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Abstract

Microarray-based studies of global gene expression (GE) have resulted in a large amount of data that can be mined for
further insights into disease and physiology. Meta-analysis of these data is hampered by technical limitations due to many
different platforms, gene annotations and probes used in different studies. We tested the feasibility of conducting a meta-
analysis of GE studies to determine a transcriptional signature of hematopoietic progenitor and stem cells. Data from
studies that used normal bone marrow-derived hematopoietic progenitors was integrated using both RefSeq and UniGene
identifiers. We observed that in spite of variability introduced by experimental conditions and different microarray
platforms, our meta-analytical approach can distinguish biologically distinct normal tissues by clustering them based on
their cell of origin. When studied in terms of disease states, GE studies of leukemias and myelodysplasia progenitors tend to
cluster with normal progenitors and remain distinct from other normal tissues, further validating the discriminatory power
of this meta-analysis. Furthermore, analysis of 57 normal hematopoietic stem and progenitor cell GE samples was used to
determine a gene expression signature characteristic of these cells. Genes that were most uniformly expressed in
progenitors and at the same time differentially expressed when compared to other normal tissues were found to be
involved in important biological processes such as cell cycle regulation and hematopoiesis. Validation studies using a
different microarray platform demonstrated the enrichment of several genes such as SMARCE, Septin 6 and others not
previously implicated in hematopoiesis. Most interestingly, alpha-integrin, the only common stemness gene discovered in a
recent comparative murine analysis (Science 302(5644):393) was also enriched in our dataset, demonstrating the usefulness
of this analytical approach.
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Introduction

Microarray-based studies of global gene expression have led to

dramatic advances in our understanding of various biological

processes. This technology has become one of the most rapidly

growing investigational methods in medical research and numer-

ous studies have been completed using this method. There are

many available platforms [1] for microarray analysis, and newer

technologies and better gene annotations have led to constant

refinement of these platforms. This has resulted in a large amount

of data in public repositories, like the Gene Expression Omnibus

[2]. Meta-analysis of these data has the potential to yield

important biological information, but is hampered by technical

issues. Cross-platform comparability has been a major hindrance

to this approach. This problem arises because matching probe-sets

across platforms is a difficult task. Different platforms use different

probe lengths and sequences, and mapping them to one common

gene or set of genes is beset with problems. Another limitation is

different gene annotations used by different platforms. The nucleic

acid sequences for various species are submitted to and maintained

in the GenBankH database by the National Center of Biotechnol-

ogy Information (NCBI) [3]. There are different annotation

methods in use to parse these sequences into genes or gene

clusters. UniGene is one method for partitioning GenBank nucleic

acid sequences into unique gene-oriented clusters, each of which

represents a unique gene. These UniGene identifiers (IDs) are

created by finding transcript sequences that match distinct

transcription areas or genes. UniGene IDs have been used as

the matching criterion to merge data across various platforms, but

this has led to a substantial portion of the data remaining

unmatched in previous studies [4,5,6,7,8]. Recent approaches

have tried using Reference Sequence (RefSeq) IDs as the matching

criterion [9]. RefSeq is a public access database, also maintained

by NCBI. This database is built by using sequence data from
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GenBank, EMBL Data Library (UK) and DNA Data Bank (Japan)

[10]. This set is also constantly updated, and input from various

investigators is also used to maintain this set. Since both UniGene

and RefSeq are billed as non-redundant sets of transcript IDs, and

have been used in prior studies with mixed results, it is still unclear

as to which approach is better.

We attempted to conduct a meta-analysis of all gene expression

studies using hematopoietic progenitor cells to determine a gene

expression signature characteristic of these cells. Our aim was to

integrate data from all studies that used normal hematopoietic

progenitors and stem cells into a unified normalized database. This

was done using both UniGene as well as RefSeq gene IDs to assess

which identifier provides the best yield. Our results show that

experimental conditions, laboratory where the experiments were

performed and different microarray platforms can result in

significant variability in gene expression patterns from similar

sources of cells. In spite of experimental variability, meta-analytical

studies do have the power to discriminate biologically distinct

tissues on the basis of their normalized gene expression patterns.

Gene expression datasets from similar cells of origin cluster

together despite diseased phenotypes and genetic alterations. The

similarity seen among gene expression profiles of leukemias,

myelodysplasia and normal hematopoietic progenitors, when

compared to non-hematopoietic tissues, validates the functional

discriminatory power of this meta-analysis. Finally, analysis of

merged normal hematopoietic progenitor cell gene expression

datasets led to the discovery of a common gene expression

signature characteristic of these cells. Genes that are most

uniformly expressed in normal hematopoietic tissues and at the

same time being differentially expressed as compared to other

normal tissues were found to be involved in important biological

processes such as hematopoiesis and development. The expression

patterns of these genes were validated in a different microarray

platform using material from three different hematopoietic

progenitor and stem cell experiments.

Methods

Data collection
Normal hematopoietic cell gene expression data were collected

from the NCBI’s Gene Expression Omnibus (GEO) database

(Figure 1). Bone marrow, hematopoietic, CD34 and stem cells

were used as search terms to locate datasets containing gene

expression profiles of normal human hematopoietic cells. Normal

bone marrow/peripheral blood CD34 profiles used as controls in

studies of leukemia and other hematological diseases were also

included. Most studies used the Affymetrix U95, the U133A/B

and the U133 Plus 2.0 Array Platforms. A handful of studies using

older Affymetrix platforms, like the HG-Focus Target Array and

the Full Length HuG Array, were discarded because combining

data from these yielded a lot of non-matching probe-sets.

Gene expression data for other normal tissues assayed on the

same platforms were also obtained from GEO. In a study where

multiple sets were available, we picked one set each for every

tissue, again to minimize correlation within individual datasets.

These were picked using computer-generated random numbers.

To obtain diseased stem cell data, we identified a few studies

with multiple datasets on myelodysplasia, acute myeloid leukemia

(AML) and acute lymphoblastic leukemia (ALL) samples. Where

several datasets were available per study, we picked a subset, again

using random numbers, to obtain about 10 samples per each

study. Table 1 shows the details of these datasets

[11,12,13,14,15,16,17,18,19].

Integration of datasets
Initially, we used the comparison spreadsheets provided by the

chip manufacturer, Affymetrix [20]. These files link the probe-set

IDs of various platforms. However, the yield therein was poor. For

example, using the link file between the U133 and the U133 Plus

platforms, 44635 U133 IDs matched to only 9908 U133 Plus IDs.

Therefore, UniGene and RefSeq IDs were evaluated as variables

Figure 1. Schema of data collection and analysis.
doi:10.1371/journal.pone.0002965.g001
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to cross link data from various platforms. Individual probe-set IDs

for each platform were linked to the corresponding UniGene IDs

using annotation files, again provided by Affymetrix [20]. These

UniGene IDs were then used to combine data across the three

platforms. Once probe-set IDs and their expression values were

combined, the expression value for each UniGene ID was

obtained. In many instances, more than one probe-set matched

to the same UniGene ID, resulting in multiple expression values

for each such ID. In such cases, the expression value was

calculated as the mean of the various values for each UniGene ID.

Probe-set IDs which did not match to any UniGene ID were

dropped. Also, if any UniGene ID had data for only one platform,

it was dropped, as it was considered to not match across at least

two of the three platforms. Moreover, in many cases, one probe-set

ID matched to more than one UniGene ID. In such cases, each

UniGene ID was considered to have the same gene expression

value and the data were expanded accordingly.

An identical process was used to merge data across platforms

using RefSeq ID as the match identifier, instead of UniGene ID.

Of interest, RefSeq IDs can be either protein IDs or transcript

IDs. Protein IDs provided slightly better results (as detailed further)

than transcript IDs, and were therefore used in this study.

Data analysis
Once expression values for each UniGene or RefSeq ID were

obtained, these were used to do the analysis. First, the datasets

were normalized using quantile normalization to ensure that

inherent large-scale expression differences in the datasets based on

different sources and laboratories were minimized. Unsupervised

hierarchical clustering using average linkage with (1 - Pearson

correlation coefficient) as the distance measure was done for each

of the three ‘types’ of tissue – normal hematopoietic cells, normal

non-hematopoietic tissues and diseased hematopoietic cells. This

allowed us to look at how the datasets cluster – whether by

platform, laboratory, experiment or otherwise.

To determine a gene signature for hematopoietic progenitor

and stem cells, we used the datasets derived from 57 CD34+ sets,

as whole bone marrow sets may not be a true reflection of these

progenitors, being as they are a mixture of various cell types. To

find out which genes were most consistently expressed across these

samples, we used the coefficient of variation – defined as the

standard deviation divided by the mean – of the expression values

for each ID, calculated across all stem cell samples. The coefficient

of variation was used to incorporate consistency in gene expression

as well as ‘‘enrichment’’ of genes in the hematopoietic progenitor

cells. Prior studies have used similar reasoning [21].

We then used this set of consistently expressed genes and

compared their expression in normal hematopoietic progenitors

versus that in non-hematopoietic tissues, to identify which genes

could differentiate these two tissue sources. This was done using

significance analysis of microarrays (SAM) [22,23]. Similarly,

normal hematopoietic progenitor gene expression was compared

to diseased hematopoietic data, to identify a subset of genes that

may be most relevant to hematological stem cell disorders. All IDs

with missing values for any of the samples were deleted.

All data analyses were done using SAS (SAS Institute, Cary,

NC), the R language and ArrayAssist Expression software package

(Stratagene Corporation, La Jolla, CA).

Results

Integration of data using protein identifiers
A total of 66 individual normal hematopoietic cell expression

profiles were identified in NCBI’s GEO database (Table 1). Nine

were derived from whole bone marrow samples and 57 were from

selected CD34-positive cells. These studies were performed on 3

different microarray platforms (Table 2). Since the probe-set

identifiers and complementary oligos were different on these

platforms, we integrated the data using both UniGene and RefSeq

protein IDs (Figure 1, showing schema).

The Affymetrix annotation files yielded 12,626 unique probe-

sets in the U95 platform, 44,761 in the U133 A/B platform and

54,676 unique probe-sets in the U133 Plus 2.0 platform. Using

UniGene IDs as the matching criterion, 11,635, 40,787 and

45,867 probe-sets matched to at least one other platform,

respectively. After combining data from all the three platforms,

we ended up with a total of 20,717 UniGene IDs. Since one

probe-set can match to more than one UniGene ID and vice versa,

a relatively small number of U95 probe-sets matched to 20,717

UniGene IDs. Using RefSeq protein IDs as the matching

parameter, 11,722, 37,395 and 42,462 probe-sets matched to at

least one other platform, respectively. As many of the probe-sets

Table 1. Sources of data for the meta-analysis*

Author Source of cells No. of datasets Platform

Sternberg A, et al [11] CD34, MDS 22 U133 A/B

Oswald J, et al [12] CD34 3 U133 A/B

Su AI, et al [13] CD34, various normal NHTs 19 U133 A/B

Eckfeldt CE, et al [14] CD34 18 U133 A/B

Bhatia M, et al (GEO) CD34 15 U133 A/B

Pellagatti A, et al [15] CD34, MDS 22 U133 Plus 2.0

Breit S, et al [16] Bone marrow 9 U95

Ge X, et al [17] Various normal NHTs 19 U133 A/B

Gutierrez NC, et al [18] Bone marrow (AML) 9 U133 A/B

Roth RB, et al (GEO) Various normal NHTs 7 U133 Plus 2.0

Cheok MH, et al [19] Bone marrow (ALL) 6 U95

*NHTs: Non-hematopoietic tissues, GEO: Gene Expression Omnibus database set,
MDS: Myelodysplastic syndrome, AML: Acute myeloid leukemia, ALL: Acute lymphoblastic leukemia
Numbers in brackets are reference numbers.
doi:10.1371/journal.pone.0002965.t001
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from the two newer platforms were coding for the same protein,

we ended up with a total of 28,497 unique RefSeq protein IDs that

were common to all three platforms. After removing the probe-sets

where expression values were missing for any dataset, a total of

8,598 unique UniGene IDs and 8,345 unique RefSeq IDs were

obtained that were common to all platforms. These were quantile-

normalized using ArrayAssist (Strategene Corporation, California,

USA) to adjust for hybridization intensities and used for the meta-

analysis.

Experimental conditions, microarray platforms and
source of cells can influence gene expression patterns

Sixty-six hematopoietic gene expression profiles from either

whole bone marrow or selected CD34 cells were grouped using

unsupervised clustering based on Pearson correlation coefficient.

In spite of similar cell types, the studies grouped primarily based

on the laboratory where the data was obtained from. The next

level of clustering was defined by the microarray platform used for

the studies. Barring two bone marrow samples from the Plus 2.0

platform that were similar to one bone marrow sample from the

133A/B platform, all the samples clustered depending on which

platform they were from. The samples from the U95 platform

stayed as a separate group (Figure 2). The last level of similarity

was based on the exact source of the cells used for the RNA.

The correlation coefficients between various datasets validated

the clustering order of laboratory, platform and source (Table 3).

The correlation was strongest between samples obtained from the

same laboratory/study, with a mean (median) absolute correlation

coefficient of 0.87 (0.95). When the platform was the same, a

slightly lesser though still strong correlation of 0.83 was obtained.

These results illustrate that the cause of variability in gene

expression studies can be due to experimental conditions/

protocols used in individual laboratories, platforms used as well

as sources of cells in that order.

Gene expression studies from biologically distinct tissue
types can be compared despite varying platforms and
experimental conditions

We next wanted to determine the degree of dissimilarity of

hematopoietic datasets to gene expression (GE) datasets obtained

from other biologically distinct tissues. GE profiles from human

adrenal, appendix, brain, breast, colon, heart, kidney, liver, lung,

ovary, pancreas, pituitary, prostate, salivary gland, skin, small

intestine, smooth muscle, spleen, stomach, testis, thyroid, urinary

bladder and uterus samples were obtained from the GEO database

and used for this analysis. Unsupervised clustering showed that

samples from the same tissue of origin clustered tightly together in

spite of different platforms/laboratories used for the analysis

Table 2. Platform and tissue type for various datasets.

U95 U133 A/B
U133 Plus
2.0 Total

Normal hematopoietic
stem cells

9 46 11 66

Normal tissues,
non-hematopoietic

0 36 7 43

Diseased hematopoietic
stem cells

6 23 11 40

Total 15 105 29 149

doi:10.1371/journal.pone.0002965.t002

Figure 2. Normal bone marrow HSC clustering. Experimental conditions, microarray platforms and sources of cells influence gene expression
patterns of normal bone marrow derived HSCs. Dendrogram of normal bone marrow derived hematopoietic cells based on unsupervised hierarchical
clustering, using (1 - Pearson correlation coefficient) as the distance measure. Same color in each horizontal row indicates same group.
doi:10.1371/journal.pone.0002965.g002

Table 3. Pairwise absolute correlation coefficients for normal
hematopoietic cell samples

Mean (Range) Median

Same study 0.87 (0.26–1.00) 0.95

Different study 0.35 (0.00–0.93) 0.04

Same platform 0.83 (0.26–1.00) 0.82

Different platform 0.02 (0.00–0.06) 0.01

Same cells (CD34 or BM) 0.58 (0.01–1.00) 0.79

Different cells 0.01 (0.00–0.01) 0.01

doi:10.1371/journal.pone.0002965.t003
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(Figure 3). Clustering of triplicate sets of liver, heart, brain, salivary

gland, testis, kidney and thyroid tissues from different laboratories

and platforms clearly indicates that our analysis can detect the

similarity of expression at the source tissue level. The mean (and

median) correlation coefficients were also not very dependent on

the laboratory/study or the platform (Table 4). The highest

correlation was observed between similar tissues. These results

demonstrate that despite inter-platform and inter-study variability,

meta-analysis of gene expression profiles has the potential of

revealing differences between tissues with a high degree of

dissimilarity (Table 4).

Gene expression datasets from similar cells of origin can
cluster together despite diseased phenotypes and
genetic alterations

To further test the discriminatory ability of the meta-analysis,

we next grouped datasets from hematologic malignancies with the

normal hematopoietic and non-hematopoietic tissues analyzed

within the same microarray platform (U133 A/B). We wanted to

determine whether biological variability seen in hematopoietic

stem cell disorders such as acute leukemias and myelodysplastic

syndromes would be distinguishable in our analysis. Unsupervised

clustering showed that even though diseased hematopoietic cells

were separated from the normal cells, they were significantly more

dissimilar to non-hematopoietic tissues (Figure 4A). In fact, some

individual GE profiles from bone marrow CD34+ samples from

myelodysplastic syndromes were very similar to normal CD34+
cells and clustered within their groups. We believe that this was a

strong validation of our analytical approach as myelodysplasia is a

preleukemic disorder with varying levels of pathology and can

have cases that are genetically very similar to normal hematopoi-

etic stem cells [24]. We did a similar analysis using RefSeq IDs as

the matching criterion between different datasets. Interestingly,

clustering using RefSeq IDs provided more heterogeneous results

(Figure 4B) and grouped non-hematopoietic tissues along with

hematopoietic tissues, thus demonstrating that UniGene IDs are

better at discriminating biological subsets.

Hematopoietic progenitor and stem cell signature
After validating the strength of the meta-analysis, we wanted to

determine a gene expression signature of hematopoietic progen-

itors. Using the lowest 20th percentile, to obtain the best possible

initial yield, a total of 1,719 genes were obtained with a low

coefficient of variation among the 57 CD34+ GE profiles (range

0.15–0.39). These were the genes deemed to be most characteristic

of the stem and progenitor cells as their expression was most

consistently enriched among all the samples.

Using this list of genes, we next determined the genes that were

able to discriminate normal hematopoietic and non-hematopoietic

cells by using significance analysis of microarrays (SAM). We used

100 permutations to compute the expected significance ‘score’,

and a false discovery rate (FDR) of 0.29% was achieved by using

the lower- and upper-most 10% of genes. A total of 349 genes

were called as significant (Figure 5).

To better understand how differentially expressed genes were

integrated into specific regulatory and signaling pathway networks,

we used Ingenuity Pathway Analysis (Ingenuity Systems, Redwood

City, USA). Functional analysis of overexpressed genes indicated

that this list is highly enriched for proteins involved in

hematopoiesis and cell cycle, further validating our approach

(Figure 5, Table 5). Several of these genes have already been

described to have important roles in development of the

hematologic system. In addition, our analysis revealed a variety

of novel functional genes like SWI/SNF family member 4,

SMARCE1 and Septin 6. Many of the genes identified in our

database were also found to be enriched in 3 independent HSC

studies performed in our laboratory using a different Nimblegen

platform (Supplementary Table S1). Cross validation suggests that

Figure 3. Distinguishing normal non-hematopoietic tissues. Despite differing platforms and experimental conditions, GE profiles can separate
out normal tissues based on cell/tissue of origin. Dendrogram based on unsupervised hierarchical clustering, using (1 - Pearson correlation
coefficient) as the distance measure. Rectangles indicate samples from the U133 A/B platform and ovals from the U133 Plus 2.0 platform. Triplicate
sets of samples from human liver, heart, testis, kidney, etc. are from different studies, and their grouping together is a strong indicator of
comparability across studies and platforms.
doi:10.1371/journal.pone.0002965.g003

Table 4. Pairwise absolute correlation coefficients for normal
non-hematopoietic cell samples.

Mean (Range) Median

Same study 0.58 (0.27–0.91) 0.59

Different study 0.55 (0.23–0.95) 0.55

Same platform 0.58 (0.24–0.95) 0.59

Different platform 0.51 (0.23–0.88) 0.49

Same tissue 0.77 (0.68–0.95) 0.80

Different tissue 0.57 (0.23–0.88) 0.59

doi:10.1371/journal.pone.0002965.t004

Meta-Analysis of Microarrays
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Figure 4. A: Biological relationships identified. Dendrogram of normal hematopoietic, diseased hematopoietic and non hematopoietic tissues
GE profiles reveals biological relationships between them. MDS sets intersperse with normal hematopoietic tissues whereas AML samples are a
separate group, exactly as their biological dissimilarity patterns. Dendrogram based on unsupervised hierarchical clustering, using (1 - Pearson
correlation coefficient) as the distance measure. Same color in each horizontal row indicates same group. UniGene IDs were used for integrating data.
B: Clustering using RefSeq IDs. Same clustering as in 4A, showing poorer performance of RefSeq IDs, compared to UniGene IDs, in uncovering
biological relationships. Dendrogram based on unsupervised hierarchical clustering, using (1 - Pearson correlation coefficient) as the distance
measure. Same color in each horizontal row indicates same group.
doi:10.1371/journal.pone.0002965.g004
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these genes need to be tested as potential markers of HSCs and

may have functionally important roles in hematopoiesis. We also

found 171 genes to be differentially underexpressed in hemato-

poietic progenitors (Table 6). Our database and integration files

will be online in a searchable format to aid other hematology and

stem cell researchers (http://greallylab.aecom.yu.edu/).

Figure 5. A: ‘‘Stemness genes’’. 349 UniGene IDs were identified as being consistently expressed amongst the normal hematopoietic cells and
differentially expressed between hematopoietic and non-hematopoietic cells. Genes enriched in hematopoietic progenitor and stem cell datasets
were involved in important functional pathways in the cell, including drug metabolism, hematological system development, cell signaling and cancer
and cell death, as shown in the bar graph alongside. One such network is shown, which includes the GATA2, Cyclin E and SMARCE1 genes. B:
Heatmap of ‘‘stemness’’ genes. 349 Unigene IDs were identified as being consistently expressed amongst the normal hematopoietic cells and
differentially expressed between hematopoietic and non-hematopoietic cells. Out of these, 176 genes were enriched in HSC datasets when compared
to other tissue types.
doi:10.1371/journal.pone.0002965.g005
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Discussion

Microarray analysis of global gene expression has led to rapid

advances in our understanding of various physiological and

pathological processes. Although many hundreds of studies have

been done, doubts have been raised about the reproducibility and

applicability of this data [25,26,27,28]. Inter-study variability can be

attributed to differing probes on the arrays, different protocols for

RNA extraction, labeling and hybridization, and differences in the

quality of cells. In spite of these factors, a number of studies have also

demonstrated reproducibility of microarray studies performed at

different platforms and laboratories, though most used the same

source of RNA for these analyses [29,30,31]. The MicroArray

Quality Control consortium (MAQC) was formed to address these

questions and recently reported that reproducibility can be enhanced

by better matching of microarray probes between platforms [32].

They concluded that matching probe-sets within the same exons and

using similar experimental protocols can lead to more reproducible

results when performed on major commercial microarray platforms.

Our results take these findings a step further and demonstrate that

GE studies done using different platforms and distinct sources of

material have the power to discriminate between biologically distinct

tissues and thus can also be used to analyze various scientific

questions. Earlier attempts to address study specific biases have used

statistical algorithms including ANOVA based correction models

[33,34]. We did not use these algorithms as we found adequate

discrimination between biologically distinct tissues, demonstrating

that the degree of differential gene expression is so large that it is

found even in presence of possible study-specific biases. It is possible

that some of the more subtle results seen in our analysis, however,

may prove artificial once these biases have been removed by

appropriate methods.

Furthermore, this meta-analysis can be accomplished simply by

using UniGene and RefSeq identifiers as common variables

between array platforms, though UniGene is shown to be slightly

better at achieving this discrimination in our dataset. This

difference between UniGene and RefSeq results, albeit small, is

likely due to the different methods of identifying and assigning

transcripts used in the process, and has been observed in prior

studies also [4,5,6,7,8,9,10]. Even though we did observe

variability due to different laboratory protocols as seen by previous

studies, a superior correlation between tissues with similar sources

of cells was able to surpass this limitation and make the meta-

analysis scientifically useful.

Our study demonstrated that results obtained through this

approach can be reconciled with the biology of hematopoietic cells

and malignancies thereof. For example, samples from acute

myeloid leukemia and myelodysplasia were found to be transcrip-

tionally closer to normal hematopoietic cells than non-hemato-

poietic cells, even though these studies are done in many different

laboratories. MDS is a preleukemic disorder of varying grades of

pathology and can have an indolent course in most patients

[15,24]. The fact that MDS samples clustered with normal

hematopoietic samples in some cases shows that our analysis can

interpret biological relationships even between studies performed

by different experimental protocols and laboratories.

After demonstrating that our approach can be used to

biologically characterize sources of cells, we attempted to use this

database to discover gene signatures characteristic of hematopoi-

etic progenitor and stem cells. Due to the heterogeneity of our

source dataset, we imposed very stringent criteria to discover genes

characteristic of hematopoietic progenitors. Out of the 349 genes

that were differentially expressed in normal progenitors, 124 are

differentially expressed in diseased hematopoietic cells, demon-

Table 5. ‘Stemness genes’*

Major functions Well-annotated genes

Gene Expression, Cell Cycle, Cellular Development, ABCC1, CASP8, CSNK1G2, E2F3, GATA2, JARID2, RALBP1, SMARCA4, SMARCE1, STK10, SUMO1, TAL1,
TCF12, TFDP2, USP4, USP7

Cell Morphology, Cellular Assembly and Organization, Cell
Signaling

C1ORF2, GLIPR1, HSPA9, ING2, LPIN1, MAP3K4, MAP4K1, NCK1, NFATC1, PAK2, PPM1F, PPP3CA, TP53,
UBE3A, ZNF84, BRPF1, EWSR1, HSPA4, LYN, MAPKAPK5, PHF21A, PTEN, TIMM17A, TROVE2

Cancer, Cellular Growth and Proliferation,
Tumor Morphology

ATP6V0A2, CD47, HNRPUL1, MLLT10, MPHOSPH9, MTR, PDS5A, SEC63, SH3BGRL

Others TIPRL, TSR1, TXNDC9, SFRS17A, CENTB2, THOC2, KIAA0368, PAX3, TFIP11, TUFT, FMR1, NUFIP1

*Some important genes differentially over-expressed in hematopoietic progenitors, as compared to non-hematopoietic tissues
doi:10.1371/journal.pone.0002965.t005

Table 6. Genes quiescent in HSC progenitor cells*

Major functions Well-annotated genes

Skeletal and Muscular System Development, Function and
Disorders, Genetic Disorders

ADD1, APBB3, ARHGAP1, ATP2A2, BCL2L2, BGN, CALCOCO1, CALD1, CALM1, COL18A1, COL6A1, DDR1,
ESRRA, FMOD, MYH9, NCOA1, PFN2, PXN, RHOC, SQSTM1, TPM1

Cellular Assembly and Organization, Cellular Function and
Maintenance, Cell Signaling

APP, CADM1, CD59, CLSTN1, ERBB2, F8, FLOT1, GDI1, IKBKG, MAPK13, MYO1C, NDRG2, NFE2L1, PTRF,
RAB5B, RAB5C, SFRP1, SHC1, SPTAN1, WFS1

Protein Degradation, Cellular Movement, Cell Morphology ARF3, ARFIP2, CES2, COL1A1, CTNND1, EIF4G1, GSK3A, GSTA1, GSTM2, KIF5C, MFN2, MMP14, PAPSS2,
PCDHGC3, PTPRF, SDC1, TIMP3, TSPAN3

Others CDC42EP4, CHST10, DEFB1, FKBP1A, HDLBP, LPP, S100A13, TEGT, AKAP1, CLOCK, JAM3, PCTK1, TLE2,
TMPRSS6, TNFAIP1, TRIP10, USP13, SPOCK2

*Some important genes differentially under-expressed in hematopoietic progenitors, as compared to non-hematopoietic tissues
doi:10.1371/journal.pone.0002965.t006
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strating that hematologic malignancies result in disruption of

important functional genes. Our search strategy yielded several

genes that were consistently enriched in normal hematopoietic GE

datasets and were found to be involved in cell cycle, growth,

development and hematopoiesis by functional pathway analysis.

Recent studies have supported similar comparative approaches for

more accurate and valid gene target discovery [21,26,35]. Two

recent seminal studies searched for gene signatures of stem cells by

comparing genes enriched in hematopoietic, neural and embry-

onic stem cells and arrived at a total of 283 and 230 common

‘stemness’ genes respectively [21,35]. Even though the experi-

mental techniques and cell types in these two papers were similar,

an initial comparative analysis showed that only 7 ‘stemness’ genes

were common between these two studies. Comparison to a

subsequent third analysis [26] showed even less overlap, with only

one gene being consistently enriched between these three

independent similar studies. Repeat analysis done using different

statistical methods did lead to more gene overlap, but the final

conclusion was that gene array studies of stem cells are influenced

by cell purity and can be contaminated by a high level of non-

specific observations in the data. Consequently, the authors

determined that commonly expressed genes among different

studies may be better representatives of functionally important

stemness genes. Thus, meta-analytical approaches may be a way

to separate functionally important information from experimental

noise. As the genes discovered by our analysis are common in an

extremely variable dataset, they may have a high chance of being

characteristic of human HSCs. Most importantly, alpha-6

integrin, the one gene that was found be enriched in all three

murine stem cell studies, is similar to alpha-4 integrin that was

found to be enriched in our human dataset. Both of these integrins

are known to be expressed on the surface of HSCs and are

implicated in cell migration and homing to the bone marrow. The

functional similarities between these two integrins and the

concurrence of our findings with three landmark stemness gene

studies published in the literature validate our analytical approach.

Our analysis also yielded a set of genes not previously implicated

in hematopoiesis. Some of these genes have interesting functions

and can be potential regulators of HSC function. SMARCE

(SWI/SNF related, matrix associated, actin dependent regulator of

chromatin, subfamily e/BAF57) is a key member of the

mammalian SWI/SNF chromatin remodeling complex that is

involved in transcriptional regulation [36]. SMARCE has been

shown to mediate the interaction between the chromatin

remodeling complex and transcription factors and thus could be

partly responsible for the unique chromatin associated with stem

cells [37]. Lyn kinase is a member of the src family of kinases and

has been implicated in granulopoiesis and erythropoiesis and

needs further exploration as a stem cell marker [38,39]. Septin 6 is

a member of a class of proteins involved in cell division, membrane

trafficking and cytoskeletal organization. The roles of septins in

hematopoietic stem cells remain unexplored [40]. Amyloid beta

precursor protein is a cell surface protein with signal-transducing

properties, and it is thought to play a role in the pathogenesis of

Alzheimer’s disease [41]. This protein can activate NEDD8, a

ubiquitin-like protein required for cell cycle progression through

the S/M checkpoint and thus can be potentially involved in cell

cycle control of hematopoietic stem cells. The protein Dp-2 (E2F

dimerization partner 2) belongs to a family of transcription factors

that play an essential role in regulating cell cycle progression [42].

These transcription factors regulate the expression of numerous

critical genes (e.g. cyclin E, CDC2, cyclin A, B-Myb, E2F1, and

p107) involved in cell cycle progression as well as several enzymes

(DNA polymerase a, thymidine kinase, and dihydrofolate

reductase) required for DNA replication [42]. Thus Dp-2 could

certainly be involved in stem cell regulation. In summary, our

analytical approach provides a list of interesting genes for further

scientific and functional validation. Additionally, this dataset can

be used as an online resource for stem cell and hematology

researchers as a control database for comparisons with disease

state GE profiles done in their laboratories.
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