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Abstract

Macroautophagy is a cellular mechanism for the clearance of protein aggregates and damaged organelles. Impaired
macroautophagy has been observed in neurodegenerative disorders. We investigated the macroautophagy pathway in
essential tremor (ET) cases compared to age-matched controls. We analyzed microtubule-associated protein light chain 3-II
(LC3-II), S6K, phosphorylated S6K, beclin-1, and mitochondrial membrane proteins levels by Western blot in the post-
mortem cerebellum of 10 ET cases and 11 controls. We also performed immunohistochemistry in 12 ET cases and 13
controls to quantify LC3 clustering in Purkinje cells (PCs). LC3-II protein levels were significantly lower in ET cases vs. controls
on Western blot (0.8460.14 vs. 1.0060.14, p = 0.02), and LC3-II clustering in PCs by immunohistochemistry was significantly
lower in ET cases vs. controls (2.0363.45 vs. 8.8069.81, p = 0.03). In ET cases, disease duration was inversely correlated with
LC3-II protein level (r = 20.64, p = 0.046). We found that mitochondrial membrane proteins were accumulated in ET (TIM23:
1.3660.11 in ET cases vs. 1.0060.08 in controls, p = 0.02; TOMM20: 1.6360.87 in ET cases vs. 1.0060.14 in controls, p = 0.03).
Beclin-1, which is involved in macroautophagy, was strikingly deficient in ET (0.4260.13 vs. 1.0060.35, p,0.001). Decreased
macroautophagy was observed in the ET cerebellum, and this could be due to a decrease in beclin-1 levels, which
subsequently lead to mitochondrial accumulation as a result of autophagic failure. This provides a possible means by which
perturbed macroautophagy could contribute to PC pathology in ET.
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Introduction

Essential tremor (ET) is among the most prevalent movement

disorders [1]. In postmortem studies, degenerative changes in the

cerebellum, including an increase in the number of Purkinje cell

(PC) axonal torpedoes and PC loss have been reported [2,3].

Other pathological features have also been reported in ET,

including an increase in the numbers of heterotopic PCs, an

increased density of the basket cell axonal plexus surrounding PCs,

and Bergmann gliosis [4–6]. In contrast, granule cells and parallel

fibers seem to be relatively preserved in ET [7]. Whether ET is a

neurodegenerative disease is under active discussion [8].

Since PC loss has been reported in ET cerebellum, we explored

potential mechanisms of such PC loss. The main mechanisms of

PC death are apoptosis, autophagy, and necrosis [9]. Autophagy is

of particular interest since many neurodegenerative diseases are

characterized by autophagic alterations that are linked to

proteinacious accumulations as well as neuronal death [10]. One

of the autophagic pathways, macroautophagy, is a cellular

degradative process in which organelles such as mitochondria

and aggregated proteins are engulfed by double-membraned

vacuoles (AVs) that are subsequently targeted for degradation in

lysosomes. A direct link between autophagy and neurodegenera-

tion has been established by loss of basal autophagy in mouse

brains through conditional knockout of key autophagy genes, Atg5

and Atg7; this results in neurodegenerative phenotypes with

accumulation of ubiquitinated aggregates and neuronal loss

[11,12]. Mutations or overexpression in neurodegenerative disease

genes, including presenilin [13], huntingtin (Htt) [14], a-synulcien

[15,16], parkin, and PINK1 [17], have been reported to inhibit

macroautophagy. These studies highlight the importance of

autophagy in neuronal homeostasis and survival. In this study,

we investigated whether changes in autophagy occur in the

cerebellum of ET cases compared to that of age-matched controls.

Methods

Ethics statement
All the brain donors signed the informed consent approved by

Columbia institutional review board to donate their brains for

scientific research. All samples were de-identified and analyzed

anonymously.

Brain Repository and Study Subjects
The study was conducted at the Essential Tremor Centralized

Brain Repository (ETCBR) [18]. Postmortem cerebellar tissue was
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obtained from ET cases and age-matched controls. All brains

received a comprehensive neuropathological diagnostic assessment

as previously described [19].

The clinical diagnosis of ET, initially assigned by treating

neurologists, was confirmed by ETCBR study neurologists using a

detailed, videotaped, in-person neurological assessment that was

followed by application of ETCBR diagnostic criteria [18], which

required the presence of moderate or greater amplitude kinetic

arm tremor that was not attributable to Parkinson disease (PD) or

dystonic tremor. Control brains were from individuals followed at

the Alzheimer Disease Research Center or the Washington

Heights Inwood Columbia Aging Project. They were followed

prospectively with serial neurological examinations and were

clinically free of Alzheimer Disease (AD), ET, PD, dementia with

Lewy bodies (DLB), or progressive supranuclear palsy, and their

brains were without diagnostic abnormalities on standardized

neuropathological evaluation. The number of ET cases and

controls in each experiment are shown in Table 1.

Western Blot
Frozen brain samples in standardized vials were solubilized in

RIPA buffer (Sigma) with protease and phosphatase inhibitors,

and were sonicated and subsequently centrifuged at 16870 g for

30 minutes. The supernatant was used for analysis. An equal

amount of protein from each brain homogenate was separated on

a NuPAGE 4–12% Gel (Invitrogen) and transferred to a PVDF

membrane (Millipore). We used the following antibodies: b-actin

(1:1000, Sigma), LC3 (Novus Biologicals 1384 1:1000), and

calbindin (1:1000, Sigma). The LC3 antibody has been extensively

used to study AVs in postmortem human brains [15,20]. We used

LC3-II specific antibody (Novus Biologicals 19167, 1:000) to

confirm the specificity. The secondary antibodies were conjugated

with horseradish peroxidase (Thermo scientific). We used ECL

(Millipore) to detect the signals, which were quantified in Image J

(National Institutes of Health). Each experiment was repeated

three times to obtain an average value for each sample.

Tissue Processing and Immunohistochemistry
A standard 3620625 mm parasagittal neocerebellar block was

harvested from the same region of each brain. Paraffin sections

(7 mm thick) were stained with Luxol Fast Blue Hematoxylin and

Eosin (LH&E) as described previously [2,3]. Axonal torpedoes

were also quantified in the entire LH&E-stained section [3].

Antigen retrieval of cerebellar sections was performed in Trilogy

(Cell Marque) for 40 minutes, 100uC and sections were immuno-

stained using anti-LC3 antibody (Novus Biologicals 1384, 1:100) at

4uC for 48 hours followed by Alexa 488 conjugated secondary

antibody (Invitrogen). Calbindin staining was performed with

monoclonal mouse antibody (Abcam, 1:100) and Alexa 594

conjugated secondary antibody (Invitrogen) In addition, we also

used the secondary antibody conjugated with horseradish perox-

idase with 3,39-diaminobenzidine (DAB). We used another LC3-II

specific antibody (Abcam ab58610, 1:100), which also showed a

similar staining pattern. Immunohistochemistry with the omission

of primary antibody was used as a negative control, which did not

show significant staining.

The central folia of each cerebellar section were identified and

five PCs in each slide were randomly chosen within the central

folia. Images were obtained by confocal microscopy (Leica, 63X)

with Ar 488/HeNEL 543 laser. A trained physician (SHK), who

was blinded to clinical and diagnostic data, obtained all images

with the same acquisition settings. Images were analyzed by Image

J. The AVs (LC3 puncta) were quantified as previously described

[21]. Briefly, PCs were identified by their morphology, their

distinct localization between the molecular and granule cell layers,

and their positive staining of calbindin. We first compared the Z-

stack composite image for the whole thickness of the section and a

single optical slide, and found their LC3 staining patterns were

similar. Therefore, we elected to use a single optical slide for AV

quantification. Images were analyzed by Image J (National

Institutes of Health, Bestheda). The AVs were identified as the

LC3 positive structures within PC cell bodies. We first randomly

selected 5 background values from the molecular layer and chose

Table 1. Clinical and pathological features of ET cases and controls.

Cerebellar cortex Occipital cortex

Western Blot Analysis Immunohistochemistry Western Blot Analysis

ET Controls ET Controls ET Controls

N 10 11 12 13 7 9

Age at death (years) 85.766.1 84.566.4 86.566.4 83.067.6 84.368.8 84.866.3

Female Gender 5 (50.0%) 6 (54.5%) 8 (75%) 7 (58.3%) 3 (42.9%) 5 (55.6%)

Brain Weight (grams) 12116126 11746145 11876123 12316140 12076140 11756157

Postmortem Interval (hours) 3.162.3 4.762.3 2.661.8 8.9610.5A 4.463.8 4.161.7

Braak AD Stage 2.061.2 2.061.1 2.561.2 1.761.2 1.661.0 2.061.1

CERAD Plaque Score

0 5 (50.0%) 5 (45.5%) 7 (58.3%) 7 (53.8%) 4 (57.1%) 5 (55.6%)

A 3 (30.0%) 3 (27.3%) 3 (25.0%) 4 (30.8%) 1 (14.2%) 1 (11.1%)

B 2 (20.0%) 3 (27.3%) 2 (16.7%) 2 (15.3%) 2 (28.6%) 3 (33.3%)

C 0 (0.0%) 0 (0.0%) 0 (8.3%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Purkinje cell counts 7.362.6 8.562.2 6.260.8 9.062.6 7.562.6 10.263.4

Axonal Torpedoes* 23.9624.8 4.462.2 29.8628.1 3.662.1 14.961.4 2.661.4

*p,0.05.
ATwo controls had PMI .15 hours. Median PMI in controls = 5.3 hours.
doi:10.1371/journal.pone.0053040.t001
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the 40 points above the average background value as the threshold

for AV quantification. All the pixels above the threshold and

within PC cell bodies were quantified. The usual size of AVs is

0.1–10 mm in diameter, but many AVs in PCs are either fused

with or close to each other. Therefore, it is difficult to quantify the

actual numbers of AVs. Instead, we summed the pixels above the

threshold value and divided by the cell body area, excluding the

nucleus, to obtain the percentage of cell body area occupied by

AVs. We also used a second analytic method, in which we used a

set threshold value for all the images, and calculated the

percentage of cell body area occupied by AVs; this analysis

showed similar results.

Data Analyses
Analyses were performed in SPSS (version 18.0) and GraphPad

Prism (version 5.0). Demographic and clinical characteristics of

ET cases and controls were compared using Student’s t tests and

chi square tests. The mean LC3-II protein levels, mitochondrial

membrane protein levels, and beclin-1 levels (Western blot) and

the percentage of cell bodies occupied by AVs (immunohisto-

chemistry) were normally distributed; hence, parametric tests

(Student’s t test, Pearson’s correlation coefficient [r]) were used

when assessing these variables. Based on the presence in our

sample of a clear bimodal distribution in disease duration among

ET cases (#40 years vs. .40 years), study subjects were stratified

into 3 diagnosis-duration groups: controls, ET cases with shorter

duration disease, and ET cases with longer duration disease. In

linear regression models, we examined the association between

LC3-II protein level or the percentage of cell bodies occupied by

AVs (dependent variables in different models) and the diagnosis-

duration group (controls, ET of shorter duration, ET of longer

duration).

Results

Cerebellar tissue was available for Western blot analysis on 10

ET cases and 11 age-matched controls who were similar with

respect to age, gender, brain weight and other variables of interest

(Table 1). The mean LC3-II protein level determined by Western

blot with LC3 antibody was lower in ET cases than controls

(0.8460.14 vs. 1.0060.14, p = 0.02)(Figure 1A, B). We used

another LC3-II specific antibody (see Methods) and found the

similar case-control differences (p = 0.01) and there was a high

correlation between the LC3-II levels detected by two antibodies

(r = 0.52, p = 0.01)

Among ET cases, disease duration was inversely correlated with

LC3-II protein level (r = 20.64, p = 0.046) (Figure 1C). The mean

disease duration was 49.9622.2 years (range = 9–70 years). Based

on the presence of a clear bimodal distribution in disease duration

among ET cases in our sample (#40 years vs. .40 years), study

subjects were stratified into 3 diagnosis-duration groups: controls,

ET cases with shorter duration disease (n = 3, mean = 19.7612.2

years, range = 9–33 years), and ET cases with longer duration

disease (n = 7, mean = 62.966.0 years, range = 55–70 years). The

respective LC3-II protein levels were: 1.0060.14, 0.9560.14, and

0.7960.12, and in a linear regression model, LC3-II protein level

declined by diagnosis-duration group (r2 = 0.37, p = 0.004)

(Figure 1D). We also investigated calbindin level, a protein

specifically expressed by PCs in the cerebellum, and found that ET

cases had a lower level of calbindin than controls (0.5860.18 vs.

1.0160.26, p,0.01) (Figure 1E), consistent with our previous

findings that ET cases had a lower number of PCs [3].

We then investigated whether decrease in LC3-II was specific to

the ET cerebellum. We determined LC3-II protein level in the

occipital cortex in 7 ET cases and 9 controls: ET cases had similar

LC3-II level as controls (0.9860.13 vs. 1.0060.08) (Figure 1F, G).

Cerebellar tissue was available for immunohistochemistry on 12

ET cases and 13 age-matched controls, who were similar with

respect to age, gender, brain weight and other variables of interest

(Table 1). These included 6 of the 10 ET cases and 8 of 11 controls

used in the Western blot analysis. We labeled the cerebellar

sections with anti-LC3 and anti-calbindin antibodies to assess the

LC3 content in PCs. PCs were found to have a robust autophagic

activity, reflected by LC3 clustering; therefore, we used LC3

staining to assessed the autophagic activity in PCs [22]. We found

that PCs in ET cases exhibited lower LC3 staining (Figure 2A–H).

We found that LC3 was present in punctate structures, which

labels them as AVs: PCs in ET cases had strikingly fewer LC3

puncta than controls (Figure 2I–L). We quantified the fraction of

PC bodies, excluding the nucleus, that was occupied by AVs

(Figure 2M–O). The percentage of cell bodies occupied by AVs

was more than 4-fold lower in ET cases than controls (2.0363.45

vs. 8.8069.81, p = 0.03)(Figure 2P). The results from Western blot

analyses (i.e., LC3-II protein levels), were highly correlated with

these immunolabel results (r = 0.78, p = 0.001).

Among the 12 ET cases with immunolabel results, the mean

disease duration of the patients was 46.3622.1 years (range = 17–

80 years). Disease duration was not correlated with the fraction of

cell bodies occupied by AVs (r = 20.12, p = 0.70), yet when study

subjects were stratified into 3 diagnosis-duration groups (controls;

ET cases with shorter duration disease [n = 4, mean = 19.863.4

years]; and ET cases with longer duration disease [n = 8,

mean = 59.6612.6 years]), the respective percentage of cell bodies

occupied by AVs were: 8.8069.81, 3.2163.32, and 1.4463.56,

and in a linear regression model, the fraction of cell bodies

occupied by AVs declined by diagnosis-duration group (r2 = 0.14,

p = 0.035)(Figure 2Q). The number of torpedoes was not

correlated with LC3-II protein levels on Western blot analysis

(r = 0.04, p = 0.40) or with the percentage of cell bodies occupied

by AVs on immunohistochemistry (r = 0.04, p = 0.33). We also

found that axonal torpedoes in ET cases were also devoid of LC3

staining (Figure 2R–T).

We demonstrated a decreased LC3-II level in ET cerebellum

and a decreased presence of AVs in PCs in ET. This could be due

to either insufficient AV formation or increased AV clearance. To

estimate effects on autophagic cargo in postmortem tissues [23],

we examined mitochondria, which are degraded via macroauto-

phagy. We reasoned that autophagic cargo accumulation would be

consistent with insufficient AV formation in ET; in contrast, a

decrease in autophagic cargo would be consistent with an

accelerated AV clearance. Among the autophagic cargo, mito-

chondria mass has been most thoroughly studied in post-mortem

human brain tissues. Indeed, autophagic cargo recognition failure

leading to mitochondrial accumulation has been proposed to

occur [14], and this has been confirmed in Hungtinton’s disease

(HD) post-mortem brain tissues [24].

We observed that the mitochondrial membrane proteins,

translocase inner membrane 23 (TIM23), and translocase outer

mitochondrial membrane 20 (TOMM20), were increased in the

cerebellum in ET cases vs. controls (TIM23: 1.3660.11 in ET

cases vs. 1.0060.08 in controls, p = 0.02; TOMM20: 1.6360.87

in ET cases vs. 1.0060.14 in controls, p = 0.03) (Figure 3A–

C).This increase in mitochondrial mass suggests that the decrease

in AVs observed in ET cerebellum may be due to impaired AV

formation. In contrast, we found that similar mitochondrial

protein levels were present in the occipital cortex of both ET

cases and controls (TIM23: 1.0060.16 in ET cases vs. 1.0060.36

Autophagy in Essential Tremor
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in controls; TOMM20: 1.1160.25 in ET cases vs. 1.0060.20 in

controls) (Figure 3D–F).

We next investigated the two best characterized regulators of

macroautophagy initiation: mammalian target of rapamycin

(mTOR) and beclin-1. mTOR phosphorylates ULK1/2 and

Atg13 complexes to inhibit autophagy, whereas beclin-1 is

required for Vps34 and other protein complexes to induce

autophagy [25]. Thus, mTOR serves to inhibit, and beclin-1, to

promote macroautophagy. As we could not detect mTOR and

phosphorylated mTOR on Western blot, like others [26,27],

possibly due to the large molecular weight of mTOR and the

specificity of the antibodies against post-mortem human samples.

We utilized the mTOR downstream effectors, phosphorylated

S6K (pS6K) and S6K as reliable readouts for mTOR activity S6K

is a ribosomal serine/threonine kinase and, upon phosphorylation

by mTOR, S6K facilitates ribosomal biogenesis. ET cases had a

similar pS6K/S6K ratio as controls (0.8860.27 vs. 1.0060.44,

p = 0.47), suggesting that the differences in mTOR activity do not

directly account for the decreased LC3-II in ET (Figure 3G, H).

In contrast, we found that beclin-1 level was decreased in ET

cases vs. controls (0.4260.13 vs. 1.0060.35, p,0.0001)(Figure 3G,

I). In a linear regression model, beclin-1 level was correlated with

LC3-II level (r2 = 0.46, p,0.001), suggesting that beclin-1 could be

an important rate-limiting molecule for AV formation in PCs and

that beclin-1 deficiency could play a role in autophagic

dysfunction in ET.

Discussion

We observed lower LC3-II protein levels in the ET cerebellum

and fewer AVs in the PCs in ET. These observations suggest that

autophagic dysfunction could be a feature of ET. ET cases with

the longest disease duration had the lowest LC3-II level and the

most diminished AVs, followed by ET cases with shorter duration

disease and then controls, indicating that the macroautophagic

dysfunction might be related to ET disease duration. In addition,

we showed that mitochondrial accumulation in ET, which is

consistent with a reduced autophagic clearance of these organelles.

The macroautophagy regulating protein, beclin-1, was moreover

at very low levels in ET cerebellum, suggesting that beclin-1

deficiency might account for autophagic insufficiency in ET.

The early steps of AV formation involve the nucleation of

double membranous structures followed by LC3-II recruitment;

both mTOR and beclin-1 are important regulators in these

autophagy initiation steps. Subsequent steps involve AV targeting

to lysosomes and AV clearance. Inhibition of the early steps of

macroautophagy can decrease AV formation whereas inhibition of

later steps can lead to increased AV accumulation. Thus,

inhibition of autophagy can result in either decreased or increased

AVs.

In many neurodegenerative disorders, including AD, PD, HD,

and DLB [14,15,20,28–30], AV accumulation is evident in post-

mortem brain tissue [14,29]. This could result from impaired

clearance of AVs due to the direct interference of autophagy by b-

amyloid or Htt [13,14]. In marked contrast with these other

disorders, we observed that ET cases exhibited decreased levels of

AVs when compared with controls. We further found a decreased

Figure 1. Decreased LC3-II levels in the cerebellum of essential tremor (ET) cases and controls. LC3-II and b-actin levels in cerebellar
homogenates were determined by Western blot in 10 ET cases and 11 controls. Two LC3 antibodies were used, LC3 antibody, Novus Biologicals 1384
(top panel), and LC3-II specific antibody Novus Biologicals 19167 (third panel) and the representative bands were shown (A). LC3-II levels (mean 6

SD) were significantly lower in ET cases vs. controls (B). In a linear regression model, ET disease duration inversely correlated with LC3-II level (C).When
dividing our sample into three categories, ET cases with the longest disease duration had the most diminished LC3-II levels, followed by ET cases with
shorter duration disease and then controls (D). ET cases displayed lower levels of calbindin than age-matched controls, consistent with PC cell loss (A,
E). We also determined the LC3-II and b-actin levels in the occipital cortex in 7 ET cases and 9 controls and the representative blots were shown (F). ET
cases and controls exhibited similar LC3-II levels in the occipital cortex (mean 6 SD) (G).
doi:10.1371/journal.pone.0053040.g001
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beclin-1 level in ET cerebellum, consistent with an early step of

autophagic failure, which further sets ET apart from other

neurodegenerative disorders such as AD, PD, HD, or DLB

[15,20,28,30].

By forming the core complex required for AV formation, beclin-

1 is an important player in the induction of macroautophagy [25].

Deficiency in beclin-1 has been observed in post-mortem AD

brains and spinocerebellar ataxia type 3 (SCA3) patients’

fibroblasts [31,32]. Furthermore, beclin-1 is recruited to Htt

inclusions in HD mouse model brains and in the striatum in HD

patients, in which the reduced availability of beclin-1 might result

in cell death [33]. Lentiviral delivery of beclin-1 in AD, PD, and

SCA3 mouse models results in removal of amyloid b (Ab), a-

synuclein, and ataxin-3 aggregates, respectively [16,31,32].

Finally, beclin-1 plays an important role in PC degeneration, as

mutated GluRd in lurcher mice binds to nPIST and recruits beclin-

1, which triggers autophagic cell death in PCs [34]. Together,

these studies suggest that beclin-1 is an important regulator in

neurodegenerative diseases.

Figure 2. LC3-II immunohistochemistry in PCs was decreased in ET cases vs. controls. Cerebellar cortical sections from controls (A–C) and
ET cases (D–F) were double immunolabelled with anti-calbindin and Alexa 594 (A, C, D, F, red), or with anti-LC3 and Alexa 488 (B, C, E, F, green) and
imaged by confocal microscopy using the same acquisition parameters. LC3 signals are much stronger in PCs (white arrows) in control (B) than in ET
case (E). We also labeled the cerebellar cortical sections with anti-LC3 antibody conjugated with avidin/biotin complex and horseradish peroxidase
and stained with 3,39-diaminobenzidine (DAB) (G, H, brown). PCs exhibited stronger immunolabelling with DAB in control (G) than ET case (H). Scale
bar: 200 mm. Higher magnification confocal images of PCs stained with LC3 and Alexa 488 showed that controls (I, J) contained more LC3 puncta than
ET cases (K, L). Scale bar: 50 mm. Using image J, we further analyzed the percentage of PC body occupied by AVs (M–O). The percentage of PC body
occupied by AVs was significantly lower in ET cases than controls (P). We further divided our samples into three groups including controls, short
duration ET group, and long duration ET group and compared the LC3-II clustering. LC3-II clustering was highest in the controls and lowest in the
long duration ET group (Q). A cerebellar cortical section was stained with calbindin (R, red) and LC3 (S, green) in a case of ET. A PC body (arrow) and
an axonal torpedo (asterisk) were identified by the positive calbindin staining (R). Axonal torpedo did not display any LC3 staining (S, T). Scale bar:
50 mm.
doi:10.1371/journal.pone.0053040.g002
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The early steps of macroautophagy also involve two important

cellular machinery proteins, Atg5 and Atg7 [35], which are

required for AV formation and LC3-II clustering [36,37].

Interestingly, Atg5 or Atg7 PC-specific deficient mice, which lack

macroautophagy in PCs, showed age-dependent PC loss and PC

axonal terminal swelling [36,37]. In contrast with other mutant

mice with PC degeneration, these mice only exhibit moderate PC

loss and mild ataxia. Therefore, autophagic activities are essential

for PC survival and PC axonal integrity, and autophagic failure

could contribute to the PC pathology in ET. We note that in Atg5

or Atg7 PC-specific knockout mice, PC axonal swellings occurred

at the distal end of the axons (at the level of the dentate nucleus)

whereas most of the PC axonal torpedoes in ET have been

observed in the proximal axons, and so the relationship between

these features is not yet clear [3,36,37]. Nonetheless, autophagic

activities are still important in maintaining PC axonal integrity.

Axonal torpedoes in ET represent the intracellular accumula-

tion of neurofilament proteins, and we expected to find LC3

staining since AVs have been found to surround Lewy bodies and

Htt aggregates [38,39]. To our surprise, axonal torpedoes were

devoid of LC3 immunolabel, which is consistent with the lack of

double membranous structures surrounding organelles in axonal

torpedoes [40].

One possible limitation of this study is that PCs constitute only a

small percentage of cells in the cerebellar cortex and the results

from Western blot analysis also reflect other cell types, such as

granule cells, suggesting that other cell types might also have

autophagy dysfunctions. Other limitations include the lack of

direct visualization of AVs by electron microscopy (EM) [23]. It is

however difficult to assess AVs in the postmortem human tissues

due to the disruption of membranous structures and morphology

of AVs. Boland et al were able to directly visualize AVs under EM

from direct biopsy from a live patient’s brain [30]. However, the

current ET pathology materials do not allow us to conduct such a

study, and therefore, we studied LC3-II levels by Western blot and

LC3 clustering in immunohistochemistry.

The present data do not indicate if the apparent macroauto-

phagy failure could be a secondary event to the primary cause of

ET pathology and we do not rule out the possibility that beclin-1

deficiency could be due to upstream molecular dysregulation.

Future directions will be to investigate other molecules important

for AV that could lead to autophagic dysfunction in ET, and to

Figure 3. Mitochondrial accumulation and beclin-1 deficiency in ET cerebellum. Levels of mitochondrial membrane protein, TIM23 and
TOMM20, in cerebellar cortex homogenates in 10 ET cases and 11 controls were determined by Western blot and the representative bands were
shown (A). TIM23 and TOMM20 were normalized against b-actin to determine the protein levels. TIM23 and TOMM20 protein levels were significantly
higher in the cerebellum of ET cases than controls (B, C). In contrast, TIM23 and TOMM20 protein levels were similar in the occipital cortex of 7 ET
cases and 9 controls (D–F). S6K, pS6K, and beclin-1 levels in cerebellar cortex homogenates were determined by Western blot (G). pS6K levels were
highly variable (G). pS6K and S6K ratio did not differ between ET cases and controls (H). Beclin-1 level was significantly lower in ET cases than controls
(I).
doi:10.1371/journal.pone.0053040.g003
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determine other cargoes that may be altered due to autophagic

failure implicated in ET cerebellum. Mitochondrial accumulations

were observed in ET cerebellum, and the further detailed

mitochondrial analysis including the levels of respiratory complex

proteins and fusion/fission proteins is required to determine

mitochondrial dysfunction in ET.
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