 = 32–77%) for 5 of them. For these 5 polymorphisms, random effects calculations incorporating between-
study heterogeneity revealed more conservative p-values for the summary effects compared with the fixed effects
calculations. These 5 associations were perused in detail to highlight potential explanations for between-study
heterogeneity. These include identification of a marker for a correlated phenotype (e.g. FTO rs8050136 being associated
with type 2 diabetes through its effect on obesity); differential linkage disequilibrium across studies of the identified
genetic markers with the respective culprit polymorphisms (e.g., possibly the case for CDKAL1 polymorphisms or for
rs9300039 and markers in linkage disequilibrium, as shown by additional studies); and potential bias. Results were largely
similar, when we treated the discovery and replication data from each GWA investigation as separate studies.
Significance. Between-study heterogeneity is useful to document in the synthesis of data from GWA investigations and
can offer valuable insights for further clarification of gene-disease associations.
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INTRODUCTION
Meta-analysis entails the combination of different studies or

datasets on the same research question and meta-analytic methods

have been used across many different scientific disciplines [1,2].

Early applications of meta-analysis in the 1970s and 1980s

proposed that a major gain from these methods was the ability to

improve power and obtain more definitive summary results by

combining several small studies [3]. However, it soon became

evident that simply focusing on summary effects could be

misleading. For epidemiological applications in particular, a major

threat is that the precision derived from combining data may be

spurious, especially if the combined studies and datasets have

considerable dissimilarities [4]. It is well appreciated now that

besides estimating summary effects, estimation and, if possible,

explanation, of the between-study heterogeneity is a very impor-

tant goal for meta-analysis [5].

One of the most rapidly growing applications of meta-analysis

is in genetic epidemiology [6–8]. Meta-analysis is becoming

standard practice for publications of genome-wide association

studies that search for common genetic variants regulating

complex traits and disease risk. A torrent of such studies have

started appearing in the most prestigious journals with major

prospects for the delineation of the genetic risk factors underlying

the most common diseases and traits [9]. The results of the

genome-wide associations are typically combined with the results

of additional replication studies on the most promising variants;

occasionally results from other genome-wide investigations are

also included in meta-analytic calculations [10–13]. However,

these early applications of meta-analyses on such datasets have

not accommodated between-study heterogeneity in the data

synthesis. In the presence of between-study heterogeneity in the

genetic effects, there may be important implications for the

interpretation of the results.

We exemplify this issue for meta-analyses of genome-wide

association and replication data on postulated genetic variants

conferring susceptibility to type 2 diabetes [10–13]. We have

revisited these data to examine the extent of between-study

inconsistency, whether summary results may differ with consider-

ation of between-study heterogeneity, and what insights may be

gleaned from the presence of between-study heterogeneity in this

setting.
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METHODS

Fixed versus random effects
Data were combined in the original Science publications [10–13]

using a fixed effects (Mantel-Haenszel) model. Fixed effects assume

that the genetic effects are the same across the combined

investigations and all differences are due to chance [1,2]. While

this assumption is true occasionally, it may not be generalizable to

all genetic associations. Genetic effects may vary across different

populations for various reasons, including both genuine differences

and differential biases and errors across studies [14,15]. In meta-

analyses, fixed effects may give more narrow confidence intervals

and more impressively low p-values compared with models that

accommodate potential diversity of effects (heterogeneity)

[1,2,5,16,17]. We have re-analyzed the meta-analyses of the three

teams with random effects calculations [1,2]. Random effects

calculations assume that due to genuine differences and or

different biases, the estimates of the genetic effects may vary

across different investigations. Random effects thus try to estimate

the population average and the extent of dispersion in these

different effect sizes. The presented random effects calculations use

the DerSimonian and Laird estimator of the between-study

variance [18].

Heterogeneity metrics
Different metrics have been proposed for testing the presence and

measuring the amount of between-study heterogeneity. Cochran’s Q

statistic [19] is provided by Q =S wi
F (di2dF

+)2 where dF
+ is the

summary effect size by fixed effects, di are the study-specific effect

sizes and wi
F is the weight of each study (based on Mantel-

Haenszel methods). The statistic follows a x2 distribution with k-1

degrees of freedom (k is the number of studies or datasets

combined), and it is typically considered significant at the a = 0.10

level. The original Science publications used this test to document

whether there is or not between-study heterogeneity. However,

this test is grossly underpowered, when there are very few studies.

Also with small studies, the confidence intervals of each one may

be very large, so the same problem of lack of power may still

persist. Of note, Q is used in the estimation of the between-study

variance, given by t2~
Q{(k{1)
P

wi{

P
w2

iP
wi

. The ratio of t over the

effect size conveys the extent of variability (between-study standard

deviation) as compared with the effect size.

Another useful metric is the I2. This metric is independent of the

number of studies and can be compared across meta-analyses with

different number of studies and metrics [16,17]. I2 is given by the

formula I2~
Q{(k{1)

Q
|100% and it is a measure of the

percentage of total variation across studies due to heterogeneity

beyond chance. Therefore, I2 takes values between 0–100%.

Values over 50% indicate large heterogeneity. I2 can be estimated

along with its confidence intervals and the confidence intervals are

wider when a meta-analysis includes few studies [20]. The

confidence intervals for I2 can be calculated with different

methods (described in detail in [17]). Confidence intervals usually

can be very large, unless many studies are available, and this is

another indication that one has to be cautious about claiming

homogeneity (even when I2 is zero). Overall, there can be large

uncertainty in a meta-analysis about the presence or not and the

extent of between-study heterogeneity. Strong inferences about

heterogeneity or lack thereof may be a common misconception

when limited data are available.

Datasets
Data are derived from the original Science publications of 3 GWA

investigations and their replication efforts (advance online publica-

tions in Science on April 26, 2007 [10,11,13]). These investigations

were conducted by the Finland-United States Investigation on

NIDDM Genetics (FUSION) team, the Diabetes Genetics Initiative,

and the Wellcome Trust Case-Control Consortium. Extensive details

of the design and populations of these investigations have been

presented in the original publications [10,11,13]. In brief, all three

publications used a discovery dataset where GWA evaluation was

performed on Illumina or Affymetrix chips and promising genetic

variants were further tested for replication in large replication

datasets. The number of polymorphisms tested in the discovery phase

of each investigation were 317503, 500568, and 499032, respectively

and the number of polymorphisms that were considered to have data

suitable for analyses were 315635, 386731, and 393453, respectively.

The FUSION investigation used 1161 cases and 1174 controls in the

discovery phase and 1215 cases and 1258 controls in the replication

phase. The Diabetes Genetics Initiative investigation used 1464 cases

and 1467 controls in the discovery phase and 5065 cases and 5785

controls in the replication phase. The Wellcome Trust Case control

Consortium used 1924 cases and 2938 controls in the discovery phase

and 3757 cases and 5346 controls in the replication phase.

In order to identify which of the many promising polymorphisms

were eventually most important as susceptibility loci for type 2

diabetes, the three investigations performed a meta-analysis of their

data. All three publications eventually reported tables of ‘‘con-

firmed’’ susceptibility loci of type 2 diabetes. We examined all 11

genetic variants that have been listed in these tables as ‘‘confirmed’’

loci. Eight of those variants appear in the ‘‘confirmed’’ lists of all 3

publications; while rs9300039 is listed in the table of confirmed loci

by FUSION investigators only [10]; rs564398 (a second marker in

the CDKN2B gene besides the rs10811661 that is considered

confirmed by all three publications) is listed in the table of confirmed

loci by the Wellcome Trust Case Control Consortium investigators

only [13]; and FTO rs8050136 (an obesity risk variant, as discussed

below) is listed in the table of confirmed loci by the Wellcome Trust

Case Control Consortium and FUSION only [10,13]. These

differences reflect simply minor differences in interpretation and

listing of the same results between the three teams of investigators.

We treated each GWA analysis and its replication efforts as one

study, as in the original Science publications. Therefore, three

studies were analyzed for between-study heterogeneity and meta-

analysis was performed with random effects on these 3 estimates,

as described above. In a sensitivity analysis, for each GWA

investigation, we treated the GWA discovery data as a separate

study from the GWA replication data. Thus in the sensitivity

analysis, between-study heterogeneity was estimated and random

effects meta-analysis was performed considering a maximum 6

estimates. Some markers had not been pursued for testing in the

replication phase of all 3 GWA investigations, thus they are

represented by 5 or 4 estimates in the sensitivity meta-analysis. We

should caution that even with this further split, each of the

estimates may still be composed on several sub-studies. For

example, the replication efforts may be comprised on many

smaller teams and their data have already been synthesized (again

using fixed effects assumptions), but separate data for these sub-

studies are not consistently available. In some cases, the pieces

would be even impossible to separate, as for example when the

group of cases was composed of many smaller samples recruited

from different places, while the control group was more uniformly

recruited. By accepting that the sub-studies are sufficiently

homogeneous, the estimates of between-study heterogeneity that
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we present may tend to be even underestimates of the full

heterogeneity that may exist in the data.

For each of the polymorphisms where we identified moderate or

larger estimates of between-study heterogeneity (I2$25%), we

discuss the potential insight that may be offered by this

heterogeneity and how it may affect or not the interpretation of

the results. We also retrieved additional studies that have been

published on the same or linked polymorphisms as of May 12,

2007 on type 2 diabetes or related phenotypes so as to consider

potentially additional evidence from other relevant studies in the

interpretation of the results. Additional studies were identified by

PubMed searches using ‘‘diabetes’’ and ‘‘association’’ limited to

the year 2007. Relevant additional data that were available were

also incorporated into updated random effects meta-analyses.

Software
All calculations have been performed in Intercooled STATA 8.2

(College Station, TX) using the metan module. The presented

confidence intervals for I2 are obtained using the non-central chi-

square distribution-based method [17] using the heterogi STATA

module. P-values are two-tailed.

RESULTS

Main analyses
As shown (Table 1), the I2 metric was different from 0 (no

detectable heterogeneity) for 6 of the 11 genetic variants.

Inconsistency of the genetic effects across the three investigations

was very large (I2$75%) for rs9300039 and FTO rs8050136,

moderate (I2 between 25–50%) for PPARG rs1801282, CDKAL1

rs10946398 and SLC30A8 rs13266634, and low (I2 up to 25%) for

IGF2BP2 rs4402960. In fact the upper 95% CI of I2 extended up

to very high levels of inconsistency (73–91%) for all 11

polymorphisms; thus, between-study heterogeneity in the genetic

effects cannot be confidently excluded for any of them.

Conversely, even when the I2 estimate is high, the 95% confidence

intervals typically do not exclude the possibility of homogeneity. I2

is an indicator, not absolute proof of homo- or heterogeneity.

The heterogeneity test (Cochran’s Q statistic) was formally

statistically significant for the FTO variant (p = 0.014) and the

rs9300039 marker (p = 0.018). As Q is grossly underpowered with

only 3 studies, lack of nominal statistical significance for

heterogeneity in the other polymorphisms does not prove

homogeneity of effects. Of interest, the two loci with highest-

between study heterogeneity were not unanimously proposed as

‘‘conformed’’ susceptibility loci by all 3 GWA investigations.

The summary point estimates (odds ratios) are practically not

different with random versus fixed effects with 8 of the 11 pairs of

estimates being identical to the second decimal point (Table 1).

However, for the 5 variants with moderate to very large between-

study heterogeneity, the 95% confidence intervals expand sub-

stantially with random effects calculations and p-values do not

satisfy criteria for genome-wide significance (p,1027) based on

these data alone.

Sensitivity analyses
Sensitivity analyses considering the discovery and replication data of

each GWA investigation as separate data yielded largely similar

results as the main analysis (Table 2). Minor differences were seen in

the exact estimates of I2 but the categorization of the amount of

between-study heterogeneity was largely similar. With this analysis,

there was now also low heterogeneity (I2,25%) for the HHEX

rs5015480-rs1111875 effect, while I2 became 0 for SLC30A8

rs13266634. Again the confidence intervals of I2 were very large,

the upper limit being between 61 and 86% for the various markers.

Examination of markers with moderate or larger

between-study heterogeneity
Examination of the 5 polymorphisms that had moderate or larger

between-study heterogeneity in their effect sizes shows that

detection of between-study heterogeneity can offer useful insights.

Table 1. Between-study heterogeneity and random versus fixed effects calculations for polymorphisms that were considered
‘‘confirmed’’

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GENE Polymorphism Q (p) I2 (95% CI)
Random effects OR
(95% CI)

Fixed effects OR
(95% CI)

Random effects
p-value

Fixed effects
p-value

— rs9300039a 7.98 (0.019) 75% (0–90) 1.25 (1.04–1.50) 1.25 (1.15–1.37) 0.015 4.3610-7

FTO rs8050136 8.62 (0.013) 77% (0–91) 1.13 (1.02–1.25) 1.17 (1.12–1.22) 0.015 1.3610212

PPARG rs1801282 3.80 (0.15) 47% (0–84) 1.16 (1.07–1.25) 1.14 (1.08–1.20) 0.0003 1.761026

CDKAL1 rs10946398b 3.73 (0.16) 46% (0–84) 1.12 (1.07–1.17) 1.12 (1.08–1.16) 3.261026 4.1610211

SLC30A8 rs13266634 2.92 (0.23) 32% (0–81) 1.12 (1.07–1.18) 1.12 (1.07–1.16) 8.761026 5.361028

CDKN2B rs564398 1.48 (0.48) 0% (0–73) 1.12 (1.07–1.17) 1.12 (1.07–1.17) 1.261027 1.261027

HHEX rs5015480–
rs1111875

0.45 (0.80) 0% (0–73) 1.13 (1.08–1.17) 1.13 (1.08–1.17) 5.7610210 5.7610210

KCNJ11 rs5215c 0.56 (0.76) 0% (0–73) 1.14 (1.10–1.19) 1.14 (1.10–1.19) 5610211 5610211

IGF2BP2 rs4402960 2.65 (0.27) 25% (0–79) 1.15 (1.10–1.19) 1.14 (1.10–1.18) 6.5610212 8.6610216

CDKN2B rs10811661 0.03 (0.99) 0% (0–73) 1.20 (1.14–1.25) 1.20 (1.14–1.25) 7.8610215 7.8610215

TCF7L2 rs7901695d 0.24 (0.89) 0% (0–73) 1.37 (1.31–1.43) 1.37 (1.31–1.43) 1.0610248 1.0610248

Additive models are presented, as in the main analyses of the original papers. Fixed effects calculations are Mantel-Haenszel estimates as in the original papers. Random
effects calculations use the DerSimonian and Laird estimators for the between-study variance.
CI: confidence interval; OR: odds ratio
amulti-marker tag in DGI and rs1514823 in the UK study
brs7754840 in FUSION
crs5219 in FUSION and DGI
drs7903146 in FUSION and DGI
doi:10.1371/journal.pone.0000841.t001
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The weakest evidence for association was seen for rs9300039

that was listed by the FUSION investigators as a confirmed

susceptibility locus for type 2 diabetes [10]. The random effects

summary odds ratio yielded a mere p = 0.015, as compared with

p = 4.361027 by Mantel-Haenszel calculations, and there was

very large between-study heterogeneity (75%). Heterogeneity

might reflect in part the different tag polymorphisms used in the

other two GWA investigations [11,13]. Even so, the evidence

remains very weak. Fine mapping and more extensive data would

be required for this locus before a concrete claim can be made that

it confers susceptibility to type 2 diabetes.

For FTO rs8050136, the random effects summary odds ratio

yielded also a mere p = 0.015, as compared with the impressive

Mantel-Haenszel p = 1.3610212 originally reported. Between-

study heterogeneity is also very large (77%). Heterogeneity is

visible even with plain data inspection, especially for the Wellcome

Trust Case Control Consortium vs. Diabetes Genetics Initiative

results (figure 1). Consistent with this strong signal of between-

study heterogeneity, the Wellcome Trust investigators have indeed

found that this variant is a susceptibility marker for increased body

mass index and obesity [12]. Type 2 diabetes susceptibility may be

mediated through the effect on body mass index and is not an

independent effect that should have been seen consistently in all

populations. The observed heterogeneity for type 2 diabetes

association is also explained by the study design of the 3 GWA

investigations. The Diabetes Genetics Initiative used a tightly

matched case-control sample in the discovery phase, where cases

and controls had been matched for body mass index [11] and thus

it is not surprising that there was no residual effect of this FTO

variant on the risk of type 2 diabetes.

For the novel proposed CDKAL1 rs10946398 association,

additional data were recently published from deCODE and

affiliated investigators in Nature Genetics [21] who proposed

a different polymorphism in the same gene (rs7756992) as a T2D

marker. The r2 for these two markers was only 0.67 in Caucasians,

but 4 other CDKLA1 polymorphisms in the deCODE data [21]

have r2 = 1 with rs10946398. Including the deCODE data for the

nearest one (rs7774594) in the meta-analysis calculations, the

summary odds ratio became 1.13 (95% CI, 1.08–1.18) with

p = 2.261027. Moderate between-study heterogeneity persisted

(I2 = 43%). In the deCODE presented results for rs7756992 (ref.

13), we estimated very large between-population heterogeneity in

the genetic effects between three different racial descent popula-

tions (I2 = 76%). Compared with Caucasians, the correlation

between rs10946398 (or rs7774594) and rs7756992 was much

weaker in Africans (r2 = 0.35). In Africans, deCODE investigators

noticed that rs7756992 showed no association effect (odds ratio

1.02). The very large heterogeneity in genetic effects for rs7756992

and the moderate heterogeneity for rs10946398 might suggest that

neither polymorphism is the true culprit; the culprit may be more

consistently correlated (even in Africans) with rs10946398 than

with rs7756992.

For SLC30A8 rs13266634 data were also available from the

deCODE investigation [21] and from another study by Sladek et

al. [22]. Including these data, we got a random effects odds ratio of

1.15 (95% 1.10–1.19) with p = 3.5610213. Some low heterogene-

ity persisted (I2 = 21%). While SLC30A8 rs13266634 amply passed

genome-wide significance when additional data were considered,

the presence of between-study heterogeneity suggests the true

culprit variant may still be elusive.

The same may apply to PPARG rs1801282, which had been

extensively studied in the past (before the GWA investigations) in

many other studies, again with clear association in the summary

effect, but with some co-existing between-study heterogeneity [23].

Efforts to identify the true functional culprit variants of PPARG (if

different from rs1801282) are ongoing. By comparison, the other

two variants that been already known and extensively studied

before the 3 GWA investigations (KCNJ11 rs5215 and TCF7L2

rs7901695) have I2 = 0 in both the main and sensitivity meta-

analyses.

DISCUSSION
In a re-analysis of the data from 3 GWA studies on type 2 diabetes,

we found that for 5 of the 11 genetic variants that are considered

‘‘confirmed’’ susceptibility loci for type 2 diabetes there was still

moderate to very large between-study heterogeneity across the

different GWA investigations. Given the between-study heteroge-

neity, the level of statistical significance was more conservative

Table 2. Between-study heterogeneity and random versus fixed effects calculations for polymorphisms that were considered
‘‘confirmed’’ in sensitivity analyses considering the discovery and replication data of each GWA as a separate study.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GENE Polymorphism Q (df)a [p] I2 (95% CI)
Random effects OR
(95% CI)

Fixed effects
OR (95% CI)

Random effects
p-value

Fixed effects
p-value

— rs9300039 8.38 (3) [0.039] 64% (0–86) 1.29 (1.11–1.50) 1.26 (1.15–1.37) 0.001 2.861028

FTO rs8050136 12.98 (4) [0.011] 69% (0–86) 1.15 (1.06–1.25) 1.17 (1.12–1.23) 0.001 2.5610212

PPARG rs1801282 6.93 (4) [0.14) 42% (0–76) 1.14 (1.06–1.23) 1.13 (1.08–1.20) 0.0007 3.461026

CDKAL1 rs10946398 8.76 (5) [0.12] 43% (0–76) 1.13 (1.07–1.18) 1.12 (1.08–1.15) 1.261026 1.9610210

SLC30A8 rs13266634 3.17 (5) [0.67] 0 (0–61) 1.13 (1.08–1.17) 1.13 (1.08–1.17) 4.161029 4.161029

CDKN2B rs564398 3.62 (4) [0.46] 0% (0–64) 1.11 (1.06–1.15) 1.11 (1.06–1.15) 5.861027 5.861027

HHEX rs5015480–
rs1111875

6.20 (5) [0.29] 19% (0–68) 1.13 (1.08–1.17) 1.12 (1.08–1.17) 2.261028 3.2610210

KCNJ11 rs5215 3.50 (4) [0.48] 0% (0–64) 1.14 (1.09–1.18) 1.14 (1.09–1.18) 9610211 9610211

IGF2BP2 rs4402960 7.08 (5) [0.21] 29% (0–71) 1.15 (1.10–1.20) 1.15 (1.11–1.19) 2.9610210 1.1610215

CDKN2B rs10811661 4.15 (5) [0.53] 0% (0–61) 1.20 (1.15–1.25) 1.20 (1.15–1.25) 2.7610215 2.7610215

TCF7L2 rs7901695 1.31 (4) [0.86] 0% (0–64) 1.37 (1.32–1.43) 1.37 (1.32–1.43) 1.0610248 1.0610248

CI: confidence interval; OR: odds ratio
adf = degrees of freedom; not all markers were tested by all 3 investigations in their replication efforts, thus even with splitting the discovery and replication phases,
there are fewer than 6 datasets (df = 5) for some variants.

doi:10.1371/journal.pone.0000841.t002..
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with random effects calculations. Further examination of these

potentially heterogeneous associations suggested possible explana-

tions for the observed inconsistency. In several cases, this probably

reflected either the fact that the identified marker was not the

culprit polymorphism, but had a different linkage disequilibrium

pattern with the culprit polymorphism across different studies. In

the case of FTO, it probably reflected the fact it was associated

with type 2 diabetes through its effect on the correlated phenotype

of obesity; the phenotype correlation varied across different

studies. Additional possibilities may need to be considered also

for the heterogeneity, as discussed below. Conversely, we should

caution that homogeneity of effects for the other 6 variants

provides limited information on whether a causative locus has

been identified. Lack of heterogeneity is not proof of causality.

Overall, detection of heterogeneity is very useful. Some

polymorphisms are shown to reach genome-wide statistical

significance by fixed effects calculations, but not by random

effects calculations due to large between-study heterogeneity. In

these cases, priority should be given to the consideration of other,

correlated phenotypes and fine mapping for identifying linked,

true culprit polymorphisms that yield less heterogeneous associa-

tion signals. These situations are likely to be very common in the

GWA setting. Tag markers are not selected based on ‘‘candidate

gene variant’’ considerations [24]. Thus it is more likely that one

may hit upon a variant that is a linked marker rather than hit

directly upon the culprit causative variant. Markers will often have

variable linkage disequilibrium across different populations. This

will result in heterogeneous genetic effects across studies.

Correlated phenotypes are also a major issue. Many common

diseases and traits (e.g. diabetes, myocardial infarction, obesity,

hypertension, metabolic syndrome) are modestly or even highly

correlated. Inconsistent susceptibility signals for one of them may

reflect consistent associations with another correlated phenotype.

Moreover, most common diseases that are assumed to have a complex

genetic background are probably a complex mix of different

phenotypes in terms of their molecular pathogenesis. Genetic variants

may have specific molecular functional effects that cumulatively build

a complex clinical phenotype. However, depending on their

molecular background, the relative representation of these pheno-

types may vary in different people and populations with seemingly the

same clinical disease. The case definition of this broad clinical

phenotype may not do justice to the underlying molecular

complexity. Molecular and clinical phenotypes may exhibit some

correlation pattern, but this may vary in different sub-populations

depending on the presence of other gene variants. Again, statistical

heterogeneity may offer a window to this complexity.

Another possibility is bias. Incorporating between-study hetero-

geneity in the summary calculations has the advantage to penalize

associations where results are inconsistent across studies due to

population-specific biases and gives higher ranks to the consistent

associations [25]. The 3 GWA investigations on type 2 diabetes

paid meticulous attention to methodological detail and their design

was exemplary. Careful genotyping controls were set and

population stratification was controlled with principal component

analysis [26]. Nevertheless, minute biases affecting particular

polymorphisms with minute odds ratios around 1.12 cannot be

excluded. Even if some major systematic errors (e.g. population

stratification, genotyping error, phenotype misclassification) are

controlled, not all biases are foreseeable. Moreover, minimized

average biases do not exclude much larger differential biases for

a few polymorphisms. P-values for testing the observed genetic

effects against the null effect hypothesis account for random, not

systematic, error.

Another potential reason for heterogeneity is the winner’s curse,

a manifestation of chance and regression-to-the-mean, especially

under circumstances of multiple testing with limited power. The

first study that claims an association that passes a very demanding

required significance threshold may exhibit a genetic effect that is

larger than the true average effect of this association.

Finally, another possibility is gene-environment interactions

(e.g. as proposed for rs1801282 and low physical activity [27]) with

differential non-genetic environmental exposures across different

populations. Moreover, genuine genetic heterogeneity in effect

sizes across different ethnic backgrounds and population-specific

gene-gene epistatic effects are sometimes postulated. However,

interaction effects (effect modification) may require huge studies to

Figure 1. Meta-analysis of the FTO rs8050136 variant in terms of its association with type 2 diabetes across three GWA investigations. Each
investigation is shown by the point estimate of the odds ratio and 95% confidence intervals. Also shown is the diamond of the summary effect by
fixed and random effects calculations.
doi:10.1371/journal.pone.0000841.g001
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confirm [28], much larger than even the very large consortia that

have been put together in the genetics of type 2 diabetes.

We should stress that estimation of between-study heterogeneity

carries considerable uncertainty and in the typical situation it

would be impossible to have a large number of large studies to

fully power detection and accurate estimation of heterogeneity.

Moreover, breaking down populations to sub-studies may

sometimes lead to loss of estimated between-study heterogeneity,

if the sub-studies are small and their confidence intervals of effects

are very large. However, this would offer misleading reassurance

that no heterogeneity exists. While the number of datasets may

increase by such splitting, each dataset would have very limited,

inconclusive information about the magnitude of the effect and it

would again be very difficult to show the between-study

heterogeneity, even if present.

In general, when between-study heterogeneity is demonstrated

or cannot be excluded, random effects models have been accepted

as the default across different applications of meta-analysis and this

should be accepted also for GWA investigations [1,2,5]. Fixed

effects may sometimes result into misleading inferences. In the

presence of heterogeneity, the main assumption of fixed effects is

violated and their application is inappropriate. However, a caveat

for random effects is that they tend to diminish the difference in

the relative weighting of small vs. larger studies. This is a drawback

in situations where small studies may suffer more from errors or

biases than larger studies. Disproportionate weighting of the biased

small studies would then lead to erroneous results. This situation

may typically arise when the data to be synthesized have been

collected retrospectively from published information and publica-

tion bias is operating in the field [27]. Small studies may have been

published preferentially when they show significant results while

the evidence from larger studies may be available regardless of the

results. Thus the total available evidence from larger studies may

be more unbiased, even if single larger studies may not necessarily

be more unbiased than single smaller studies.

While this bias is a concern for retrospective meta-analyses, it

should not be an issue for a prospective collaborative GWA

investigation performed within a consortium of investigators. In

this setting, there is no reason why investigators would select to

include in the calculations only the most impressive results.

However, a particular threat for the credibility of GWA results

occurs, if several GWA investigations are performed and results

are made available only for the most significant p-values in each

GWA investigation. While this deficit will hopefully be remedied

by quick release of genome-wide data in the future, the majority of

studies have not done so yet.

We should also mention that there are different models that can

incorporate between-study heterogeneity in the calculations. We

used a conservative approach, the DerSimonian and Laird model,

that is the most frequently used random effects model in the

literature. Other fully Bayesian approaches may also be used [29],

including hierarchical Bayesian models. Some of these models may

incorporate also other parameters such as minor deviations from

Hardy-Weinberg equilibrium in the observed genotyping data

[30]. These models usually tend to give even larger uncertainty

and they widen the 95% credibility intervals of the estimates [29].

In all, heterogeneity is a useful aspect of the data, rather than

a nuisance, as it can often point to leads that can clarify better the

nature of postulated associations in the context of meta-analysis

[31]. Heterogeneity should not be ignored and should be carefully

factored in the interpretation of emerging genetic associations

from GWA studies. Heterogeneity has implications also for the

epidemiological design of GWA studies and their replication

efforts. Consistency in the definition of phenotypes and meticulous

attention to quality control in genotyping and avoidance of

population stratification is warranted, so as to avoid heterogeneity

due to bias. However, heterogeneity due to genuine differences

should not be avoided. Thus one should encourage diversity in

secondary aspects of the study design across studies, such as the use

of matching or not for other population characteristics, and

targeting of populations of diverse racial descent with different

linkage disequilibrium patterns. Finally, proper evaluation of

between-study heterogeneity would ideally require complete and

transparent individual-level information on genotype results from

all conducted GWA investigations. Ensuring full public data

availability would enhance the credibility of GWA evidence.
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