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Abstract

Somatic copy number alteration (CNA) is a common phenomenon in cancer genome. Distinguishing significant consensus
events (SCEs) from random background CNAs in a set of subjects has been proven to be a valuable tool to study cancer. In
order to identify SCEs with an acceptable type I error rate, better computational approaches should be developed based on
reasonable statistics and null distributions. In this article, we propose a new approach named TAGCNA for identifying SCEs
in somatic CNAs that may encompass cancer driver genes. TAGCNA employs a peel-off permutation scheme to generate a
reasonable null distribution based on a prior step of selecting tag CNA markers from the genome being considered. We
demonstrate the statistical power of TAGCNA on simulated ground truth data, and validate its applicability using two
publicly available cancer datasets: lung and prostate adenocarcinoma. TAGCNA identifies SCEs that are known to be
involved with proto-oncogenes (e.g. EGFR, CDK4) and tumor suppressor genes (e.g. CDKN2A, CDKN2B), and provides many
additional SCEs with potential biological relevance in these data. TAGCNA can be used to analyze the significance of CNAs in
various cancers. It is implemented in R and is freely available at http://tagcna.sourceforge.net/.
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Introduction

Somatic copy number alterations (CNAs) are distributed

throughout the genome in almost all human cancers [1]. One of

the systematical efforts in exploring the effect of CNAs on cancer

development is to distinguish significant consensus events (SCEs)

that represent ‘‘driver mutations’’ from random background

CNAs that represent ‘‘passenger mutations’’ [2,3]. Extremely

high resolution array technologies and large collection of cancer

subjects further a comprehensive understanding of the mutational

events in such a program [1,3,4]. This meanwhile leads to a

critical requirement of computational approaches for identifying

significance aberrations that are shared by multiple subjects.

Currently, many statistical approaches have been developed.

STAC (Significance Testing for Aberrant Copy number) [5] tests

CNAs separately for amplifications and deletions, and it requires

binary input data matrices, in which ‘one’ represents amplification

(or deletion) and ‘‘zero’’ represents normal status. This method

utilizes two complementary statistics: frequency and footprint, to

measure each marker under the null hypothesis that the observed

CNA regions are equally placed anywhere across the genome

being analyzed. Specifically, the ‘‘frequency’’ statistic is used to

reflect the commonness of an aberration across samples and the

‘‘footprint’’ statistic is used to reflect the tight alignment of an

aberrant region across samples. Furthermore, ‘‘footprint’’ takes

into account the correlations among aberrations and the lengths of

CNA regions. However, both of the statistics have not incorpo-

rated the amplitude of aberrations, so that some important

information may be missed, since high-level amplifications and

deletions may lead to different biological implications compared to

low-level aberrations [6]. Similar to STAC, GISTIC (Genomic

Identification of Significant Targets In Cancer) [3] also analyzes

amplifications and deletions separately, but it requires input data

with segmented signals. This method designs a G-score by

incorporating both the frequency and amplitude of aberrations,

and assigns the G-score to each marker for assessing significance

based on a semi-exactly approximated null distribution. The null

distribution is established by assuming that CNA markers are

independent. Accordingly, the joint effects between adjacent

markers are ignored in CNA detections [7]. To improve the

detection power, an extension of GISTIC, GISTIC2.0 [8], is

proposed, which considers the distinction of the background

frequency between focal CNAs and broad CNAs and scores each

marker proportional to its amplitude. Another similar method is

the DiNAMIC (Discovering Copy Number Aberrations Manifest-

ed In Cancer) [9], which defines a summary statistic for each

marker and designs a new framework for the significance

assessment. It employs a cyclic permutation scheme to generate

null distribution, in which the structural information of the original

copy number data is maintained. DiNAMIC further adopts a

’peel-off’ algorithm to detect less-frequent markers. In general, the

feature that the above methods share is their two-stage approach,
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i.e. they need a prior step of discretizing the CNA signals using

individual-sample analysis methods [10,11]. To avoid dependence

on individual-sample analysis, many authors propose one-stage

computational approach. For instance, KC-SMART (Kernel

Convolution: a Statistical Method for Aberrant Region deTection)

[12] directly analyzes raw intensity ratio data (i.e. the data without

discretization in individual samples) to identify SCEs using a new

statistic: Kernel Smoothed Estimate (KSE), which takes into

account the signal strength of neighboring markers; and CMDS

(Correlation Matrix Diagonal Segmentation) [13] scores each

marker based on its correlations with the surrounding sites in the

raw intensity ratios. Many other approaches are discussed by Shah

[14] and Rueda et al. [7].

Within the existing approaches, three common and important

components are summarized as follows: (1) data platform, i.e. raw

intensity ratio data or discretized data (corresponding to one-stage

or two-stage approach), for detecting SCEs; (2) statistic associated

with genomic units (e.g. markers or genes); and (3) null distribution

for testing the statistic. However, one surprisingly difficult question

here is how to make a consistency among the three components,

taking into account CNA structures and statistical significance. So

far, there are no definite solutions to this question. One-stage

methods may lead to a large bias signal to the statistics [15], in

which the null distribution is not exactly consistent with the

purpose of identifying SCEs from random background CNAs, e.g.

the null hypothesis underlying CMDS is that there is no CNA. In

this case, SCE detection power may be greatly affected by the

occurrence probability of random CNAs. Two-stage methods

often utilize the defined CNAs (gains or losses) to generate null

distribution through permutations. However, many of them adopt

marker-based scoring but region-based permutation schemes, such

as STAC and DiNAMIC methods. GISTIC program makes out a

reasonable consistency among the three components, but it does

not consider the correlations among markers. This might make the

statistical significance conservative in multiple testing [16], and

may not be biologically relevant [7]. Overall, most existing

methods in either one-stage or two-stage frameworks quantify

CNAs and test the significance based on individual markers, which

are usually related with each other. This may lead to a decreased

power in detecting CNA regions especially for those less-extreme

regions [7]. Furthermore, they usually generate null distributions

based on a mixture of SCEs (false null hypotheses) and random

background CNAs (true null hypotheses). This is theoretically

deviated from the true null distribution in statistical hypothesis

testing, decreasing the meaning of significance assessment.

With these considerations, in this article we propose a new

approach, TAGCNA, for identifying SCEs based on continuous

segmented signal ratios. The approach is composed of two steps.

First, select tag CNA markers from the genome being analyzed,

and then produce a new data matrix consisting of tag markers,

each of which is scored by incorporating both frequency and

amplitude of CNA; and second, based on the data matrix, create a

null distribution using a peel-off permutation scheme. The

primary features of the approach include: (1) both scoring and

permutation are performed based on tag marker-level, considering

the correlations among adjacent markers; (2) the mean of the null

distribution moves left due to the peel-off procedure on tag

markers, converging to that of the truth null distribution.

TAGCNA can be used to analyze data from individual

chromosomes as well as data derived from genome-wide studies.

We test its statistical power on extensive simulated ground truth

data, and then apply it to two real datasets of lung and prostate

cancers. TAGCNA successfully identifies SCEs associated with

known cancer driver genes, and provides many additional SCEs

with potential biological relevance.

Materials and Methods

Data Format
Original data is preprocessed through individual-sample anal-

ysis methods such as CBS [10,17], and is stored in matrix X (N6L),

where each row represents a subject and each column represents a

marker. TAGCNA starts work from this point. It adopts

thresholds (hamp and hdel) to define amplifications and deletions

in X, and separates X into two matrices Xamp (N6L) and Xdel

(N6L). TAGCNA analyzes amplification and deletion separately

since they are generally regarded as playing distinct roles in cancer

development.

In matrix Xamp (or Xdel), aberration is represented with a log2-

ratio, and no aberration is represented with a zero. Below we

describe the TAGCNA principle to test significance of CNAs

either in the analysis of amplification or deletion data matrix.

Selecting Tag CNA Markers
Somatic CNA is a structural variation in the human genome,

thus the probes in the genome are inherently correlated even if the

CNAs are random background events. It is desirable to maintain

this correlation and to maximize the independence between test

statistics in the analysis of CNAs. These considerations led us to

design TAGCNA to test CNAs by partitioning the genome into

small correlation blocks and selecting tag markers in different

blocks, which are assumed independent. Scoring and permutation

procedures of TAGCNA are then performed on the tag markers.

CNA correlation block partition is carried out based on a set of

subjects (Figure 1). The first step is to calculate correlation

coefficients between adjacent markers via Pearson correlation

formula [13]:

rij~

PN
n~1

(xni{�xxi )(xnj{�xxj )

(N{1)sisj
ð1Þ

where rij is the correlation coefficient between markers i and j; N is

the number of samples; xni is log2-ratio of subject n at marker i; �xxi,

�xxj , si and sj are log2-ratio means and standard deviations of

markers i and j across all subjects. Then we obtain a correlation

value for each marker k by averaging coefficients among its

surrounding markers by Equation (2) [13]:

Rk~
1

2

w

� � Xkzw=2{1

i~k{w=2

Xkzw=2

j~iz1

rij ð2Þ

where w is a pre-specified window size around marker k. Figure 1

(b) shows the correlation value for the 1000 markers in the

exampled population. To utilize the spatial coherence among

adjacent markers, we assume that the correlation values in the

nearby markers are at the same level and employ CBS algorithm

[10] to partition the whole genome into blocks where correlation

values change between contiguous blocks (Figure 1 (c)). In each

block, one tag marker is selected from its middle site. Thus, the

total number of tag markers is the number of blocks resulted from

the partition of the genome. A new data matrix T (N6M) is then

produced based on the tag markers (Figure 1 (d)), where M is the

number of tag markers.

Identifying Significant Consensus Events in Cancer
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Peel-off Permutation and Assessing Statistical
Significance

Based on the data matrix T, TAGCNA performs peel-off

permutation [3,9] to generate null distribution under the

hypothesis that there is no SCEs, i.e. that all tag markers in T

are passengers, and then assesses the statistical significance of the

observed tag markers. To mirror this, TAGCNA scores each tag

marker m by incorporating frequency and amplitude of CNA [3]:

Sm~
XN

n~1

tnm ð3Þ

where tnm is log2-ratio of subject n at tag marker m in matrix T.

Note that the significance of the tag marker is supposed to

represent the significance of the corresponding genome block.

Figure 1. An example of tag marker selection procedure, (a) R (b) R (c) R (d). (a) A matrix profile of 100 subjects and 1000 markers; the
white colored positions indicate copy number alterations. (b) The correlation value for each marker, which is the average coefficient among its
surrounding markers. (c) Block correlation value resulted from the partition of the genome based on (b). (d) A new data matrix consisting of tag CNA
markers (here N = 100, M = 50); each tag marker is selected from each block in (c), where the red dots are the middle of the blocks, representing tag
markers.
doi:10.1371/journal.pone.0041082.g001

Identifying Significant Consensus Events in Cancer

PLoS ONE | www.plosone.org 3 July 2012 | Volume 7 | Issue 7 | e41082



We now describe the procedure of peel-off permutation and

significance test in detail, which is also illustrated in Figure 2. At

the beginning, a null distribution D1 is estimated using permuta-

tion on the matrix T1 (T1 = T). Based on D1, each tag marker is

assigned a p-value. This algorithm can be decomposed into the

following steps:

(1) In each subject, perform a permutation of the tag markers, i.e.

randomly place the tag markers in the tag locations of the

genome.

(2) In the permuted dataset d(T1), calculate the score over tag

marker m, denoted by Sm(d(T1)), m = 1, 2, …, M.

(3) Repeat steps (1) and (2) E times, i.e. perform E permutations

of the dataset, and thus obtain E permuted datasets d1(T1),

d2(T1), …, dE(T1), and the corresponding scores Sm(d1(T1)), Sm

(d2(T1) ), …, Sm (dE(T1) ).

(4) Let D1 be the distribution of maxm Sm(d(T1)) over all the E

permutations, and define the p-value for tag marker m0

(m0M{1…M }) by the extreme right-hand probability [5,9]:

p-value(Sm0
)~

1z
PE
e~1

I(maxmSm(de(T1))§Sm0
)

Ez1
ð4Þ

where I (?) is the indicator function.

Subsequently, TAGCNA scans the p-values across all the tag

markers. If any one or more of the p-values are less than a

significance cutoff (e.g. 0.05), the corresponding tag markers will

deleted (Figure 2). Then a new data matrix T2 is produced without

incorporating the significant tag markers. Based on T2, a null

distribution D2 can be created via the above four steps and the

significance level of the remainder tag markers can be assessed.

The procedure is continuing until achieving a null distribution

DH, based on which no additional tag markers can be identified

significant. During the procedure, a sequence of data matrices T1,

T2, …, TH and a sequence of null distributions D1, D2, …, DH are

obtained. We observe that the number of columns in the data

matrices are decreasing and the means of the null distributions are

moving left gradually along with the sequence. This implies that

TH might not include highly-extreme tag markers and the

proportion of true null hypotheses is greatly increased, so the

resulted null distribution DH might be extremely close to the truth

null distribution. Finally, based on DH, TAGCNA assesses the

significance levels of all the observed tag markers again. This

might improve the power for identifying less-extreme SCEs and

also correct the p-values in terms of statistical significance.

Results

Simulation Studies
Real datasets rarely have absolutely confirmed ground truth

SCEs, so it is difficult to assess the performance of statistical

methods on real data. In this section, we design simulation studies

Figure 2. Procedure of peel-off permutation and significance test. It starts from the tag marker data matrix T (N 6M), and generates null
distribution D1 through permutations on the data. Based on D1, significance level is assigned to each tag marker. If the significance level is less than a
cutoff (e.g. 0.05), the corresponding markers (e.g. the i-th tag marker) will be removed from the matrix in the next iteration of permutation and
significance test. This procedure is continuing until achieving a null distribution DH, based on which there are no additional tag markers are identified
significant. In this procedure, the mean of the null distribution moves left gradually, e.g. in the second iteration, D2 moves left when compared with
D1.
doi:10.1371/journal.pone.0041082.g002
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to test the statistical power of our approach. The simulation model

proposed by Willenbrock and Fridlyand [18] is modified to

generate CNA datasets under various parameter settings. In each

setting, we simulate 100 subjects each with 10000 markers. Log2-

ratio for each subject is generated by mixing normal and tumor

cells. The proportion of normal cell for a particular subject is

drawn from a uniform distribution between 0.3 and 0.7. Gaussian

noise of mean zero and varying variance is added to each subject.

Here we consider three levels of the variance in the Gaussian noise

distribution, i.e. its standard deviation (SD) (s) is drawn uniformly

from [0.1, 0.2], [0.2, 0.4], or [0.4, 0.6] [18] in the simulation of

each subject. To further make the simulation more realistic, we

add two non-SCE regions with length ranging from 50 to 500 to

each subject. The positions of the non-SCE regions are randomly

selected in the stretch of the simulated genome, and the log2-ratios

of the regions are generated uniformly between 0.585 (copies 3)

and 1.322 (copies 5). Three ground truth SCEs are embedded in

the simulated datasets. The log2-ratios and lengths of them are

specified as Ratio = {0.585, 1, 1.322} and L = {200, 100, 50},

respectively. The frequency of all the three SCEs across subjects is

denoted as f. Two frequency levels, 0.15 and 0.20, are considered

for simulating various genome datasets.

We implement TAGCNA on the simulated datasets by setting

the parameters hamp and hdel to 0.1 and 20.1, as well as w to 20,

and compare its performance against CMDS [13] based on ROC

curves, which are shown in Figure 3. Each ROC curve is plotted

for one simulation parameter setting, in which the TPR (true

positive rate) versus FPR (false positive rate) is calculated at

different significance levels and is then averaged over 100

simulated replications. From Figure 3 we can note that in most

cases, TAGCNA is more powerful than CMDS in terms of larger

areas under the ROC curves. Therefore, TAGCNA is a valuable

tool in identifying SCEs from background CNAs.

Additionally, to study the behaviour of TAGCNA under the

true null hypothesis that there are no SCEs, we adopt the

algorithm introduced by Walter et al. [9] to simulate null CNA

datasets and perform TAGCNA on these data. Again, three levels

of Gaussian noise are considered in the simulation scheme in an

effort to show the robust behaviour of TAGCNA. The results of

these experiments are shown in Table 1. In each case, the type I

error rate resulted by TAGCNA is calculated according to the

following steps:

(1) Simulate 600 replications using the simulation algorithm with

default parameter setting in Walter et al’s work [9].

(2) For each data replication, implement TAGCNA based on

1000 permutations, and determine if there are any CNAs are

significant at p-value ,0.05.

(3) Calculate the number of replications in which there exist

significant CNAs, and define the type I error rate as the

proportion of these replications in the 600 replications.

The values of the type I error rate listed in Table 1 are very

close to 0.05, indicating that TAGCNA is slightly conservative and

the permutation procedure on tag CNA markers is relatively

reasonable.

Application to Real Datasets
We applied TAGCNA to two publicly available cancer datasets.

The first consists of 371 lung adenocarcinoma subjects, each of

which includes 216,327 markers. This dataset is obtained from the

TSP (Tumor Sequencing Project) project and is available at

Figure 3. Performance comparison between CMDS and TAGCNA based on ROC curves. TPR and FPR are averaged over 100 simulated
replications in each parameter setting. We use two options (i.e. b = 10 and b = 20) for the CMDS method in the data analysis.
doi:10.1371/journal.pone.0041082.g003
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http://www.broadinstitute.org/cancer/pub/tsp/ [19]. The sec-

ond set is generated from 82 prostate adenocarcinoma subjects in

TCGA (The Cancer Genome Atlas) project, each subject was

profiled using SNP6.0 in 1,868,857 markers, and the data is

available at http://cancergenome.nih.gov/. Original CNA data

are segmented via individual-sample analysis and are transformed

into the input format to TAGCNA as described in the software

package document. TAGCNA is implemented in each chromo-

some for analyzing amplification and deletion separately. We set

the log2-ratio thresholds hamp and hdel to 0.848 (3.6 copies) and

20.737 (1.2 copies), which is the setting of the GISTIC method in

analyzing cancer genomes [19], as well as parameter w to 20, and

perform 1000 random permutations to assess the significance of

tag markers. Tag markers with p-values less than 0.05 are

considered significant, and accordingly the relevant genome blocks

are considered as SCEs.

Result on the lung adenocarcinoma dataset. Figure 4

shows the significance landscape of the whole genome resulted

from the analysis of the lung adenocarcinoma dataset. TAGCNA

identifies a total of 16 amplifications and 29 deletions in different

chromosomes as listed in the both sides of Figure 4. The genes

covered by these SCEs are given in Table S1. Many known cancer

driver genes are included in the result. For instance, EGFR

(epidermal growth factor receptor) is an oncogene contained in

7p11.2 (p-value ,0.001). Its amplifications can result in over

expression and uncontrolled cell division, which is a predisposition

for cancer [20]. The maximum inferred copy number at 7p11.2 is

9.1, and there are 11 (3%) subjects with copy number above

threshold 3.6 at the region and 50 (13.5%) subjects above

threshold 2.5.

We use Venn diagram to compare SCEs resulted from

TAGCNA with that from GISTIC in Figure 5. TAGCNA

provides statistical support for 80% of the amplification events and

50% of the deletion events that GISTIC detected. Most of the

overlapped SCEs encompass one or more oncogenes or tumor

suppressor genes. In addition, a part of the non-overlapped

deletion SCEs of TAGCNA is supported by CMDS result [13]

such as 10q21.2 and 15q11.1. Furthermore, we suppose that

existing approaches might miss some SCEs shown to be statistical

and biological significance. Here we characterize one SCE

(21q22.2) uniquely identified by TAGCNA. Deletion at 21q22.2

(p-value ,0.001) occurs in 11 (3%) subjects with copy number

below 1.2 and occurs in 24 (6.5%) subjects with copy number

below 1.5, and the minimum inferred copy number is 0.3. This

SCE covers three genes (PCP4, DSCAM, and TMPRSS3), in

which TMPRSS3 has been validated to be clinically and

biologically associated with human diseases [21,22].

In Figure 5, it is easy to note that the number of new SCEs

detected by TAGCNA in deletion is larger than that in

amplification. Examination of the copy number profiles in the

lung adenocarcinoma dataset and the detected SCEs reveals two

reasons for this discrepancy. The most common explanation is that

the deletion event is present more frequently than amplification

event [19] and most of the deletions are heterogeneity (i.e. loss of

one copy) [3], such as seen in the lung adenocarcinoma samples

for 17p11.2 deletion. Here, 6.8% of the samples exhibit deletion

magnitude between 1 and 1.5, while only a few (1%) of the

samples exhibit deletion magnitude below 1. Accordingly, 17p11.2

is a less-extreme region (i.e. frequency and magnitude are

relatively low), which may not be discovered under the null

distribution contributed by multiple large deletion SCEs. Howev-

er, such regions would reach significance by removing SCEs from

the genome and re-creating new null distributions performed by

TAGCNA. The second explanation is that the correlation

coefficient among the deletion probes in this particular dataset is

relatively higher than that among the amplification probes, thus

the detection of individual probes without considering correlations

would lead to a higher conservativeness. For example, the deletion

at 7q11.22 is assigned p-value less than 0.001 by TAGCNA, but it

is reported by GISTIC with q-value more than 0.025.

Result on the prostate adenocarcinoma dataset. The

significance landscape of the whole genome analyzed by

TAGCNA on the prostate adenocarcinoma dataset is given in

Figure 6. A total of 91 amplification SCEs and 97 deletion SCEs

are identified in the dataset, and the covered genes are listed in

Table S2. Most of these SCEs are shown to be biologically

relevant and are supported by previously reported results. For

example, amplifications at 1q21.1, 7p21.2, 7q36.1, 8q13.3,

8q23.1, 9p13.1, 14q24.2, 14q32.31, and 16p11.2 are introduced

by Outi [23], where 7p21.2 contains transcription factor ETV1,

which was found to be substantially over-expressed in a subset of

prostate cancers, and 14q24.2 is closely adjacent to HIF1A, the

protein encoded by this gene has been shown to be over-expressed

in many prostate cancers; and amplifications at 11p15.4, 3p12.3,

3p12.1, 13q13.3, 17q12, 7p15.3, 7p15.2, 7q34, 5q35.3, and

8p11.23 are reported by other authors [24,25,26,27]. Deletions at

2q14.2, 4p16.1,4q26, 6q13, 9p13.1, 10q23.2, 16q23.1, and

17p13.3 are introduced by Outi [23], where 10q23.2 and16q23.1

are extremely close to important potential tumor suppressor genes

PTEN and HSD17B2; and deletions at 8p12, 1q21.2,

5p15.2,5p14.3,5p12,14q12, 14q32.31, 6q14.1,13q13.3, 3q26.1,

11p15.4, and 20p13 are presented by other authors

[25,26,27,28]. These results indicate that TAGCNA is applicable

to the analysis of real CNA datasets.

Moreover, many additional amplification and deletion SCEs are

identified by TAGCNA (A part of them are listed in Table 2),

which can be used for further investigation. For instance, 12p11.21

and 15q24.1 encompass genes FGD4 and HCN4 respectively.

Mutations in these genes have been associated with Charcot Marie

Tooth disease type 4H [29] and sick sinus syndrome2 [30]

respectively. We note that the two SCEs show statistical

significance (p-value ,0.001) in both amplification and deletion

situations. Another deletion SCE 10q23.1 contains GRID1, which

has been shown to be related with the increased risk of developing

schizophrenia [31].

Discussion

General Summary
Identification of SCEs in somatic copy number data has proven

to be an effective technique to discover cancer driver genes. In this

article we propose a novel approach TAGCNA, aiming to increase

the statistical power for detecting SCEs. TAGCNA is motivated by

carefully considering biological and statistical significance. To

Table 1. Type I error rate for null CNA datasets analyzed by
TAGCNA.

Null simulation* Type I error rate

[0.1, 0.2] 0.0433

[0.2, 0.4] 0.0483

[0.4, 0.6] 0.0450

*The interval of the standard deviation (SD) of the Gaussian noise added to the
simulated datasets, i.e. the SD of the Gaussian noise for each CNA marker is
drawn uniformly from the interval.
doi:10.1371/journal.pone.0041082.t001
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preserve the inherent correlations in CNA data and to make a

consistency between statistic and permutation procedure,

TAGCNA constructs CNA blocks and tests the statistical

significance of tag markers that represent the blocks. To correct

p-values assigned to tag markers, TAGCNA adopts a peel-off

permutation scheme to generate a reasonable null distribution.

We perform simulation studies to examine performance of

TAGCNA in comparison with that of the CMDS method. Since

both of the methods have considered the correlations among

adjacent markers and have modeled the average correlations using

a window size, for a fair comparison, we choose w = 20, as the

default value of the CMDS algorithm [13], in the simulation

studies. The result shows that TAGCNA presents higher true

positive rate at the same false positive rate in various simulation

datasets than that of the CMDS method. The most common

explanation is that CMDS measures CNAs only using the

correlations, which usually exist in both SCEs and background

CNAs. Especially when the background CNAs are very common,

the power of identifying SCEs using correlation score would be

decreased. We further test the type I error rate of TAGCNA using

simulated null datasets. The result indicates that TAGCNA

performs well and is slightly conservative compared to the p-value

threshold of 0.05. In application to two real CNA datasets,

Figure 4. The landscape of statistical significance levels of the genome in the 371 lung adenocarcinoma subjects. 2log10 (p-values)
are given for amplification and deletion regions respectively. The dashed green line is placed at 1.3 (corresponding p-value of 0.05) as a cutoff for
calling significant consensus events. Chromosome 23 indicates the sex chromosome.
doi:10.1371/journal.pone.0041082.g004

Figure 5. A Venn diagram comparison between GISTIC and
TAGCNA in terms of SCEs identified in the lung adenocarcino-
ma data. The overlapped amplification and deletion events are listed
in the top and bottom of the Venn diagram. Here, we use the common
cutoffs q,0.05 and p,0.05 for GISTIC and TAGCNA, respectively.
doi:10.1371/journal.pone.0041082.g005
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TAGCNA readily identifies SCEs that are known to be involved

with cancer driver genes and provides new SCEs with potential

biological relevance. TAGCNA is an extremely flexible approach.

Specifically, it is suitable for analyzing CNA data profiled from

any array platform such as Affymetrix Human Mapping 250K

STY SNP Array and the Affymetrix Genome-Wide Human SNP

Array 6.0. For the adjustment for multiple comparisons,

TAGCNA is similar to existing methods such as STAC [5],

Figure 6. The landscape of statistical significance levels of the genome in the 82 prostate adenocarcinoma subjects. 2log10 (p-
values) are given for amplification and deletion regions respectively. The dashed green line is placed at 1.3 (corresponding p-value of 0.05) as a cutoff
for calling significant consensus events. Chromosome 23 indicates the sex chromosome. Many important SCEs are listed in the both sides of the
figure.
doi:10.1371/journal.pone.0041082.g006

Table 2. A part of additional SCEs identified by TAGCNA in prostate adenocarcinoma dataset.

Amplification Deletion

SCE Candidate gene p-value .3.6 .2.5 Max.CN p-value ,1.2 ,1.5 Min.CN

12p11.21 FGD4 ,0.001 19 (23.2) 34 (40.5) 6.3 ,0.001 7 (8.54) 16 (19.5) 0.24

15q24.1 HCN4 ,0.001 17 (20.7) 38 (46.3) 5.3 ,0.001 15 (18.3) 17 (20.7) 0.37

10q23.1 GRID1 1.00 0.01 9 (10.9) 18 (21.9) 0.47

".3.6" means the number of copies of subjects at the SCE location larger than 3.6, and the same to ".2.5"; ",1.2" means the number of copies less than 1.2, and the
same to ",1.5";
G(K), e.g. 19(23.2), denotes the number of subjects (percentage) above the threshold;
Max.CN/Min.CN represents the maximum or minimum inferred copy number.
doi:10.1371/journal.pone.0041082.t002
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MSA [32], and DiNAMIC [9], using the max-T procedure to

control the family-wise error rate (FWER).

As for the algorithm parameter selection of w in real

applications, there is no general guideline about how to determine

its value since different kinds of cancers usually have different rates

and magnitudes of CNAs [6], which would lead to various degrees

of correlations among markers and various lengths of CNA blocks.

We have tested this empirically in a large number of experiments

using different window sizes and have found that a value of w

taking between 10 and 50 would be a suitable choice in most

contexts. Generally, relatively lower values are helpful to identify

focal CNAs while relatively higher values are helpful to identify

broad CNA regions (the size of them is near that of a chromosome

arm). Since our main objective here is to identify focal CNAs, we

adopt a relatively lower value of w (i.e. w = 20) in the

implementations of TAGCNA on the two real datasets.

TAGCNA can be performed on either individual chromosomes

or genome-wide. Since different chromosomes may have different

background CNAs and perform different roles in human diseases,

we implement TAGCNA by permutations on individual chromo-

somes in the analysis of lung and prostate adneocarcinoma cancers

in this article. In general, focal SCEs might be identified more

easily than broad SCEs in this scheme due to the limited length of

individual chromosomes, while broad SCEs might be likely

identified on genome-wide permutation and they are usually

regarded to contribute important biological consequences to

cancers [1,3,8]. To mirror this, we have also performed TAGCNA

on genome-wide permutation and have obtained a larger number

of broad SCEs (data not shown here). An additional factor to affect

the identification of focal and broad SCEs is the threshold

definitions of amplification and deletion. Higher thresholds might

be focused on focal SCEs while lower threshold might be focused

on broad SCEs [8]. As aforementioned, our purpose here is to

identify focal SCEs, we choose relatively higher thresholds for

calling amplification (greater than 3.6 copies) and deletion (less

than 1.2 copies). Moreover, we also focus on identifying

chromosome-specific SCEs, and choose a commonly used p-value

threshold of 0.05 [5,9,13] to determine significant in real

applications. From the viewpoint of whole genome, it is certainly

true that the p-value threshold is too liberal since there are 23

multiple tests in either amplification or deletion analysis. In this

case, the threshold of 0.05/23 seems to be more reasonable.

However, from the viewpoint of individual chromosomes, the

scaled threshold might be too conservative and would omit some

chromosome-specific SCEs [5].

The Impact of Contamination of Normal Cell on the
Detection Power

Since tissue samples often consist of a mixture of cancer and

normal cells, the produced somatic CNA profiles are the weighted

sum of copy numbers contributed by cancer and normal cells [33].

Accordingly, the measured copy numbers are smaller (or larger)

than the true values in amplification events (or deletion events). It

is generally regarded that the fraction of the normal cells contained

in the tissue samples may affect the power of calling amplifications

and deletions, as well as affect the detection power of significant

consensus CNA events [33]. To investigate the impact of the

normal cell fraction on the power of TAGCNA for identifying

SCEs, we simulate various datasets from a mixture of cancer and

normal cells and implement TAGCNA on these datasets. The

fraction of normal cells is generated from a Gaussian distribution

with mean 0.6 and varying standard deviation from 0.1 to 0.35. In

each dataset we insert one amplified and one deleted ground truth

SCEs with frequency of 0.15. We use a significance cutoff 0.05 to

determine if TAGCNA identifies the SCEs, and count the power

based on 100 replications simulated under each kind of the

Gaussian distributions. Figure 7 shows the power curve, indicating

that the power to identify SCEs decreases gradually with the

increased standard deviation. However, one possible strategy to

deal with this issue is to recover the true copy number profiles of

cancer tissues by estimating the fraction of normal cells. Currently

there are a couple of studies have attempted this approach [33,34].

Future Work
Four directions for future research to extend TAGCNA are

envisioned. The first is to enhance the power of TAGCNA by

combining normal cell contamination correction method such as

BACOM (Bayesian Analysis of COpy number Mixtures) [33]. The

copy number corrected samples may not only make the definition

of amplification or deletion more accurate, but also make the null

distribution more reasonable since it often incorporates the

amplitude of CNA signals. The second direction is to explore a

new way to select tag markers using an independent set of normal

individuals with similar genetic background as the samples

analyzed. This will be helpful to avoid bias in the determination

of background CNA blocks and thus to improve the power of

detecting significant CNAs. The third direction is to incorporate

gene expression data in the analysis of cancer copy number data.

The identified SCEs from CNA data can be associated with the

RNA expression levels in cancer samples to explore functional

consequences. This is an intuitive extension aimed to validate the

biological and clinical relevance of SCEs. The abundant and high-

quality data sets with clinical information published by the TCGA

project (http://cancergenome.nih.gov/) would facilitate these

studies. The last extension is to apply TAGCNA to analyze

CNV (copy number variation) data from normal populations and

LOH (loss of heterozygosity) data in cancer samples. These data

are of course different from CNAs in terms of density, amplitude,

etc. TAGCNA would provide statistical strictness to this analysis

and may reveal potential copy number change patterns associated

with phenotypes.

Conclusions
In conclusion, TAGCNA can be used to identify SCEs from

random background CNAs in various cancer genomes, and may

obtain an acceptable type I error rate. Its permutation scheme on

tag CNA markers and its peel-off procedure in generating null

Figure 7. Power curve for TAGCNA for simulated datasets
containing two SCEs. The normal tissue contamination in the
datasets is generated under a Gaussian distribution with mean 0.6 and
varying standard deviation from 0.1 to 0.35. The power is averaged over
100 simulation replications.
doi:10.1371/journal.pone.0041082.g007
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distribution greatly contributes to this outcome. TAGCNA is very

flexible in performing permutation within chromosome or across

whole genome. Users do not need to do any extra work to choose

either type of permutations they want to implement.

The experiment results suggest that TAGCNA is an improved

algorithm to achieve better sensitivity while maintaining the same

specificity and can provide important gene candidates for studying

tumor development and progression. The TAGCNA algorithm is

implemented in R, and has been examined on Windows and

Linux platforms.
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