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Abstract

Social networking services (e.g., Twitter, Facebook) are now major sources of World Wide Web (called “Web”) dynamics,
together with Web search services (e.g., Google). These two types of Web services mutually influence each other but
generate different dynamics. In this paper, we distinguish two modes of Web dynamics: the reactive mode and the default
mode. It is assumed that Twitter messages (called “tweets”) and Google search queries react to significant social movements
and events, but they also demonstrate signs of becoming self-activated, thereby forming a baseline Web activity. We define
the former as the reactive mode and the latter as the default mode of the Web. In this paper, we investigate these reactive
and default modes of the Web'’s dynamics using transfer entropy (TE). The amount of information transferred between a
time series of 1,000 frequent keywords in Twitter and the same keywords in Google queries is investigated across an 11-
month time period. Study of the information flow on Google and Twitter revealed that information is generally transferred
from Twitter to Google, indicating that Twitter time series have some preceding information about Google time series. We
also studied the information flow among different Twitter keywords time series by taking keywords as nodes and flow
directions as edges of a network. An analysis of this network revealed that frequent keywords tend to become an
information source and infrequent keywords tend to become sink for other keywords. Based on these findings, we
hypothesize that frequent keywords form the Web’s default mode, which becomes an information source for infrequent
keywords that generally form the Web's reactive mode. We also found that the Web consists of different time resolutions
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Introduction

Approximately 90% of the World Wide Web’s (hereafter
referred to as “Web”) data stream is said to have been created
within the last few years [1], and the total amount of data is
increasing every day. It is also said that Web data volumes are
doubling every two years. This exceptional growth is mainly due to
emerging social network services (SNSs), such as Twitter and
Facebook. The advantage of SNSs became widely recognized after
the Egyptian revolution of February 11, 2011 and the earthquake
of March 11, 2011 in Tohoku, Japan. Facebook helped bring
worldwide attention to the historical event in Egypt, and Twitter
served as an efficient platform for communicating and obtaining
information regarding the earthquake. This shift in the Web from
search to communication over the last 10 years has been
remarkable. People are using the Web to see what other people
are doing and to share feelings and ideas.

The two types of Web services, represented here by Google and
Twitter respectively, constitute the majority of the information
being diffused and circulated on the Web. Google and Twitter
have different memory structures. For example, only 126 out of
the 3,479 unique trending topics (3.6%) from Twitter exist in the
4,597 unique hot keywords of Google [2]. These keywords are
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mostly associated with real-world events, celebrities, and movies.
On average, 95% of the hot keywords per day are new in Google,
while only 72% of the hot keywords are new in Twitter [2]. This
feature is worth noting, since it reflects that retweets, replies, and
mentions are prevalent in Twitter; however, such interaction
among users is not possible with Google searches. Retweet is a
unique feature in Twitter called retweeting (RT), whereby people
repost their favorite messages (called “tweets”) on their timelines.
Statistics show that half of the RT occurs within an hour and 75%
in less than a day [2]. However, approximately 10% of the
retweets occur a month later. This implicit cooperative feature of
Twitter makes Twitter’s time series different from Google’s time
series and as the data show, because of this, the same trending
topics persist over a relatively longer period of time in Twitter.
In order to investigate these differences between Google and
Twitter, we examined how these two services affect each other.
How are their time series different from each other? Does
information flow from Twitter to Google or vice versa? We
conducted an intensive time series analysis to answer these
questions, and to better characterize Web dynamics with respect
to Google and Twitter. In this paper, we distinguish between two
modes of Web dynamics: one is reactive mode and the other is default
mode. There are examples in which Twitter and Google react
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Figure 1. Examples of frequent keywords in Twitter keywords and Google queries. Burst behaviors are not salient and synchronization

between the two time series was not observed.
doi:10.1371/journal.pone.0060398.g001

strongly to social movements by producing bursting behaviors. This
1s what we call the Web’s reactive mode. For example, a burst in the
popularity of keywords such as “earthquake” or “nuclear plant”
was observed on and after the earthquake of March 11, 2011 in
Japan.

The Web also demonstrates aperiodic non-stationary temporal
dynamics without necessarily showing bursting behavior, forming
a baseline Web activity. We define this baseline activity as the
Web’s default mode. People’s tweets may or may not be affected by
other users’ tweets appearing in their &melines, which shows the list
of tweets from users they are following. Thus, although global
information is not explicitly shared to cooperatively generate
tweets that include the same keywords, these tweets may reflect a
weak correlation by circulating within Twitter through users’
timelines. This reminds us of the classic network theory called weak
ties [3]. The potential for organizing informational structures and
patterning through weak ties is nicely realized by the interactions
mediated by timelines. We argue that Twitter as a weak tie
generates a default mode in Web dynamics. The default mode can be
an important Web mode, not only for supporting baseline activity
but also for reducing uncertainty in information circulation on the
Web, thereby regulating the consistency of information between
the Web and the actual world.

For the purpose of revealing and characterizing the Web’s
default mode, we computed the transfer entropy (TE) between the
time series of Twitter keywords and Google queries as well as the
information transfer within keywords. TE is one of the information
entropy measurements for estimating how the uncertainty of a
time series 1s reduced by using either its preceding states or other
time series [4]. TE cannot measure the causal effect but can
provide a predictive measure, as discussed in [5,6]. We hope that
this study provides useful information for understanding other
complex adaptive and autonomous systems, such as brain systems.
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Materials and Methods

Data Collection

We collected two types of time series data; one is the time series
data of a set of keywords contained in Twitter and the other is the
time series data of the same set of keywords issued as Google
queries. The data were crawled over an 11-month period using
Google Trends [7] and Twitter API (Japanese tweets only) from
July 16, 2011 to May 13, 2012, which is 302 days. The set of
keywords was chosen by selecting the top 1,000 keywords that
appeared in Twitter during this period. Google Trends only
provides the volume of how many queries are issued on a daily
basis, thus the time series data for Google is an aggregation of the
popularity of a particular keyword that day. As for Twitter, data
are available on a much finer timescale; thus, we prepared two
types of time series, one in which popularity was aggregated per
day and the other in which popularity was aggregated per hour.
The one-day unit time series was used to compute TE between
Google and Twitter, and the one-hour unit time series was used to
compute TE within Twitter.

Bursts

We define a bursting behavior as “a keyword’s popularity that
shows a sudden increase.” This was observed in the time series of
Twitter keywords and Google queries. For example, the keyword
“earthquake” bursts every time there is an earthquake. Since the
most salient property of the time series is bursting behavior,
counting the number of bursts is a first step toward characterizing
the reactive or default modes of the time series.

A state-of-the-art burst detection method determines the local
maximum of the peaks (e.g., log derivatives [8]). However, our
Twitter dataset analysis revealed that the most dominant
distributions among the 1,000 most-frequent keywords were those
with log-normal distributions. Therefore, to more accurately
detect the bursts in our dataset, we first determined the burst
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Figure 2. Examples of infrequent keywords in Google queries and Twitter keywords. Burst behaviors were clearly detected and

synchronization between the two time series was often salient.
doi:10.1371/journal.pone.0060398.g002

region, using the standard deviation (¢) and the mean value (u) of
the logarithm of popularity; second, we defined the burst region,
where popularity first goes above ¢ + p and then goes below this
value; and third, we extracted the maximum popularity within the
region as a peak. More precisely, i and ¢ were defined as

u=Xlogx/T,

o=[Z(logx—p)’)/T -,

where T denotes the total number of points in the time series,
which is determined by the time resolution (i.e., 302/4¢). If the
successive bursting time points were less than or equal to 1, we do
not consider this as a bursting period. In this paper, we take these
peaks as the definition of “bursts.”

Time resolution is another complex factor to be considered.
Bursts of each keyword vary with different time resolutions. For
example, the keyword “good night” has 24-hour periodicity and in
order to detect this periodic burst, a one-hour time resolution is
adequate. If the time resolution is shorter than one hour, too many
bursts are detected. In order to suppress periodic bursts in the time
series, we should choose the adequate time resolution for each
keyword, but there is no universal time resolution that is applicable
to any keyword. We will come back to this point in subsequent
sections.

The effects of tweets generated by bots also need to be
considered. It is known that 51% of traffic on average Web sites is
potentially generated by bots [9]. Bots tend to post a large number
of tweets that include the same keyword in a very short time
period. We can mitigate the effects of bots by removing bots that
post an extreme number of tweets, say, in a few seconds [10];
however, obviously, it is not possible to remove all the bots. In fact,
these indistinguishable bots can be considered as an essential part
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of the Web, which function to maintain overall activity that may
also induce human actions. Overall, these various temporal scales
organize a background temporal structure in Twitter’s time series
and, together with sudden bursting behavior and autonomous bot
tweets, act to form the Web’s temporal dynamics.

Information Flow

The information transfer observed in Twitter keywords and
Google queries is computed on the basis of TE, which was
developed by Schreiber [4], Staniek and Lehnetz [11,12], and
Bertschinger [13]. TE is one of the information entropy
measurements for estimating how the uncertainty of a time series
is reduced by using either its preceding states or other time series.
In this sense, TE is similar to Granger causality [14-16], which
calculates the degree to which one time series drives another.
However, TE has advantages over Granger causality, since TE
can eliminate the false contribution from the common temporal
pattern that is present in both time series when comparing two
temporal time series. For this same reason, TE has an advantage
over mutual information. On the other hand, TE cannot measure
the causal effect but can provide a predictive measure, as discussed
recently in [5,6].

Suppose the TE between two different temporal time series is
associated with the keywords 7 and j, respectively. If the TE from i
to j is greater than that from j to i, it can be said that knowing the
temporal sequence of i decreases the uncertainty of j compared
with the opposite case. Differing from mutual information, TE has
the advantage of being able to ascertain the direction of
information flow, rather than mere temporal correlation. Practi-
cally speaking, it is generally difficult to measure the causal effect
without knowing the underlying equation and, since Granger
causality calculates the linear approximation, it is not adequate for
highly nonlinear systems, which is the case with our datasets. IFor
these reasons, we use TE in our study.
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For example, according to [4], an advantage of TE is that it can
be used to evaluate the causes of epilepsy in the brain using EEG
sequences [11]. Another example is comparing heartbeat and
breathing sequences to evaluate which affects the other’s dynamics
[4]. Recently, TE has been used to successfully reveal the
underlying network of information transfer in the popularity of
hashtags in Twitter [17]. By using the computationally feasible
quantity called permutation entropy, TE differentiates between
upstream and downstream information flow in a realistic time
series with a large, dynamic range of values. That is, the TE of the
given pair of time series can be computed in two steps. The first
step is to compute the permutation entropy of the 7 number of the
possible ways of labeling local temporal patterns. The second step
is to compute TE on the permutated time series.

Transfer Entropy (TE)

Shannon entropy, with the probability distribution of p(x), is
commonly defined in the following manner (where x is an
extracted state of a target system; e.g., time sequence X) :

H(X)= -2 cxp(x)logyp(x).

Using this notation, we define mutual information (MI) between
two time series X and Y in the following manner:

MI(X,Y)=H(Y)— H(Y|X),

where H(Y) is the uncertainty of Y and H(Y|X) is the
uncertainty of Y for knowing X. By definition,
MI(X,Y)=MI(Y,X), so that no causal relationship is detected
with MIL. By introducing the time delay, we can improve the
situation, although it remains difficult to capture the direction of
causality.

On the other hand, TE from X to Y, which is denoted as
TE(X—-Y), is defined by

/ !
TEX - Y)=H(Y,1,|Y\")— H(Y11 | Y/ X(D),

where H(X|Y) denotes the conditional entropy and X, ,(d) and

Y,(d/) denote the past history of d and d’ length counted from the
present time (i.€., X;,X;—1,...,X/—d OF Yi,Vi—1,-.,V;_gl), TESPEC-
tively. Here, we also considered the time delay effect s and the
different time length of the past X and Y, (ie., d and d'),
respectively. TE measures the decrease of uncertainty in the state
Vi+s by knowing the uncertainty of x(td) from the past history of
other variables such as x. If there is no information flow from X to
Y, TE(X—Y) disappears but TE(Y — X) does not, as the TE is
explicitly non-symmetric with respect to Y and X.

Let us express the formulas in a more explicit manner by using
the probabilities of each element of the time series, such that

d) _(d'
POl D)
d' :

PO )

Here, p(x|y) denotes conditional probability. The opposite TE is
obtained in the same manner; for example,

TEX-Y)= =2, yevZxexPWiss:Xny)log
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P A

TE(Y-X)= _th+s,xteXZy,e yP(Xt45.X1,y0)log @
P(Xes[xi™)

Then, we measured the direction of the information flow by
comparing the TE for the pair of time series. In particular, we use
the difference between TE(X—Y) and TE(Y—-X) as the
quantity of information flow denoted by
TE(X,Y)=TE(X—>Y)—TE(Y—>X) in the remainder of this
paper. In order to calculate TE practically, we should discretize
the continuous state flow. Because of the trends in the time series,
it 1s difficult to discretize the state by its absolute value. Thus, we
used permutation entropy as explained below to have a stable
measurement.

Permutation Entropy and Time Resolution

Bandt and Pompe [18] introduced a simple refinement of
entropy with sequences that are practical and that allow feasible
coding of the real-value dataset. This method is based on the re-
ordering of the amplitude values of the time series X; = {x;} and
Y, = {y:}, so that the amplitudes are arranged in ascending
order. Namely, X,gm) = (XpsXp—15Xn—25 - - - sXn—m—1) are arranged
in ascending order and become (X7,X/41,-..,X/+m—1) such that
(X/=x/421=X142,--.,=X1+m—1)- We now use the indexes of
these wvariables instead of their amplitudes; for example,
(x1,X2,X3,X4) is re-ordered as  (X4,X2,X1,X3), so that
(x4=>x2>x1>x3) and the new temporal sequence is (4,2,1,3).
In this example, m is set to 4, which generates a total of 24 patterns
(4!=24). By shifting a window, we assign a number to each local
time series of the length 7. In this manner, any time series can be
mapped onto a string of finite symbols, thereby allowing us to
estimate the probabilities needed to compute the TE. Yet,
choosing a large m could use a large amount of computation
time and resources. This is because the probabilities of the triplet
P(x,x',y) is defined on the large number of combinations;
therefore, we need the same order of sampling points. In the case
of both Twitter and Google, m is not well estimated; thus, we had
to conduct an elaborate search on the time series of both Twitter
and Google by changing the dimensionality m.

Using permutation entropy, we compute the TE of a given time
series Tg in the following manner:

1. Generate a time series 77 of the length /; by aggregating the
state xo(?) (i.e., the sum of tweets between ¢ and ¢+ 4¢) for each
time steps of the original time series Ty of length /y. The length
/1 now becomes /y/ At and the state now becomes x1(n), where
n ranges from 1 to ly/4t as follows,

nAt

xl(")=J

(n—1)4t

xo(s)ds.

2. Redefine the time series 77 as 7> which is obtained by
permuting 77 for each m time window. By shifting the time
window individually, we obtain the length /, =/ —m and the
number of possible symbols is m!.

3. Compute the TE on T, with the parameters d,d’, and s. It
should be remarked that d =1 corresponds to m time steps in
T}, which thus correspond to m x At time steps in the original
sequence Tp.
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In all, we have five parameters (d, d’, s,m, and A4¢) to compute dependent on which 4t is chosen. In other words, changing At
the TE from the original time series. We set d=d'=1 and s=1, and m can also account for changing parameters d,d’, and s.
and utilize m and A4t as major controlling parameters. This is Therefore, it is preferable to fix the parameters d =d’=s=1 and
based on our understanding that changing d, d', and s is not vary the other two parameters, At and m. The optimal At and m
adequate because the values that must be chosen are also highly must be different for each time series; however, it is pragmatically
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Google to Twitter (where TE(Twitter,Google) <0) in the case of 4¢ equals to one day.

doi:10.1371/journal.pone.0060398.g005

difficult to select different At for each sequence. It may not be the
best method, but we adopt our parameters empirically using the
following principles: 1) For computing TE between Google and
Twitter, we checked m=2,3, and 4 and adopted m=3. We did
not use m=2 as it does not take advantage of using the re-
ordering, nor m=4 because if m is greater than 4, it becomes too
large for the number of sampling points we have for the Google
time series. We changed A4t for testing how it changes the TE
distribution, as will be evident in the results section. 2) For
computing the TE inter-Twitter time series, we adopted m=3 for
the same reason. Since we have a relatively larger data set for the
Twitter time series, we changed At over different time resolutions
from 2° minute to 2! minutes to see how the change in At affects
the results of the TE. Then, we selected one fixed value for 4t to
argue the TE flow within Twitter’s TE network.

Results

The inherent patterns and dynamics of Google’s and Twitter’s
time series were investigated to define and characterize the Web’s
reactive and default modes, using the top 1,000 most-frequent
keywords found on Twitter. For example, the top 10 most-
frequent keywords were “today,” “thing,” “people,” “RT,” “this
day,” “laughter,” “now,” “best,” “I,” and “tomorrow.” In the
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subsequent subsections, we show the relation between the number
of bursts and the frequency ranking of keywords as well as the
results of TEs that quantify inherent patterns and dynamics.

Dynamics of Frequent and Infrequent Keywords

Figure 1 shows the temporal dynamics of some of the most-
frequent keywords, such as “people” (ranked 3rd), “now” (ranked
7th), and “T”’ (ranked 9th). These frequent keywords form the daily
life dynamics of Twitter. Interestingly, we rarely observe bursting
behaviors in frequent keywords. Rather, more periodic behaviors
are observed because these keywords reflect people’s repetitive
habits, such as tweeting more frequently during the day and less at
night. This apparent periodic rhythm becomes explicit in
frequently used keywords. On the other hand, Figure 2 presents
examples of infrequent keywords, such as “warning” (ranked
862nd), “marathon” (ranked 930th), and “wedding” (ranked
983rd). Interestingly, these infrequent keywords show synchroni-
zation between Google’s and Twitter’s time series and reveal more
bursting dynamics with sudden aperiodic spikes.

Frequency of Keywords and Number of Bursts

Figure 3 depicts the relationship between the number of bursts,
defined as a sudden increased popularity, and the keyword
frequency ranking. As this figure shows, frequent keywords tend to
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Figure 6. Integrated TE of a given keyword to/from the other 46 keywords by varying the time resolution A7 from 2°(=1) minute to
2!9(=1024) minutes. Type a) a keyword (e.g., “today” ranked 1st) acts as an information source, type b) a keyword (e.g., “wind"” ranked 256th) acts as

an information mediator, and type c) a keyword (e.g., “typhoon” ranked 551st) acts as an information sink.

doi:10.1371/journal.pone.0060398.g006

have almost no bursts and infrequent keywords have more bursts.
Infrequent keywords such as “warning” or “marathon,” are rarely
tweeted in everyday life, but they may be triggered by real-world
events that impact numerous people. We say that these infrequent
keywords constitute the Web’s reactive mode toward real-world
events. On the other hand, frequently used keywords constitute the
Web’s baseline activity without being activated externally.
Namely, these keywords rarely respond to particular events, but
continue to fluctuate by themselves. The reactive mode is
sustained by external causes and the Web’s baseline activity is
maintained intrinsically. We call this baseline activity the default
mode.

In the following sections, we show that transfer information can
characterize the time series of frequent or infrequent keywords and
discuss the Web’s reactive and default modes in greater detail.

Determining the Time Resolution At

We are free to choose a base duration for each time series A¢,
thus, we investigated how the change in At differs in the resulting
time series. More specifically, we aggregated tweets from 2°
minute to 2! minutes and simply counted the number of local
peaks (i.e., X,—1 <X, =X, 41). The analysis was conducted on a set
of 46 keywords that were randomly chosen from 1,000 keywords.
The results are presented in Figure 4. It is evident from the figure
that the number of peaks approximately obeys the power-law with
an exponent of around —1 for At=2" to 2° irrespective of

sink = source mesaan

Ratio of sink and source nodes

keywords. After 2° minutes, the individual difference in keywords
gradually became apparent. It is evident that these two features
correspond to the micro and macro time scales of Twitter,
respectively. In the micro time scale in the order of minutes to an
hour, it reflects each user’s online tweeting action. In the macro
time scale in the order of hours to a day, it reflects the mood of a
society, that is, what people care about and what people are
anticipating.

In computing the entropy transfer between Google and Twitter,
we examine the macro time scale domain because Google only
supplied a one day dataset and we are only concerned with how
information is circulated at a societal level. On the other hand, in
computing the entropy transfer of inter-Twitter time series, we
examine the micro time scale because we are concerned with the
action pattern of users. Namely, each Twitter user is basically
concerned about what appears on his/her timelines and that
should be part of the micro time scale.

Information Transfer between Twitter and Google

In order to investigate the Web’s reactive and default modes, we
computed the TE between Twitter and Google for each keyword.
As discussed above, we used the time resolution of one day as a
base unit and the window size was set to 302 steps (which
corresponds to 302 days) in order to satisfy the required sampling
points (i.e., 216 points for m=3). We increased the time resolution

1000
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Figure 7. The role of each keyword. (Top) The ratio of keywords becoming sources and sinks shown as a function of keyword frequency over
time. Red shows the source ratio and blue shows the sink ratio, as a function of keyword frequency over time. The frequent keywords tend to become
source nodes and infrequent keywords tend to become sink nodes. (Bottom) Strong mediators are defined as having ample incoming and outgoing
TE flow and weak mediators are defined as those with both weak incoming and outgoing TE flow. The number of strong and weak mediators is
incorporated with the number of sinks and sources for each keyword.

doi:10.1371/journal.pone.0060398.g007
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At from one day to four days to see how it affects the entropy
transfer.

Figure 5 shows the TE(Twitter, Google) for 1,000 keywords for
m=3 and 4t=2,3,4 days with their plotted distribution,
respectively. Further, the distribution of the top 150 and the
bottom 150 most-frequent keywords is superimposed. If the TE is
positive, it implies that the information transfer is from Twitter to
Google, otherwise it is from Google to Twitter. It is suggested from
this figure that information is transferred more from Twitter to
Google than from Google to Twitter as a whole. Indeed, when
examining the TE for individual keywords when m=3 and
At=60 minutes, the total of 692 keywords (out of 1,000) shows
that information is transferred from Twitter to Google and 308
that it is transferred from Google to Twitter.

When comparing the top 150 frequent and bottom 150
keywords, we see a weak trend indicating that the top 150
keywords transfer from Twitter to Google more than the bottom
150 do. This suggests that the Web’s default mode (or frequent
keywords with rare bursting behaviors) contributes to reducing
uncertainty in the information circulation on the Web more than
the Web’s reactive mode (or infrequent keywords with many
bursts).

Next, we measured the information transfer among Twitter
keywords and discovered an inherent network behind the keyword
network connected through TE. Based on their information
transfer, we call this network among keywords the transfer entropy
network (TE network); we examine this in the next section.

Information Transfer on Twitter

Before computing the TEs of all the pairs of 1,000 keywords in
Twitter, we used the same 46 keywords as those in the section
entitled Determining the Time Resolution 47 and computed
the TEs of all the pairs in this set of keywords by changing the time
resolution 2" (n=1,2,3,...,10) minutes to see how they affect the
TEs.

We distinguished the results into three TE types as shown in
Figure 6. The first one is #pe a whereby the TE from this keyword
to other keywords is smaller than the TEs from other keywords to
this keyword in the smaller 4¢, and the tendency is reversed in the
larger At. For example, the TE from other keywords to this
keyword has the maximum TE value of around 22 minutes and

(a) ratio of sources
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the TEs from this keyword to other ones have a maximum value of
approximately 26 minutes (or approximately one hour). That is, if
At is larger than one hour, the direction of the TE flow is always
from this keyword to other keywords. The second one is fype b,
whereby the TE from this keyword overlaps with the TEs from
other keywords to this keyword. That is, there is no stationary TE
flow direction between this keyword and other keywords. Finally,
the third is &ype ¢ whereby the TE from this keyword to other
keywords is larger than the TEs from other keywords to this
keyword in the smaller 47, and the tendency is reversed in the
larger At.

From this observation and judging from the direction of the TE
flows, we identify #pe a as an information source to other
keywords, #pe b as an information mediator, and #pe ¢ as an
information sink to other keywords. While many keywords act as
type b for most of the time resolutions, interestingly, the higher-
ranking keywords tend to play as #ype a, the information source,
and the lower-ranking keywords tend to play as #pe ¢, the
information sink. As evident from these figures in Figure 6, the
effective At that maximizes the TE is different for each keyword.
For the purpose of comparison, we used the time resolution A7 of
one hour to compute the TE.

Finally, we investigated how each keyword plays a role as
source, sink, or mediator for the 1,000 keywords. We computed
the sum of all incoming flow (TE™) and all outgoing flow (TE®*")
for each keyword. If TE®“—TE™ is greater than a given
threshold, we say that the keyword plays the role of the
information source for other keywords. Similarly, if TE™ — TE™
is greater than the threshold, we say it plays the role of the
information sink to other keywords. This corresponds to #ype a and
tpe ¢, respectively. We can further distinguish keywords that are
neither source nor sink. If both TE™ and TE®“' are smaller than
the threshold, we refer to this keyword as a weak mediator. On the
other hand, if both TE™ and TE®“ are greater than the threshold,
we refer to this keyword as a strong mediator. These mediator nodes
do not become either sink or source but act as “relay” nodes to
send and receive information to other keywords.

The result of the computations for the 1,000 keywords is
depicted in Figure 7. The TE was created from the 240-hour time
window for over 302 days. We characterize each keyword by
labeling it as source, sink, weak mediator, or strong mediator. We

(b) ratio of sinks
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Figure 8. A histogram of the ratios for each keyword that becomes sources a) and sinks b) computed from the top 100 and bottom
100 keywords. The top 100 keywords have a higher ratio of becoming sources compared to the bottom 100 keywords, whereas the bottom 100
keywords have a higher ratio of becoming sinks compared to the top 100 keywords.

doi:10.1371/journal.pone.0060398.g008
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Table 1. The top 10 source and sink keywords from among
1000 keywords.

Rank source keywords Rank sink keywords
767 lunch 779 RITY

567 lunchtime 526 game

59 thing 38 mm

48 direction 574 where

9 | 619 map

63 long time 316 Nihonbashi

49 eye 625 play

76 everyone 437 average

7 now 226 JST

100 for 44 wind
doi:10.1371/journal.pone.0060398.t001

used the threshold however, of course, these labels, either source
or sink, are not fixed but temporally changing as with the advent of
time. If keywords are purely uncorrelated, the rate of becoming
sink or source must be flat against the keyword rank order.
Instead, Figure 7-(top) shows that frequent keywords have a higher
tendency to become source nodes when compared to less-frequent
keywords.

To investigate this characteristic further, the top 100 and
bottom 100 keywords were investigated to determine their
tendencies to become source or sink. Figure 8 shows that the
top 100 keywords tend to become an information source, whereas
the bottom 100 keywords have the opposite tendency; i.e., they
tend to become an information sink. Table 1 shows the top 10
most-frequent source keywords and the top 10 most-frequent sink
keywords out of 1,000 keywords. We see that pronouns such as “I”
or “everybody,” and ordinary nouns that are used in everyday
situations such as “lunch” or “thing,”” become source nodes. More
generic keywords, such as “game” or “play,” and some specific
words, such as “JST (Japan Science and Technology Agency)” or
“Nihonbashi” (a district in Tokyo), become sink nodes. Figure 7-
(bottom) shows the actual number of source, sink, and mediator
nodes for all the windows. As we see in the figure, frequent
keywords tend to become source nodes from the perspective of the
sink/source ratio, but they also tend to become relay nodes.

We argue that these Twitter time series are not independent of
each other. When a keyword is an information source, knowing the
time series of the keyword tends to reduce the uncertainty of the
other keywords. When a keyword is an information sink, knowing
the time series of the other keywords can reduce the uncertainty of
that keyword. In brief, our contention is that frequent keywords
have a strong tendency to become source nodes and infrequent
ones to become sink nodes. Since frequent keywords are less
driven by the real world because they have fewer bursts, we
conclude that frequent keywords are mainly activated by their
inherent dynamics (e.g., weak correlation through timelines) and
that they form the default mode of the Web. Frequent keywords as
an information source means they can reduce uncertainty in the
time series of infrequent keywords. The default mode can be an
important Web mode, not only for supporting baseline activity but
also for reducing uncertainty in information circulation on the
Web, thereby regulating the consistency of information between
the Web and the real world. This is consistent with the roles of
frequent keywords of Twitter as discussed in relation to the TEs
between Twitter and Google.
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Discussion

This paper explored how to define the Web’s reactive and
default modes by information transfer by computing TE to
characterize the inherent structure of the Web dynamics. First, we
defined whether a keyword is in default or reactive mode in terms
of how burst events are caused internally or externally. There are
reports on YouTube page views and Twitter hashtags, whereby
internally and externally caused bursts are distinguished by certain
criteria [17,19]. Our analysis of the number of bursts in relation to
keyword frequency revealed that while low-frequency keywords
tend to burst more, keywords are more influenced by real-world
events, when compared to high-frequency keywords.

From this observation, we defined that high-frequency keywords
form the Web’s default mode network and low-frequency key-
words constitute the Web’s reactive mode. When analyzing the
information transfer between Google and Twitter, we found that
information is mostly transferred from Twitter to Google and that
this tendency is more apparent for high-frequency keywords than
for low-frequency keywords. We also studied the information flow
network formed among Twitter keywords by taking the keywords
as nodes and flow direction as the edges of a network. We found
that high-frequency keywords tend to become information sources
and low-frequency keywords tend to become information sinks.
These findings suggest that we can use high-frequency keywords
(or default mode of the Web) to reduce uncertainty with the
externally driven low-frequency keywords (or reactive mode of the
Web). However, it is fair to assume that frequently searched
keywords in Google are different from the frequent keywords
found on Twitter. Thus, if we investigated the high-frequency
keywords found in Google queries, the results may be different.

The concept of reactive and default modes originates from brain
science [20-22]. A brain region responsible for a given task is
identified by measuring the neural activity that is observably
higher compared to the baseline activity. Raichle et al. [23]
examined the baseline activity by analyzing the regions that
become less active when a specific task is given. This successful
approach uncovered some remarkable perspectives and charac-
teristics of the default mode; based on Buckner’s [22] and
Raichle’s [24] reviews, these are: i) the area associated with the
default mode is found as the integration of various subsystems in
the brain - the medial prefrontal cortex and posterior cingulate
cortex subsystems seem to play central roles. i) The neural activity
of the aforementioned subsystems were observed as noisy fMRI
signals at a low frequency of about 0.1 Hz or less, showing global
synchronization. iii) The default mode is to do with spontaneous
cognition e.g., day dreaming and internal thoughts such as future
planning. iv) The activity of the default mode is anti-correlated
with the other brain regions that are responsible for focusing
attention on the external world; and v) the brain region associated
with the default mode overlaps with those involved in the
construction of episodic memory.

This notion of the default mode can be generalized for any
living systems with or without brain systems. In the case of the
Web system, it can be said that 1) frequent keywords constitute the
default mode (mostly everyday keywords), 2) these frequent
keywords display less frequent bursting behaviors and are an
information source for other keywords, 3) the default mode may
help reduce uncertainty in the entire Web system, and 4) the
default mode comprises quasi-periodic time series. From this
comparison with the default mode network in brain systems, and
in particular with the possibility that high-frequency keywords may
help to predict essentially unpredictable events, it becomes
apparent the Web’s default mode may have the same property
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as the default modes in the brain. Differentiating between these
two modes, the reactive and the default, provides a useful
perspective for understanding Web dynamics and predicting the
future of bursting behavior in the time series of keyword
frequencies in tweets in Twitter, as well as in the time series of
search queries in Google. With respect to the examples of complex
networks in general, we believe that the default mode is key for
understanding autonomy in complex systems in general. Any
autonomous system (e.g., robots) possesses primitive forms of the
default mode with different time scales [25].

Determining the adequate time resolution in a time series is
generally a difficult problem, particularly when we compute TE.
In Twitter time series, tweets are basically created out of individual
users’ postings with no simple threshold or global knowledge of
who is posting. With the apparent 24-hour periodicity that we see
in keywords like “‘good night,” it is rather appropriate to use a one-
hour resolution to analyze information transfer and correlation.
On the other hand, the keyword “Christmas” has a one-year
periodicity and keywords like “earthquake’ have no characteristic
time resolutions. However, when we examine the time resolutions
of the order of a few minutes to a few hours, these time series are
similar.

In the section entitled Determining the Time Resolution
At, we varied the time resolution of each time series and
computed the information transfer to ascertain how the TE
changes as a function of the time resolution. The TE between
Google and Twitter is relatively robust against the change of A¢.
Moreover, with regard to TE among different Twitter keywords,
the maximum value of outgoing TE is found around one hour for
many keywords, but there are exceptions. Due to the limitation of
data availability and computational power, we chose one day as
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the time unit for calculating TE between Twitter and Google, and
one hour as the time unit for keywords within Twitter.

We may have to adopt different time resolutions for different
keywords. Namely, some keywords provide more information
within a smaller time resolution but some provide information in
much longer time resolutions. As a result, the total uncertainty of
Twitter is distributed over different time resolutions. Which time
resolution is important for a keyword is determined by the
dynamics of other keywords. For example, studies on nonlinear
phase coupling systems show that faster phase oscillation generally
entrains the slower one. Here, the situation becomes more
complicated since the system is always perturbed by periodic or
aperiodic open flow in the real-world. Moreover, the time scale
hierarchy is self-organizing rather than given from the beginning.
Google has an additional source of time scales on the Web such as
automated crawling programs that change the search results that
are running on the Web. The default and reactive modes that we
found on the Web are the outcomes of such nested time
architectures. The investigation of nested time scales may also
be applicable to other complex adaptive systems.
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