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Abstract

It has long been observed that many neuronal types position their nuclei within restricted cytoplasmic boundaries. A
striking example is the apical localization of cone photoreceptors nuclei at the outer edge of the outer nuclear layer of
mammalian retinas. Yet, little is known about how such nuclear spatial confinement is achieved and further maintained.
Linkers of the Nucleoskeleton to the Cytoskeleton (LINC complexes) consist of evolutionary-conserved macromolecular
assemblies that span the nuclear envelope to connect the nucleus with the peripheral cytoskeleton. Here, we applied a new
transgenic strategy to disrupt LINC complexes either in cones or rods. In adult cones, we observed a drastic nuclear
mislocalization on the basal side of the ONL that affected cone terminals overall architecture. We further provide evidence
that this phenotype may stem from the inability of cone precursor nuclei to migrate towards the apical side of the outer
nuclear layer during early postnatal retinal development. By contrast, disruption of LINC complexes within rod
photoreceptors, whose nuclei are scattered across the outer nuclear layer, had no effect on the positioning of their nuclei
thereby emphasizing differential requirements for LINC complexes by different neuronal types. We further show that Sun1,
a component of LINC complexes, but not A-type lamins, which interact with LINC complexes at the nuclear envelope,
participate in cone nuclei positioning. This study provides key mechanistic aspects underlying the well-known spatial
confinement of cone nuclei as well as a new mouse model to evaluate the pathological relevance of nuclear mispositioning.
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Introduction

Many CNS tissues display a laminar organization that consists

in various number of nuclear layers separated by synaptic zones. A

good example is the mammalian retina – an accessible and well-

defined part of the CNS – that is composed of three distinct

nuclear layers separated by two zones of synaptic contacts, the

inner and outer plexiform layers (IPL and OPL, respectively). Six

neuronal types populate the retina: cone and rod photoreceptors

whose nuclei form the outer nuclear layer (ONL), horizontal,

bipolar and amacrine cells whose nuclei form the inner nuclear

layer (INL), and retinal ganglion cells (RGC) whose nuclei

delineate the ganglion cell layer (GCL). Müller cells, that form

the retinal glia, position their nuclei within the INL. Cone

photoreceptors provide spectacular examples of polarized nuclear

positioning. Indeed, their nuclei invariably localize on the apical

side of the ONL while their axons extend across the thickness of

the ONL to establish synaptic contact with second order neurons

within the OPL [1,2]. One can wonder whether this specific

nuclear positioning has any functional relevance since, by

comparison, rod photoreceptors do not require any particular

spatial confinement of their nuclei to function. Answering this

question first requires the identification of molecular mechanisms

underlying the establishment and maintenance of nuclear spatial

confinement.

Recently, major progress has been achieved in the identification

of nuclear envelope (NE) proteins that mediate nuclear migration

and/or anchorage (Fig. 1A). The NE is composed of the inner and

outer nuclear membranes (INM and ONM, respectively) that

merge at nuclear pores and delineate the perinuclear space. The

ONM is an extension of the rough ER and the INM tightly

adheres to the nuclear lamina, a meshwork of nuclear type-V

intermediate filaments represented by A- and B-type lamins [3,4].

Linkers of the Nucleoskeleton to the Cytoskeleton (LINC

complexes) refer to macromolecular assemblies that span the

nuclear envelope and physically connect the nuclear lamina to

cytoplasmic cytoskeletal networks and molecular motors [5–7].

They form through direct interactions between two families of

mammalian proteins: Sun proteins and Nesprins. Sun1 and Sun2

are integral transmembrane proteins of the inner nuclear

membrane (INM) whose nucleoplasmic regions interact directly

with components of the nuclear lamina [8–10]. On the other side

of the INM, within the perinuclear space, Sun proteins interact

directly with Nesprins, a family of transmembrane proteins that

populate the outer nuclear membrane [11–13]. These interactions

occur through evolutionary conserved SUN (Sad1/Unc84) and

KASH (Klarsicht/Anc-1/Syne Homology) domains that charac-

terize Sun proteins and Nesprins, respectively [10,14,15]. In turn,

the cytoplasmic region of Nesprins, whose sizes vary from ,50

kDa to 1MDa, interact with different cytoskeletal networks and
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motor proteins [12,13,16–18]. SUN/KASH interactions have

been functionally identified in invertebrates, vertebrates and most

recently in plants [19]. Recent crystallographic analyses have

demonstrated that SUN domains form trimeric structures that

interact directly with KASH domains [20].

Genetic alterations of either SUN or KASH domain-containing

orthologs in C.elegans and D.melanogaster have established the central

role that SUN/KASH interactions play in nuclear positioning

during development [5–7,21]. In mice, nuclear positioning defects

have been demonstrated within skeletal muscles of Nesprin1 KO

mice and in cone photoreceptors of Sun1 and Nesprin2 KO mice

[22–24]. Sun1/2 or Nesprin1/2 double knockout (DKO) mice

display severe cortical lamination defects and major developmen-

tal abnormalities of the CNS resulting in perinatal lethality [25].

This phenotype originates from the critical role that LINC

complexes play in the physical coupling between the centrosome

and the nucleus within newborn cortical neurons [25,26]. By

contrast, single KO mice of either Sun proteins or Nesprins do not

show any apparent developmental defects thereby emphasizing the

redundant function of multiple Sun and Nesprin encoding genes

during mammalian CNS development. To overcome these

limitations and bypass the potential contribution of cell non-

autonomous phenotypes associated to KO approaches, we de-

veloped a new mouse model allowing for the spatiotemporal

disruption of LINC complexes and applied this transgenic strategy

to examine the mechanisms of nuclear positioning within mouse

photoreceptor cells. We show that, by contrast to rod photo-

receptors, the positioning of cone photoreceptor nuclei relies on

intact LINC complexes. We provide evidence that this phenotype

originates from the inability of cone precursors nuclei to migrate

towards the apical edge of the ONL during early postnatal retinal

development and further identified ultrastructural defects of cone

synaptic terminals resulting from cone nuclei mispositioning within

the OPL. Finally, our results suggest a model whereby Sun1 acts

redundantly with Sun2 in mediating cone nuclear positioning

whereas A-type lamins are dispensable for the positioning of cone

nuclei on the outer edge of the ONL.

Materials and Methods

Ethics statement
Animal protocols used in this study strictly adhered to the

ethical and sensitive care and use of animals in research and were

approved by the Washington University School of Medicine

Animal Studies Committee (Animal Welfare Assurance Permit #
A-3381-01, protocol# 20110163).

Transgenic and knockout mice
The KASH domain of mouse Nesprin2 (amino acids 6810 to

6874 from NP_001005510.2) was amplified by RT-PCR from

C2C12 mouse myoblasts and cloned into BglII/BamH1 sites of

pEGFP-C1. The EGFP-KASH2 open reading frame was sub-

cloned in HindIII and ApaI sites of the pCMV-flox polylinker

[27]. A PacI fragment encompassing the whole genetic construct

described in Fig. 1B was used for pronuclear injection (Mouse

Genetics Core, Washington University School of Medicine).

Figure 1. Transgenic expression pattern of Tg(CMV-LacZ/EGFP-KASH2) retinas. A) Depiction of the organization of LINC complexes that
physically couple the nuclear lamina to peripheral cytoskeletal networks and molecular motors. INM, ONM: Inner and outer nuclear membrane,
respectively. PNS: perinuclear space. Nesprin a, b and c depict shorter isoforms originating from the alternative splicing of Nesprin 1 and 2 genes. B)
Top: depiction of the CMV-LacZ/EGFP-KASH2 genetic construct (see text for details). Left panel: Transgenic expression pattern detected by X-gal
staining of Tg(CMV-LacZ/EGFP-KASH2) retinal flat mount. Note the preferential transgenic expression on the dorsal side of the retina. Right panel: X-
gal staining of vertical slices. Note the restriction of transgenic expression to the outer nuclear layer. ONL: outer nuclear layer; INL: inner nuclear layer;
GCL: ganglion cell layer. C) LacZ/V5 is mostly expressed in rods and a few cones. Vertical sections of P32 Tg(CMV-LacZ/EGFP-KASH2) were
immunostained with anti-Cone arrestin (CAR) and anti-V5 antibodies. The arrow points to a CAR+/V5+ transgenic cone. Scale bars: 50 mm.
doi:10.1371/journal.pone.0047180.g001

Mechanism of Cone Photoreceptor Nuclei Positioning

PLOS ONE | www.plosone.org 2 October 2012 | Volume 7 | Issue 10 | e47180



LMNA+/2 (B6.129S1(Cg)-LMNAtm1Stw/BkknJ, #009125) and

Sun1+/2 (B6;129S6-Sun1tm1Mhan/J, #012715) were purchased

from The Jackson Laboratory [25,28]. Tg(HRGP-cre)#Yzl and

Tg(rx3-cre)1Mjam were kind gift from Drs. Y. Le and M. Jamrich,

respectively [29,30]. Mouse colonies were maintained and

genotyped with appropriate primer at the Mouse Genetics Core.

Preparation of mouse retinas
Mice were sacrificed via CO2 inhalation and ocular globes were

immediately isolated and rinsed in PBS. Several incisions were

performed in the cornea before incubating the whole eye in 4%

paraformaldehyde (PFA)/PBS for 1 h at 4uC. To analyze vertical

retina slices, whole eyes were rinsed in PBS, incubated overnight

in a 30% sucrose/PBS solution and embedded in OCT compound

(Tissue-TEK). For immunofluorescence microscopy, cryosections

(10 mm) on Superfrost Plus slides (VWR) were fixed for 10 min in

4% PFA in PBS, rinsed three times in PBS, permeabilized in 0.5%

Triton-X100/PBS and incubated with primary antibodies diluted

in 10% donkey serum/0.5% Triton X-100 in PBS. Secondary

antibodies conjugated to Alexa594 or 488 (Invitrogen) were

incubated in the same conditions. Following DAPI staining, slices

were mounted in fluorescent mounting medium (DAKO). For

retinal flat mounts, cornea, lens and vitreous were removed after

PFA fixation. The retina was then separated from the sclera,

washed three times for 30 min in TBST and permeabilized in 3%

Triton X-100 in PBS overnight at 4C and incubated with primary

antibodies diluted in 3% bovine serum albumin/TBST overnight.

After three washes in TBST, secondary antibodies were applied

overnight. Retinas were then washed and counterstained with

DAPI before being mounted between two coverslips. For X-gal

staining, fixed retinas were washed twice in PBS and incubated in

three changes of wash solution (0.1% Triton X-100, 2 mM

MgCl2, 0.1 M phosphate buffer pH 7.2). X-gal staining was

performed overnight in wash solution containing 6 mM

K3Fe(CN)6, 3 mM K4Fe(CN)6 and 1 mg/ml Xgal. All images

were acquired on an Eclipse Ti (Nikon) inverted fluorescence

microscope using either dry 20X (Plan Apo, N.A. 0.75) or oil 40X

(Plan Fluor, N.A. 1.3) objectives.

Antibodies
Anti-V5 and anti-Lamin B2 (Invitrogen), anti-Lamin A/C

(Santa Cruz Biotechnology and Cell Signaling), anti-Lamin B1,

anti-Gat1 and anti-BOP (Santa Cruz Biotechnology), anti-cone

arrestin (Millipore) and anti-Ribeye (BD Transduction Laborato-

ries) were used in this study. Rabbit anti-mouse Sun1 was raised

against a luminal epitope located downstream from the trans-

membrane domain. Rabbit anti-Nesprin1 and anti-Nesprin2 sera

were raised against fusion proteins corresponding to epitopes

located just upstream from their respective KASH domains and

the Nesprin3 antiserum was raised against a fusion protein

corresponding to the whole cytoplasmic region of mouse Nesprin3

(Primm Biotech). Sun1, Nesprin2 and Nesprin3 antisera were

immunoaffinity purified prior to use. An anti mouse Sun2 serum

was kindly provided by Dr. Min Han [31]. Alexa594 conjugated

peanut agglutinin (PNA, Molecular Probes) was used to label cone

pedicles.

Image analyses
To measure the distance of EGFP-KASH2+ rod and cone

nuclei from the outer edge of the ONL, distances between their

respective centroids and the outer edge of the ONL (drawn in the

DAPI channel using NIS-Elements quantification tools (Nikon))

were measured. For EGFP-KASH2+ rod nuclei, the distribution of

measured distances among four equal subdivisions of the ONL

(Q1 to Q4) was then compared to a random distribution using

a Chi Square test. For cone nuclei, distances measured in

LMNA+/+, Sun1+/2 and Tg(CMV-LacZ/EGFP-KASH2) retinas

were used to determine their respective inclusion zones defined as

the average distance from the ONL 6 2SD. Distances measured

in LMNA2/2, Sun12/2 and Tg(HRGPfloxCMV/EGFP-KASH2)

littermates retinas were then used to determine whether a given

cone centroid localized either within or outside the inclusion zone.

To compare the intensity of apical vs. basal EGFP-KASH2+ cone

nuclei within Tg(HRGPfloxCMV/EGFP-KASH2) retinas, sum in-

tensities of EGFP-KASH2+ nuclei was quantified, and normalized

to the total area of the nucleus. Background signal, averaged from

five cone nuclei-free areas per retina field, was substracted from

average normalized intensities. Mean background-corrected

values were then calculated for ectopic nuclei and nuclei residing

within the inclusion zone. Maximum Feret diameters of apical vs.

basal EGFP-KASH2+ cone nuclei were measured in

Tg(HRGPfloxCMV/EGFP-KASH2) retinas by applying the appro-

priate macros of NIS-elements on nuclei whose perimeters were

drawn over EGFP-KASH2+ nuclear rims. To compare the size of

cone populations between Tg(HRGPfloxCMV/EGFP-KASH2) and

Tg(CMV-LacZ/EGFP-KASH2) littermates, the number of cone

outer segments stained with anti-cone arrestin was counted in two

retinas from each genotype. Sections lengths were measured by

tracing the apical edge of DAPI stained ONL. Average cone

numbers per 100 mm of retinal sections were then estimated. To

quantify PNA signal intensities underneath EGFP-KASH2+

nuclei, maximum intensity projections of Z-stacks were acquired

from Tg(HRGPfloxCMV/EGFP-KASH2) retinas stained with PNA.

To compare PNA signals intensities associated either to EGFP-

KASH2+ cone nuclei mislocalizing within the OPL or to cone

pedicles from regions devoid of EGFP-KASH2+ nuclei, back-

ground-corrected mean intensities were measured using appropri-

ate macros (NIS-Element, Nikon). 3D renditions of corresponding

Z-stacks were used to unequivocally associate a PNA signal

underneath a given EGFP-KASH2+ cone nucleus. 3D rendering

of CAR and PNA signals within Tg(HRGPfloxCMV/EGFP-

KASH2) retinas (Movies S1 and S2) were built using the

filmmaker macro within NIS-Element.

Results

Development of a new mouse model of inducible LINC
complex disruption
We previously showed that, in cultured mammalian cells, the

forced expression of the KASH domain of Nesprin1, 2 or 3 fused

to EGFP competes with endogenous SUN/KASH interactions at

the NE and invariably leads to the displacement of endogenous

Nesprins from the NE to the ER [15], a phenomenon we call

disruption of LINC complexes. These data therefore suggested

that conditional transgenic expression of KASH domains could

achieve the spatiotemporal disruption of LINC complexes in vivo.

Hence, we raised transgenic mice harboring a genetic cassette

(Fig. 1B) consisting in the KASH domain of mouse Nesprin2 fused

to EGFP (EGFP-KASH2) cloned downstream from a LoxP-

flanked open reading frame encoding b-galactosidase fused to a V5

epitope (LacZ/V5) [27]. In these conditions, Cre recombinase-

mediated somatic excision of the LacZ/V5 open reading frame

should induce the expression of EGFP-KASH2 from the CMV

promoter in a tissue and/or cell-specific manner. LacZ/V5 was

expressed in a mosaic pattern within the retina of one Tg(CMV-

LacZ/EGFP-KASH2) founder (Fig. 1B, left panel). Vertical

sections further indicated that transgenic cells strictly originated

from the ONL (Fig. 1B, right panel). Co-staining of vertical slices

Mechanism of Cone Photoreceptor Nuclei Positioning
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with V5 and cone arrestin reported transgenic expression mostly

in rods and only in a few cones (Fig. 1C and Fig. S1).

Disruption of LINC complexes in photoreceptor cells
To examine the full expression pattern of EGFP-KASH2 in

mouse retina, Tg(CMV-LacZ/EGFP-KASH2) mice were initially

bred to Tg(Rx-Cre) mice that initiates the expression of Cre

recombinase at,E9.5 in most cells of the optic field (Fig. 2A) [30].

As shown in figure 2B, vertical slices from floxed retinas (called

Tg(RxfloxCMV-EGFP-KASH2) hereafter) displayed EGFP-

KASH2+ rim-like patterns reminiscent of perinuclear EGFP-

KASH2+ rims observed in transfected mammalian cells [15].

EGFP-KASH2 was mostly expressed in rods that account for 97%

of the neuronal population within the ONL of mouse retina [2].

To examine whether the expression of EGFP-KASH2 in rods

altered the positioning of their nuclei across the ONL, the

distribution of EGFP-KASH2+ rod nuclei among 4 equal ONL

bins (Q1 to Q4, Fig. 2B) was measured in one month- and one

year-old Tg(RxfloxCMV-EGFP-KASH2) retinas (Fig. 2C). The

fraction of EGFP-KASH2+ rod nuclei within each bin was not

significantly different than a random distribution predicting

a quarter of the total EGFP-KASH2+ rod nuclei population

within each bin. These results indicated that rod nuclei

localization within the ONL is not affected by EGFP-KASH2

expression. Examination of EGFP-KASH2+ rods in one year-old

Tg(RxfloxCMV-EGFP-KASH2) retinas with rod outer segments

(Fig. 2D, upper panel) and photoreceptor synaptic terminals

(Fig. 2D, middle panel) markers did not reveal any obvious

alteration of the overall architecture of EGFP-KASH2+ rod

photoreceptors. Furthermore, the outer limiting membrane

(OLM), which separates inner and outer segments from photore-

ceptor somas, was structurally intact (Fig. 2D, lower panel). Taken

together, these results indicated that EGFP-KASH2 expression

was efficiently induced upon Cre-mediated recombination in rod

photoreceptors and that, if expressed in rods (see below), LINC

complexes do neither play a role in nuclear positioning nor in the

overall structural integrity of rod photoreceptors.

While transgenic expression of LacZ/V5 was restricted to the

ONL of Tg(CMV-floxLacZ-EGFP/KASH2) mice (Fig. 1B, C),

a significant number of EGFP-KASH2+ nuclei were observed in

the INL of Tg(RxfloxCMV-EGFP-KASH2) retinas (Fig. 2B, aster-

isks). Subpopulations of these nuclei corresponded to Müller and

rod bipolar cells (data not shown). While we did not further

investigate this observation, we currently hypothesize that INL

neurons expressing EGFP-KASH2 are either not detected through

Xgal and V5 staining within Tg(CMV-floxLacZ-EGFP/KASH2)

retinas (Fig. 1B,C) or originate from a modification of cell fate

decision of the few retinal cell precursors (RPC) expressing EGFP-

KASH2 in Tg(RxfloxCMV-EGFP-KASH2) embryonic retinas

(Fig. S2). Consistent with that notion, alteration of LINC

complexes within Zebrafish retinal progenitor cells modifies cell

fate decision [32].

LINC complexes mediate the positioning of cone
photoreceptors nuclei on the apical side of the ONL
Within Tg(RxfloxCMV-EGFP-KASH2) retinas, we observed

a few EGFP-KASH2+ nuclei that were positive for cone arrestin

(CAR), a cone-specific marker. By contrast to non-transgenic cone

nuclei, these nuclei mislocalized on the basal side of the ONL

(Fig. 2B, arrows) suggesting that the expression of EGFP-KASH2

induces the mislocalization of cone nuclei. To further examine this

phenotype and exclude the contribution of cell nonautonomous

effects, Tg(CMV-LacZ/EGFP-KASH2) were bred to Tg(HRGP-

Cre) mice [29] that initiate the cone-specific expression of Cre

recombinase at ,P7 (Fig. 3A). As expected, Tg(CMV-LacZ-

EGFP/KASH2) retinas did not show any expression of EGFP-

KASH2 and cone nuclei appropriately localized on the apical side

of the ONL (Fig. 3B, upper panels). By contrast, retinas from

Tg(HRGPfloxCMV/EGFP-KASH2) littermates displayed EGFP-

KASH2+ nuclear rims within the ONL (Fig. 3B, middle panel).

The population of EGFP-KASH2+ nuclei in the ONL of

Tg(HRGPfloxCMV/EGFP-KASH2) retinas was much larger than

the small population of transgenic cones we detected in Tg(CMV-

LacZ/EGFP-KASH2) retinas using either Xgal staining or V5

immunostaining (Fig. 1B, C). Hence, we confirmed that all EGFP-

KASH2+ nuclei expressed either CAR (Fig. 3B, lower panel) or

cone opsin (data not shown). These results therefore emphasize

that Xgal staining and V5 immunostaining of Tg(CMV-LacZ/

EGFP-KASH2) retinas did not reliably reflect the actual size of

transgenic cone populations.

Two distinct populations of EGFP-KASH2+ cone nuclei were

observed in Tg(HRGPfloxCMV/EGFP-KASH2) retinas. One pop-

ulation, which expressed low levels of EGFP-KASH2 localized

normally on the apical side of the ONL while the other, which

expressed higher levels of EGFP-KASH2, localized ectopically on

the basal side of the ONL (Fig. 3B, middle and lower panels).

Many basalmost cone nuclei were actually found within the outer

plexiform layer (OPL). The fact that these nuclei expressed both

EGFP-KASH2 and cone arrestin (Fig. 3B, lower panels) confirmed

that they did not correspond to nuclei from INL cells. As shown in

Figure 3C, basal cone nuclei expressed on average 3 times more

EGFP-KASH2 than their apical counterparts indicating that

a certain threshold of EGFP-KASH2 expression is required to

induce the mislocalization of cone nuclei. Ectopic EGFP-KASH2+

cone nuclei were significantly less elongated as indicated by lower

values of their maximum Feret diameters that correspond to the

longest distance between any two points of a given nucleus

(Fig. 3D). Furthermore, while not significant at the population

level, we often observed basalmost EGFP-KASH2+ nuclei whose

longer axis was quasi perpendicular to the longest axis of their

apical counterparts (Fig. 3B, middle panel). Taken together, and in

agreement with the ectopic localization of EGFP-KASH2+ cone

nuclei observed in Tg(RxfloxCMV-EGFP-KASH2) retinas (Fig. 2B),

these results demonstrate that EGFP-KASH2 overexpression

targeted to cone photoreceptors induces the basal mislocalization

of their nuclei in a cell autonomous manner.

To quantify the extent of cone nuclei mispositioning, we defined

an ‘‘inclusion zone’’, measured within wild-type littermates of

a given genotype, that corresponds to the average distance 62SD

between cone nuclei centroids and the outer edge of the ONL

(Fig. 3E). Any cone nucleus was considered ‘‘ectopic’’ when the

position of its centroid fell outside the inclusion zone. In Tg(CMV-

LacZ/EGFP-KASH2) retinas, cone nuclei centroids were located

at 7+/23.6 mm from the outer edge of the ONL, thereby

delineating an inclusion zone of 14.2 mm. Using these criteria,

3.1% of CAR+ cone nuclei mislocalized outside this inclusion zone

in Tg(CMV-LacZ/EGFP-KASH2) retinas (Figs. 3F, S4A). By

contrast, more than 60% of EGFP-KASH2+ cone nuclei fell

outside the inclusion zone in Tg(HRGPfloxCMV/EGFP-KASH2)

retinas (Figs. 3F, S4A).

Outer segments of EGFP-KASH2+ cones did not present any

obvious structural alteration. Indeed, anti-CAR antibody homo-

genously labeled outer segments atop inner segments expressing

high levels of EGFP-KASH2 (Fig. 3B, arrows in merged lower

panel). Immunolabeling of Tg(HRGPfloxCMV/EGFP-KASH2) ret-

inal flat mounts with CAR further confirmed that the structural

integrity of cone OS expressing EGFP-KASH2 was preserved

(Fig. S3). Furthermore, the number of cone outer segments was

Mechanism of Cone Photoreceptor Nuclei Positioning
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not significantly different in 4 month-old Tg(HRGPfloxCMV/EGFP-

KASH2) by comparison to Tg(CMV-LacZ/EGFP-KASH2)

littermates retinas indicating that cone degeneration is not at play

(Fig. 3G). From these observations, we conclude that EGFP-

KASH2 expression drastically alters the positioning of cone nuclei

but affects neither the structural organization of cones photosen-

sitive region nor cone photoreceptors survival.

Disruption of LINC complexes prevents cone precursor
nuclei migration towards the apical side of the
developing ONL
Between postnatal day 4 and 11, cone precursor nuclei are

scattered across the developing ONL before migrating towards

apical positions at P12 [33,34]. Hence, we examined whether the

ectopic localization of EGFP-KASH2+ cone nuclei observed in

adult retina originated either from the inability of EGFP-KASH2+
cone precursor nuclei to migrate towards the apical side of the

ONL during postnatal development or from a post-migratory loss

of anchorage of differentiated cone nuclei at the apical side of the

ONL. For that purpose, the positioning of EGFP-KASH2+ nuclei

was examined in P8 retina, i.e., 1 day after the onset of Cre

expression in Tg(HRGPfloxCMV/EGFP-KASH2) retinas. Within

P8 Tg(CMV-LacZ/EGFP-KASH2) retinas, cone precursors were

indeed scattered across the apical two third of the developing ONL

(Fig. 4A). By contrast, in P8 Tg(HRGPfloxCMV/EGFP-KASH2)

retinas, cone precursor expressing high levels of EGFP-KASH2

already mislocalized at basalmost locations of the developing ONL

(Fig. 4B). These results suggest a model whereby the misposition-

ing of EGFP-KASH2+ nuclei originates from the inability of

EGFP-KASH2+ nuclei to migrate towards the apical side of the

forming ONL during postnatal retinal development.

Cone nuclei mispositioning affect pedicle architecture
In P8 retinas, opsin antibodies clearly labeled pyramid-shaped

cone pedicles (arrows, Fig. 4B) beneath EGFP-KASH2+ cone

nuclei that did not localize at the basal edge of the developing

ONL (Fig. 4B, nucleus 3). By contrast, cones with basalmost

EGFP-KASH2+ nuclei did not display such structures (Fig. 4B,

nuclei 1&2). These results suggested that basalmost EGFP-

KASH2+ nuclei interfere with cone terminals architecture. Hence,

we examined the structural organization of cone terminals in adult

Tg(HRGPfloxCMV/EGFP-KASH2) retinas. While cone arrestin

(CAR) strongly labeled thick pedicles in cones devoid of basal most

nuclei, we observed a much weaker CAR signal that ‘‘wrapped’’

EGFP-KASH2+ cone nuclei mislocalizing within the OPL (Fig. 5A

and Movie S1). Alexa594-conjugated Peanut Agglutinin (PNS) was

then used to examine the active zone of cone pedicles. As shown in

figures 5B and 5C, PNA fluorescence was either significantly

weaker or absent beneath EGFP-KASH2+ cone nuclei that

mislocalized within the OPL (see also Movie S2). Taken together,

these results indicate that mislocalization of EGFP-KASH2+ cone

nuclei within the OPL interferes with the overall architecture of

cone pedicles.

Sun1, but not A-type lamins, participates in the
positioning of cone photoreceptor nuclei
The expression pattern of lamins and LINC complex

components was examined within the ONL of wild-type adult

retinas (Fig. 6A, upper panel). B-type lamins were ubiquitously

expressed in all nuclei of the ONL. However, we were unable to

detect any significant expression of Nesprin 1, 2 or 3 within the

ONL of adult retinas even though these antisera detected nuclear

rims within other retinal neurons (Fig. 6A and data not shown).

Because A-type lamins and Sun1 were specifically detected around

cone nuclei (Fig. 6A, top panels), we examined the positioning of

cone nuclei within Sun1 and LMNA KO mice retinas.

In Sun1+/2 adult retinas, cone nuclei centroids were located at

an average distance of 7+/24.3 mm from the outer edge of the

ONL (Fig. 6B) thereby delineating an inclusion zone of 15.6 mm
(Fig. 3E). Within Sun12/2 retinas, 32.8% of cone nuclei localized

outside the inclusion zone (Fig. 3F, S4B) confirming recent

observations that Sun1 contributes to the positioning of cone

nuclei [22]. However, it is important to note that this percentage

was significantly lower than the percentage of ectopic KASH2+

cone nuclei measured within Tg(HRGPfloxCMV/EGFP-KASH2)

(Figs. 3F, S4). In addition, very few cone nuclei mislocalized within

the OPL of Sun12/2 retinas. Together, these results suggest that,

besides Sun1, another SUN domain-containing protein, which is

also saturated by EGFP-KASH2 expression in cones, may act

redundantly with Sun1 to mediate cone nuclei positioning. This

protein most likely corresponds to Sun2 that, along with Sun1, was

detected as nuclear rims both within the developing ONL of P8

retinas and specifically in cones within adult retinas (Fig. 6A).

LMNA2/2 retinas did not display any cone nuclei misposition-

ing phenotype (Figs. 6C, 3F and S4C) indicating that A-type

lamins are dispensable cone nuclei positioning. In support of that

result, A-type lamins could not be detected within P8 ONL while

they were specifically expressed in adult cones. These data indicate

that A-type lamins do not mediate cone nuclei positioning. Of note

is that because LMNA2/2 mice die within 3 to 4 weeks, P21

retinas were used to measure cone nuclei positioning for that

genotype, i.e., about a week earlier than all other genotypes

analyzed in this study. Interestingly, the average cone nuclei

centroids distance from the outer edge of the ONL of these retinas

was significantly larger in P21 LMNA+/+ retinas by comparison to

P32 Sun1+/2 and P26 Tg(CMV-LacZ/EGFP-KASH2) retinas

(Fig. 3E, S4). These results indicate that cone nuclei migration

towards the apical side of the ONL is therefore not yet fully

achieved by P21.

Discussion

In this work, we developed a new mouse model to induce the

disruption of LINC complexes in a cell type-specific manner in

Figure 2. A) Genetic strategy used to derive Tg (RxfloxCMV-EGFP-KASH2) mice (see text for details). B) Vertical sections of 5 month-old Tg
(RxfloxCMV-EGFP-KASH2) retinas showing the localization of EGFP-KASH2+ rims around rod photoreceptor nuclei. Arrows point to CAR+/EGFP-KASH2+

cone photoreceptors whose nuclei are mispositioned at the basal side of the ONL. Asterisks denote non-photoreceptor cells expressing EGFP-KASH2.
OS: outer segment; IS: inner segment; OPL, IPL: outer and inner plexiform layer, respectively. Scale bars: 20 mm and 10 mm (inset). C) EGFP-KASH2
expression in rods does not induce nuclear mislocalization. Distribution of EGFP-KASH2+ rod nuclei populations among 4 equal subdivisions of the
ONL (Q1, Q2, Q3 and Q4, fig. 2B) from one-month and one-year-old Tg(RxfloxCMV-EGFP-KASH2) retinas. Error bars represent 6SD from three random
observation fields for each genotype. Distributions of EGFP-KASH2+ rod nuclei were not significantly different than a random distribution (Chi Square,
p.0.05). D) EGFP-KASH2 overexpression does not affect rod overall morphology and outer limiting membrane (OLM) integrity. One year-old
Tg(RxfloxCMV-EGFP-KASH2) retinas were immunolabeled with Gat1 (rod outer segment), Ribeye (photoreceptors synaptic ribbons) and Texas-Red
Phalloidin (actin component of OLM).
doi:10.1371/journal.pone.0047180.g002
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Figure 3. LINC complexes mediate the positioning of cone photoreceptor nuclei. A) Genetic strategy used to derive Tg(HRGPfloxCMV-EGFP-
KASH2) mice expressing EGFP-KASH2 specifically in cone photoreceptors. B) CAR immunostaining of P26 Tg(CMV-LacZ/EGFP-KASH2) and
Tg(HRGPfloxCMV-EGFP-KASH2) littermates retinas. Lower panel: Zoomed view of the basal side of the ONL showing CAR+/EGFP-KASH2+ nuclei in the
outer plexiform layer. Yellow arrows in merged image point to OS atop IS of cone nuclei expressing high levels of EGFP-KASH2. Scale bars: 50 mm and
20 mm (lower panel). C) Basalmost EGFP-KASH2+ cone nuclei express a significantly higher level of EGFP-KASH2 recombinant protein in comparison to
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vivo. This approach is based on the dominant negative effect that

exogenous recombinant KASH domains exert on evolutionary-

conserved endogenous SUN/KASH interactions

[14,15,19,35,36]. Importantly, by comparison with current mouse

models of germline mutation of individual Sun proteins and

Nesprins, this model overcomes the issue of redundancy associated

with the multiplicity of genes encoding SUN and KASH domain-

containing proteins in mammals, circumvents potential cell non-

autonomous effects that complicate phenotypical interpretation

and bypasses perinatal lethality. Despite these significant advan-

tages, our approach is not without drawbacks. First, because

EGFP-KASH2 disrupts endogenous SUN/KASH interactions as

a whole, our approach forgoes the direct identification of Sun

protein(s) and Nesprin(s) involved in a given nuclear mislocaliza-

tion phenotype. To that respect, ongoing studies are aimed at the

direct identification of Nesprin protein(s) expressed in cone and

rod photoreceptors. Second, the restriction of transgenic expres-

sion to the photoreceptor layer (Fig. 1B) and the mosaic expression

pattern of EGFP-KASH2 was manifest and most likely originate

from position effects of transgene integration and promoter use.

Even though such heterogeneous expression can be advantageous

to some respect, alternative transgenic strategies are currently

being developed in order to express EGFP-KASH2 in a more

ubiquitous manner.

We show that transgenic expression of EGFP-KASH2 severely

impairs cone photoreceptors nuclei positioning on the apical side

of the ONL in adult Tg(HRGPfloxCMV/EGFP-KASH2) retinas.

Importantly, this is the first time that this phenotype is observed in

a cell autonomous manner. While we did not observe any nuclear

mislocalization phenotype in cones expressing EGFP (data not

shown), non-specific effects of EGFP-KASH2 transgenic expres-

sion on nuclear positioning cannot formally be excluded.

their apical counterparts (p,0.001, Student’s t-test). Error bars represent6SEM from measurement of EGFP intensities of basal and apical nuclei from
three random fields within ONL two Tg(HRGPfloxCMV-EGFP-KASH2) littermate retinas. D) Mispositioned EGFP-KASH2+ nuclei are significantly less
elongated. Maximal Feret diameters were significantly smaller in basal (n = 85) vs. apical (n = 68) EGFP-KASH2+ nuclei (p,0.01, Student’s t-test). Error
bars represent 6SEM from measurements of two random fields within two Tg(HRGPfloxCMV-EGFP-KASH2) littermate retinas. E) Depiction and
measurement of inclusion zones for the indicated genotypes (see text for details). Red nuclei are ectopic (centroids outside the inclusion zone) while
green nuclei are correctly positioned (centroids within the inclusion zone). F) Percentages of ectopic (red) and of correctly positioned (green) nuclei of
populations of n cone nuclei of the indicated genotypes. G) The size of cone populations estimated by the number of cone outer segments labeled
with CAR in 4 month-old Tg(CMV-LacZ/EGFP-KASH2) and Tg(HRGPfloxCMV-EGFP-KASH2) littermates retinas are not significantly different (p.0.05,
Student’s t-test). Error bars represent 6SEM from the counting of 5 random fields within littermate retinas of each genotype.
doi:10.1371/journal.pone.0047180.g003

Figure 4. EGFP-KASH2+ cone precursor nuclei fail to migrate towards the apical surface of the developing ONL. A) Cone opsin staining
of P8 Tg(CMV-LacZ/EGFP-KASH2) retinas. Note the scattering of wild-type cone nuclei within the apical two thirds of the developing ONL. B) Same
experiment on P8 Tg(HRGPfloxCMV-EGFP-KASH2) littermate retinas. Note the basalmost mislocalization of cone nuclei expressing high levels of EGFP-
KASH2. Arrowheads point to pyramid-shaped pedicles. Inset (lower panels): pyramid-shaped pedicles are present beneath wild type or EGFP-KASH2+

nuclei that are still confined within the ONL (nucleus 3) but not beneath EGFP-KASH2+ cones whose nuclei occupy basalmost locations (nuclei 1 and
2). Scale bars: 20 mm (upper panel) and 10 mm (lower panel).
doi:10.1371/journal.pone.0047180.g004
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However, our observations parallel the failure of photoreceptor

precursor nuclei that either lack Klar, a KASH protein, or

Klaroid, a SUN protein, to migrate towards the apical surface of

developing Drosophila ommatidia. As a result, these nuclei

mislocalize in the optic stalk [37,38]. In Zebrafish, exogenous

expression of the KASH domain of a Nesprin ortholog (Syne2a)

also induces photoreceptors nuclei mispositioning [39]. In addition

to the lack of evidence that SUN/KASH interactions may take

place at sites other than the nuclear envelope, it is likely that the

nuclear mislocalization phenotypes we observed are specifically

due to disruption of endogenous SUN/KASH interactions. Taken

together, these data illustrate the evolutionary-conserved role of

SUN/KASH interactions in mediating photoreceptors nuclear

positioning.

Our data are also in line with the ectopic localization of cone

nuclei recently reported in Sun1 and Nesprin2 KO retina [22].

However, our analyses revealed a milder cone nuclei displacement

phenotype in Sun12/2 retinas by comparison to Tg(HRGPfloxCMV-

EGFP-KASH2) retinas. Furthermore, relatively few Sun12/2

cone nuclei mislocalized within the OPL. These results strongly

suggest that, similarly to the mediation of nuclear positioning

during CNS and skeletal muscle development [25,31], Sun1 and

Sun2 act redundantly in cone nuclei positioning. Accordingly,

Sun2 is co-expressed along with Sun1 in the ONL of both P8

retinas and adult cones (Fig. 6A).

Significant ONL thinning associated with excessive apoptosis

occurs in Sun12/2 and Nesprin22/2 retinas [22]. We did not

observe any local ONL thinning within Tg(RxfloxCMV-EGFP-

KASH2) adult retinas (Fig. 2B) and the number of cones was not

significantly altered in adult Tg(HRGPfloxCMV-EGFP-KASH2)

(Fig. 3G). Our observations therefore suggest the possibility that

ONL thinning and excessive apoptosis observed within Sun12/2

and Nesprin22/2 retinas originate from more general develop-

mental defects and/or from dysfunction of other retinal cell types

required for photoreceptor homeostasis.

We found that A-type lamins are dispensable for cone nuclei

positioning even though A-type lamins interact with the nucleo-

plasmic domain of Sun proteins in vitro and in immunoprecip-

itation experiments [9,10]. The dispensability of A-type lamins in

cone nuclei positioning is further suggested by the absence of any

obvious CNS defects in newborn LMNA2/2 mice that die within

,4–5 weeks of age from cardiomyopathy and/or muscular

dystrophy [28,40]. By contrast, LMNB1 and LMNB2 KO

embryos, similarly to Sun1/2 and Nesprin1/2 DKO embryos

[25], display severe neurodevelopmental defects [41,42] suggesting

that B-type lamins act in concert with LINC complexes to position

nuclei during neurodevelopment. Accordingly, in Drosophila,

mutations in LamDm(0), which encodes a B-type lamin, leads to

photoreceptor nuclei mislocalization within the optic stalk of

ommatidia [37]. Taken together, these results suggest that forces

required for cone precursor nuclei movements are transmitted

through LINC complexes and relayed by B-type lamins. Nesprin2

was the only Nesprin we could convincingly detect within the

ONL of P8 retinas. Because genetic ablation of Nesprin2 also

alters cone nuclei positioning [22], we propose a model whereby

macromolecular complexes consisting of B-type lamins/Sun1-

Sun2/Nesprin2 underlie cone nuclei migration (Fig. 7A).

KASH proteins interact with kinesins and dyneins in different

cellular settings [13,17,18,43]. Furthermore, mutations of dynein

subunits impair nuclear mispositioning in Zebrafish retina and

Drosophila compound eye [39,44,45]. Together, these data

suggest that the failure of P8 cone precursor nuclei to migrate

apically in developing Tg(HRGPfloxCMV-EGFP-KASH2) retinas as

well as nuclear shape abnormalities we observed in basal EGFP-

KASH2+ nuclei directly originate from the uncoupling of dynein

with the nuclear envelope (Fig. 7B). Interestingly, because EGFP-

KASH2+ nuclei mislocalize mostly on the basal side of the ONL

(Fig. S4), it seems unlikely that LINC complex disruption affects

apico-basal migration of cone precursor nuclei. Instead, either

a kinesin-based mechanism that would be independent of LINC

complexes or a passive apico-basal migration, a phenomenon

shown to underlie apico-basal nuclear translocation during

Figure 5. Basalmost localization of EGFP-KASH2+ cone nuclei
alters cone terminals morphology in adult Tg(HRGPfloxCMV-
EGFP-KASH2) retina. A) Maximum intensity projection of a Z-stack
series acquired from Tg(HRGPfloxCMV-EGFP-KASH2) retina stained with
either anti-CAR (A) or Alexa594-PNA (B). Arrows in A) denote the
staining pattern of CAR underneath EGFP-KASH2+ cones nuclei located
within the OPL. As shown in B), these nuclei also displayed weaker or no
basal PNA signal. Sale bars: 10 mm. C) PNA signal underneath EGFP-
KASH2+ cone nuclei located within the OPL (EGFP-KASH2+) is
significantly weaker (p,0.01) by comparison to PNA signals measured
from regions devoid of EGFP-KASH2+ nuclei (EGFP-KASH22).
doi:10.1371/journal.pone.0047180.g005
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Figure 6. Sun1, but not A-type lamins, participates in the positioning of cone photoreceptor nuclei. A) Immunolocalization of A- and B-
type lamins, Sun1, Sun2 and Nesprin2 within the mature ONL of adult retinas (top) or the developing ONL of P8 retinas (bottom). Cartoons: summary
of immunolocalization experiments (blue: positive, white: negative). Scale bars: 20 mm. B, C) Immunolocalization of cone nuclei within the ONL of P32
Sun12/2 (B) and P21 LMNA2/2 (C) retinas in comparison to their respective wild-type littermates. See Figure 3F and S4 for quantification of cone
nuclei positioning in these genotypes. Scale bars: 20 mm.
doi:10.1371/journal.pone.0047180.g006
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interkinetic nuclear migration [46,47], may be at play (Fig. 7A). As

a result, disruption of LINC complexes may prevent to counter-

balance forces driving nuclear movement towards the basal side of

the developing retina.

By contrast to cones, the positioning of rod photoreceptors

nuclei was not affected by EGFP-KASH2 overexpression. In

agreement with these results, the expression of Sun1 and Sun2

appears to be progressively downregulated within differentiated

rods but maintained in differentiated cones (Fig. 6A). In addition

to the lack of any detectable Nesprin 1, 2 and 3 immunoreactivity

within differentiated rods, these data suggest that LINC complexes

may actually not be expressed at all in rod photoreceptors. Based

on these results, we hypothesize that neurons whose nuclei localize

at precise laminar positions, such as cone photoreceptors, may be

more dependent on LINC complex components for their

differentiation and homeostasis. To that respect, Purkinje cells

precisely position their nuclei between the molecular and granule

layers of cerebellar folds and nonsense mutations of the gene

encoding Nesprin1, which is highly expressed in Purkinje cells,

have been linked to autosomal recessive ataxia 1 [48,49]. Our data

therefore suggest nuclear mispositioning as a possible molecular

etiology of this neurological disorder.

Mislocalized EGFP-KASH2+ nuclei were significantly less

elongated and occasionally misoriented. A similar loss of nuclear

elongation was observed in basally displaced Zebrafish photo-

receptors nuclei [39] and is consistent with the uncoupling of the

nucleus with perinuclear cytoskeletal networks reported in

cultured cells and metazoans following the expression of KASH

domains [20,50–53]. Because such uncoupling induces a disorga-

nization of cytoskeletal networks in cultured cells [35,51,53], we

anticipated significant architectural abnormalities within EGFP-

KASH2+ rods and cones. Surprisingly, we found that EGFP-

KASH2 expression did not affect the overall organization of rods

and cones photosensitive regions. However, the reverse may not

be true. Indeed, apical migration of cone precursor nuclei is

significantly impaired in mice deficient for Cyclic Nucleotide-

Gated Channel 3 (CNGA32/2), an essential component of cone

phototransduction, and significantly delayed in cone photoreceptor

function loss 1 (cpfl1) mice that carry a spontaneously arising

mutation in the cone phosphodiesterase gene and display acute

cone degeneration [34,54–56]. Cone populations were not

significantly different in Tg(HRGPfloxCMV/EGFP-KASH2) by

comparison to Tg(CMV-LacZ/EGFP-KASH2) retinas indicating

that cone degeneration is most likely not at play upon EGFP-

KASH2+ expression. This result contrasts with the reported

degeneration of photoreceptors in Zebrafish retinas following the

forced expression of a dominant negative KASH construct [39]. In

the latter case, however, cell nonautonomous contributions may

adversely affect Zebrafish photoreceptor survival while such

contribution can be excluded in Tg(HRGPfloxCMV/EGFP-KASH2)

retinas. In mice, whereas Sun12/2 cones appear structurally

intact, Nesprin22/2 retina display acute cone OS degeneration

[22]. Because cone degeneration was not observed in our study, it

seems that genetic inactivation of Nesprin2, by itself, underlies

cone OS degeneration. We therefore hypothesize that Nesprin2

genetic inactivation either affects cone OS maintenance in a cell

nonautonomous manner or truncates a Nesprin2 KASH-less

isoform [57] that may fulfill essential functions in cone OS

structural integrity.

Pedicles of EGFP-KASH2+ cones appeared normal as long as

their displaced nuclei remained within the limits of the ONL.

However, EGFP-KASH2+ cone nuclei that mislocalized within

the OPL appeared to ‘‘flatten’’ pedicles. This suggests that cone

terminals architecture is affected not as much as a consequence of

EGFP-KASH2 expression but rather as a consequence of acute

nuclear mispositioning within the OPL. Whether this observation

illustrates a mechanism through which nuclear mispositioning may

progressively affect neuronal communication and/or circuitry

organization remains to be examined. To that regard, the

mispositioning of cone photoreceptor nuclei appears to be a natural

phenomenon associated with aging [58–60]. Indeed, the mis-

localization of human cone photoreceptors nuclei into the OPL

occurs at a slow pace early in life but markedly increases by age 30

[58] and even more so in human retina afflicted with age-related

macular degeneration [59]. These clinical observations raise the

interesting notion of an ‘‘aging’’ LINC complex that would result

in a progressive accumulation of mispositioned nuclei. In turn,

mislocalized nuclei may potentially interfere with neuronal

Figure 7. A model for the molecular mechanism underlying the baso-apical migration of cone precursor nuclei. A) Between P4 and
P12, cone precursors nuclei initially move towards the basal side of the developing ONL, a movement potentially mediated by microtubules plus-end
directed kinesins, before moving back to the apical side. Inset: Depiction of a B-type lamins/Sun1-2/Nesprin2 network of macromolecular complexes
that transduce forces generated by dyneins to move cone nuclei precursors back towards the apical side of the developing ONL. B) Disruption of LINC
complexes displaces endogenous Nesprin2 (inset) leading to the uncoupling of cone nuclei to dynein. As a result, cone nuclei fail to migrate apically
and mislocalize on the inner edge of the ONL. Basalmost localization of these nuclei interferes with the architecture of cone pedicles.
doi:10.1371/journal.pone.0047180.g007
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functions and underlie human retinal diseases as well as other

progressive neuronal disorders affecting other regions of the CNS.

Supporting Information

Figure S1 A) V5 immunostaining of Tg(CMV-LacZ/EGFP-

KASH2) retinal flat mount showing the enrichment of transgenic

expression on the dorsal side of transgenic retinas. B) Maximum

intensity projection of Z-stacks from the apical region of Tg(CMV-

LacZ/EGFP-KASH2) retinal flat mounts immunostained with V5

(red) and cone opsin (green). The majority of transgenic

photoreceptors correspond to rods whereas only a few cones

(labeled with cone opsin) express V5 (arrowheads).

(TIF)

Figure S2 E14 retinas display only a few EGFP-KASH2 +
nuclei. E14 retina from Tg(RxfloxCMV-EGFP-KASH2) embryos

were processed for DAPI staining. Note the paucity of EGFP-

KASH2 expressing cells at that development time. Scale bar:

50 mm.

(TIF)

Figure S3 EGFP-KASH2 expression in cones does not affect

outer segment architecture. Flat mount of a P36 Tg(HRGPfloxCMV-

EGFP-KASH2) retina was processed for CAR immunostaining.

Shown is a Z-stacks reconstruction of the photoreceptor side

showing intact OS atop EGFP-KASH2 + IS of cone photo-

receptors (yellow arrow).

(TIF)

Figure S4 Graphical presentation of cone nuclei centroid

positions relative the apical side of the ONL for the indicated

genotypes. Measurements were obtained from 5 contiguous

viewing fields within the central retina from two different mice

for all but the LMNA2/2 genotype. Vertical error bars represent

the standard deviation of the mean ONL thickness across

contiguous viewing fields. Note that, as reported by Yu et al

[22], the ONL of Sun12/2 retinas was significantly thinner by

comparison to their heterozygous counterparts (p,0.05).

(TIF)

Movie S1 3D rendering of Z-stacks acquired from a 15 mm-thick

Tg(HRGPfloxCMV-EGFP-KASH2) retina section stained with

CAR. Note the paucity and the presentation of CAR signals

underneath EGFP-KASH2+ nuclei by comparison to pedicles

from regions devoid of EGFP-KASH2+ nuclei.

(AVI)

Movie S2 3D rendering of Z-stacks acquired from a 15 mm-thick

Tg(HRGPfloxCMV-EGFP-KASH2) retina section stained with PNA.

Note the paucity or lack of PNA signals underneath EGFP-

KASH2+ nuclei by comparison to regions devoid of EGFP-

KASH2+ nuclei. See Fig. 5C for PNA signal quantification.

(AVI)
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