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Abstract

Replication has become the gold standard for assessing statistical results from genome-wide association studies.
Unfortunately this replication requirement may cause real genetic effects to be missed. A real result can fail to replicate for
numerous reasons including inadequate sample size or variability in phenotype definitions across independent samples. In
genome-wide association studies the allele frequencies of polymorphisms may differ due to sampling error or population
differences. We hypothesize that some statistically significant independent genetic effects may fail to replicate in an
independent dataset when allele frequencies differ and the functional polymorphism interacts with one or more other
functional polymorphisms. To test this hypothesis, we designed a simulation study in which case-control status was
determined by two interacting polymorphisms with heritabilities ranging from 0.025 to 0.4 with replication sample sizes
ranging from 400 to 1600 individuals. We show that the power to replicate the statistically significant independent main
effect of one polymorphism can drop dramatically with a change of allele frequency of less than 0.1 at a second interacting
polymorphism. We also show that differences in allele frequency can result in a reversal of allelic effects where a protective
allele becomes a risk factor in replication studies. These results suggest that failure to replicate an independent genetic
effect may provide important clues about the complexity of the underlying genetic architecture. We recommend that
polymorphisms that fail to replicate be checked for interactions with other polymorphisms, particularly when samples are
collected from groups with distinct ethnic backgrounds or different geographic regions.
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Introduction

The promise of genome-wide association studies is that they

may facilitate discovery of the genetic basis of common human

diseases in a hypothesis neutral framework [1,2]. The technolog-

ical advances of high-throughput screening combined with

database repositories of gene-disease associations provide re-

searchers with an abundance of data for carrying out these

extensive studies. The statistical and computational challenges of

these studies are considerable. Perhaps the most conspicuous

problem lies in multiple testing concerns which arise from the

numerous statistical tests performed per dataset leading to a

remarkable potential for the discovery of false-positive findings

when results are not properly corrected. Pe’er et al. [3] estimate a

multiple testing burden of approximately one million tests for

genome-wide association analyses in European samples. Even

when applied properly, multiple testing corrections do not negate

biases inadvertently incorporated into experimental design and

data analysis that may also lead to spurious results. In an effort to

reduce such spurious associations individual investigators, as well

as journal editors, have provided guidelines for conducting

genome-wide association studies, advocating replication as a

compulsory part of validation [4]. Successful replication provides

an important and independent verification of results which helps

to prevent the discovery of spurious associations. Unfortunately

this replication requirement may filter out real associations when

those associations are a part of a larger epistatic interaction or

when biology is ignored [5,6]. Our focus on replication here does

not reduce the importance of the discovery phase. A discovery

phase with insufficient stringency will likely lower a study’s ability

to replicate both main effects and interaction effects as the multiple

testing penalty at the replication phase is increased.

Intuitively, replication ought to be an effective gold standard for

substantiating gene-disease associations because it serves as

independent statistical confirmation. Unfortunately reliable repli-

cation has not been readily attainable. In a review of genetic

association study literature, Hirschhorn et al. [7] reveal that of 166

reported associations, six replicated three or more times. Shriner et

al. [5] and Williams et al. [6] also consider the success of

association studies in the genome-wide era and discuss the

prevalence of findings which, in this genome-wide era, fail to

replicate. Many have considered why true associations may not

replicate across independent data sets. The predominant expla-

nations account for genetic heterogeneity, environmental interac-

tions, age-dependent effects and inadequate statistical power [8–

11]. Here we present another likely explanation, gene-gene
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interactions, as a reason for this non-reproducibility. It is evident

that large differences in allele frequency at one interacting locus

affect the power to detect the main effect of another locus;

however we demonstrate that even small differences in allele

frequency at an interacting locus negatively impacts a study’s

power to replicate a true main effect when the full genetic model is

epistatic. Under these circumstances a true association may be lost

in an independent sample. The benefit to genome-wide data

collection is that the interacting partners may also be measured,

providing an opportunity to uncover the full underlying causative

models. Conventionally, gene-environment interactions have been

recognized as a principal contributing factor to complex disease

states. It is also becoming evident that gene-gene interactions are

likely to be of critical importance [12–14]. Given the likely role of

epistasis on human health we must consider what these gene-gene

interactions mean for the analysis and interpretation of genome-

wide association study results.

Even for genetic models that have the potential to show

complete epistasis (i.e. all marginal penetrances are equal), these

models only exhibit this characteristic at very specific allele

frequencies. In populations with differing allele frequencies, SNPs

involved in the interaction may show main effects in addition to

epistatic effects. If a small change of allele frequencies at

interacting loci can greatly change a study’s power to replicate

main effects, this may explain why we observe such variability in

statistical results from independent samples. For example, with

some allele frequencies SNPs in an epistatic model may have equal

marginal penetrances (i.e. no main effect). Therefore, methods

commonly used in genome-wide studies, such as logistic regression

or the chi-square test, will not detect an effect for any of the

relevant SNPs. As the allele frequencies deviate from those that are

entirely epistatic, one or more SNPs in the model may have main

effects detectable by such methods. If these SNPs are found during

the discovery phase of a genome-wide association study,

replication studies may be undertaken. Depending on the relevant

allele frequencies in this new independent sample one of three

things may happen: the effect may be replicated, there may be no

effect, or the effect may be reversed. Therefore under epistatic

models replication of this effect is dependent on the allele

frequency at an interacting locus, SNPI , and the epistatic model,

neither of which is known in an association study. Here we use

simulation to show that a small (,0.1) change in allele frequency

at SNPI can result in a drastic reduction in the power to replicate

the main effect of SNPM in the context of epistasis.

Results

We find that a small change in minor allele frequency at SNPI

can greatly change a study’s power to replicate a main effect at

SNPM . Figure 1A provides an example for a single model at a

heritability of 0.1. For this model a change of 0.07 in minor allele

frequency at SNPI is enough to drop the power to replicate a

main effect at SNPM from 80% to 20%. Figure 1B shows how the

marginal penetrances for SNPM change as the allele frequencies

of SNPI vary. It is this change in allele frequencies at SNPI that

adjusts the marginal penetrances of SNPM drastically altering the

power to replicate a main effect.

Furthermore we find that across all tested models and

heritabilities a similar trend emerges. Figure 2 shows how, for

datasets with 1600 individuals and varying heritabilities and

models, results remain relatively similar. Each plot in figure 2 is a

small version of the plot shown in figure 1A. A relatively small

change in allele frequency is all that is required to move from an

80% to a 20% power to replicate an association. This effect is

consistent from low (0.025) to high (0.4) broad sense heritabilies

due to interaction, although perhaps is more pronounced at higher

heritabilities. Still even at the lowest heritability tested for one

model a small change in minor allele frequency (0.05) was

sufficient to reduce the power from 80% to 20%. This highlights

that the change in allele frequency required to prevent replication

of a main effect when an underlying epistatic model is responsible

is highly dependent on that model. As the true model is unknown

in a real world situation, it becomes important to test SNPs which

fail to replicate for interactions.

We also find that, under an epistatic model, an allele that is

initially detected as protective can be replicated as a risk factor,

even when the model is held constant and only the allele

frequencies from which the sample is drawn are varied. Figure 3

shows an example of this effect. The model (i.e. penetrance table)

is held constant while the allele frequencies of SNPI vary. In the

discovery phase a main effect is detected (Figure 3A), and an allele,

b, for SNPM is determined to be a risk allele. In the subsequent

replication phase it is possible for that main effect to be confirmed

(Figure 3B), no effect to be detected (Figure 3C), or a main effect in

the opposite direction may be detected (Figure 3D). In Figure 3D

the b allele at SNPM is now protective, reversed from what was

found during the discovery phase. This highlights how epistasis

can confound replication if only single gene effects are considered.

Discussion

Epistasis has not yet been widely observed in the æ tiology of

complex traits in humans, but interactions are prevalent in model

organisms [15,16]. It seems likely, therefore, that epistasis has not

been widely observed in these cases because it is not often

investigated [17]. Because results from model organisms suggest

that epistasis is likely to be widespread, it would be most prudent to

consider the impact of epistasis on experimental design. We have

shown that the power to replicate a main effect when the true

underlying model is complex depends on the allele frequencies at

interacting loci in the replication sample. Furthermore we have

shown that even a small change in the allele frequency of SNPI

can dramatically reduce a study’s power to replicate a main effect

for SNPM . A change in minor allele frequency of less than 0.1

results in a drop in power to replicate from 80% to 20%, even with

a heritability as low as 0.025. These dramatic results indicate that

a plan for replication must include an analysis of interaction as a

contingency when single SNP effects fail to replicate.

Ioannidis et al. [18] examined racial differences in validated

markers and discovered that, in 14% of markers studied, there

existed large heterogeneity in odds ratios. In a number of cases

highlighted by Ioannidis et al. as having heterogeneity in odds

ratios in different races, the same allele which is protective in some

samples appears as a risk factor in other samples. Here we have

shown that this type of replication where effects are significant but

in different directions can be explained by allele frequency

differences and gene-gene interactions. Because Ioannidis et al.

focused only on validated markers this should provide a lower

bound on race specific effects, as we have shown that a complex

genetic architecture can confound replication and prevent a

marker from being considered ‘‘validated.’’ One example of

population specific effects is the association of apolipoprotein E

(APOE) alleles with dosing of the anticoagulant warfarin. The

original study, carried out in Sweden, suggested that individuals

homozygous for APOE*E4 required significantly higher doses of

warfarin [19]. An independent study in the United Kingdom

concluded the APOE*E4 variant played a small but statistically

significant role in association with a reduced dosing requirement
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[20]. When the study was repeated in Italian patients, no

correlation was observed and allele frequency differences were

cited as a potential explanation for non-replication [21]. More

recently, additional attempts were made to relate the APOE*E4

genotype to warfarin dose in a prospective American cohort where

approximately 52.2% of patients were Caucasian and showed no

Figure 1. A. This is an example of power results and marginal penetrance tables for an epistatic model with a heritability of 0.1. Part
A shows power results. As the minor allele frequency approaches the epistatic minor allele frequency, the power to detect the main effect in a
replication sample is reduced. A change of 0.07 in minor allele frequency (pD~0:07) is enough to drop the power to replicate SNPM from 80% to
20% for this model. It is apparent in B that as the minor allele frequency, p, of SNPI in the sampled population moves from 0.3 to 0.5 the marginal
penetrances of the alleles for SNPM (MSNPM

) become equal and the main effect is lost. When the replication sample is performed at an allele
frequency of 0.3 the power to detect a main effect is near 100%, at an allele frequency of 0.4 the power to detect a main effect is near 60%, and at an
allele frequency of 0.5 the marginal penetrances are equivalent and no main effect remains.
doi:10.1371/journal.pone.0005639.g001
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association while 47.8% of patients were African American and

showed a significantly higher dose requirements in addition to a

higher APOE*E4 allele frequency [22].

Despite the difficulties of replication under a complex model of

disease, it is still important to have a strategy for analysis and

interpretation of results. Figure 4 presents a flowchart for

replication which takes both single gene and interaction results

into account and combines these with biological knowledge to

divide results into three tiers based on evidence. Under this plan

single-SNP associations from an initial sample are examined for

similar associations in a replication sample. If these single-SNP

effects do not replicate, the SNP in question should be tested in the

replication sample for pairwise or higher order interactions with all

other SNPs in the dataset (i.e. for analysis of the replication

sample, condition on the main effect from the initial sample). This

analysis should be performed with care and properly adjusted for

Figure 2. This figure summarizes power for many models and heritabilities. The effect described in Figure 1 is consistent across very large
to very small heritability models (0.4 to 0.025). In most cases a change in allele frequency of less than 0.1 is enough to reduce the power to replicate a
main effect from 80% to 20%. Results shown are for a sample including 800 cases and 800 controls. Results with datasets containing 400 and 800
individuals are similar and can be found in supplementary figures S1 and S2.
doi:10.1371/journal.pone.0005639.g002
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multiple comparisons to avoid introducing false positives at this

stage. Marchini et al. [23] have shown that, even considering a

conservative multiple testing burden, strategies which explicitly

examine interactions often have greater power to detect

associations when the underlying model includes interactions as

this approach can model the true genetic effect and Evans et al.

[24] have examined the power of two-stage approaches to detect

epistatic interactions. Here, by specifically examining those single-

SNPs which had main effects which did not replicate for pairwise

interactions the multiple testing burden is further reduced.

Markers which do not successfully replicate main effects and

which do not have interaction effects in the replication sample are

not necessarily without value, but they are less likely candidates for

follow-up. It is possible that these markers indicate interaction with

a genetic marker unmeasured in the replication sample, a situation

particularly likely if few SNPs are genotyped in the replication

sample. These markers can also indicate gene-environment

interaction, genetic heterogeneity, spurious results, or other

complex disease æ tiology. SNPs which possess either single gene

or interaction effects in the replication sample are then assessed

based on available biological evidence and divided into three tiers.

The use of biological knowledge to help guide genome-wide

association studies has been advocated in several recent studies

[25–29]. We suggest biological evidence pertaining to known

pathway-disease and gene-disease relationships be considered.

These pathway-disease and gene-disease relationships can be

discovered from the literature and prior results via automated tools

or manually by reviewing current literature pertaining to the

disease, pathways, and genes of interest [30,31]. The goal here is

for the researcher to partition their results into tiers based upon

evidence, but to avoid any explicit or implicit valuation of the tiers.

The value of markers in each tier is then determined by the

objective of the study. Tier one markers are likely to provide the

easiest gene-function studies as the polymorphisms are known to

exist in a gene related to the disease of interest and are most likely

to lead to rapid biomedical applications such as markers for

genetic tests, although these results are also the least novel as they

implicate both a gene and a pathway already known to be disease

associated. Tier two markers are still likely to allow gene-function

studies because the gene’s mechanism within an involved pathway

is known, but they are not as likely to lead to rapid applications.

These markers may, however, implicate new genes in disease risk

and thus provide new insight as to the disease process. Tier three

markers are most likely to be difficult to translate to disease

understanding via gene-function studies as they may be in less

understood regions of the genome or they may implicate genes in

pathways not known to be involved in the disease of interest.

These markers allow for the possibility of completely new insight

and understanding of the disease of interest but also are the least

likely to rapidly translate into biomedical applications. Particularly

for these markers, discovery of interactions can provide clues as to

their potential mechanisms of action that may facilitate gene-

function studies. By dividing association results into tiers,

researchers can carefully prioritize SNPs for follow-up based upon

the objectives of their research.

Based on these results we suggest that studies of genetic

associations should include analysis of interactions, particularly

when main effects fail to replicate, and that results, including those

from a test of interaction, should be evaluated in a manner that

includes pathway-specific and gene-specific information. We

present a framework for dividing results into tiers based on

statistical and biological information. By dividing results into tiers,

researchers can target for follow-up polymorphisms that best meet

their predefined objectives. Clearly, association studies which find

replicable genetic effects provide valuable insight and biological

hypotheses for investigation and in vitro confirmation. It is,

however, important to note that studies which detect single SNP

associations that then fail to replicate the single-marker effect may

still provide important hints as to the the æ tiology of the disease of

interest. The ultimate goal is to develop and employ analytical

methods that will allow us to assume complexity and scan the

entire genome for gene-gene interactions where there might not be

detectable main effects in any sample. Only then can we be

confident that we are not missing an important component of the

genetic architecture of common human diseases.

Methods

We explored the power to replicate a main effect under an

epistatic model. Here we assumed that a main effect had been

detected during the discovery phase of a genome-wide association

study and simulated replication datasets with various allele

frequencies at interacting loci. We examined a study’s power to

replicate a main effect for a SNP with a true epistatic effect in a

Figure 3. This figure shows marginal penetrances under a number of possible replication scenarios. In part A the marginal penetrances
with the allele frequencies found in the discovery phase of a hypothetical genome-wide association study. In part B The marginal penetrances found
in the replication phase of a genome-wide association study under a situation where the result would replicate. In part C the marginal penetrances
found in the replication phase of a genome-wide association study under a situation where the result would not replicate. In part D the marginal
penetrances found in the replication phase of a genome-wide association study under a situation where the allele first discovered as a risk factor
would now appear protective.
doi:10.1371/journal.pone.0005639.g003
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highly targeted replication study for a single SNP association. This

approach is seen when an investigator attempts to replicate a

single SNP from a previous study.

To examine the effects of allele frequency on replication of main

effects when there is an underlying complex disease æ tiology we

first generated genetic models. These models spanned six broad

sense epistatic heritabilities ranging from high to low heritability

(0.4, 0.3, 0.2, 0.1, 0.05, and 0.025). For each heritability we

generated five models. These models had no main effect when the

allele frequencies of the functional SNPs was 0.5. That is, these

allele frequencies generated marginal penetrances for each SNP

that were equal. Each penetrance function is included in the

Supplementary Material S1.

We next generated datasets for each model. To generate datasets

with varied allele frequencies that preserve the underlying model,

we sampled from populations where the allele frequencies of SNPM

were held constant and the minor allele frequency of SNPI varied

from zero to 0.5 in increments of 0.01. For each allele frequency we

sampled 500 datasets. Within the populations sampled we insured

that all SNP genotypes were in Hardy Weinberg equilibrium at each

allele frequency. We used balanced samples with equal numbers of

cases and controls consisting of 400, 800, and 1600 individuals. In

total we generated 2,295,000 datasets.

We used a chi-square test of independence to assess the

significance of associations between SNPs and disease status in

these datasets. For purposes of analyzing power we considered

SNPM to have been successfully replicated if it had an

uncorrected pƒ0:05. Power, then, is the number of times out of

100 that SNPM would be found significantly associated in the

replication sample (pƒ0:05) at that allele frequency. This ignored

multiple-hypothesis testing issues and represented the situation

where there existed a targeted replication hypothesis. This

approach specifically considered the power to replicate an

association discovered in a detection sample in an independent

replication sample. Application of a Bonferroni correction to these

results yielded, as expected, an overall decrease in the power to

replicate a main effect. The change in allele frequency at SNPI

required to reduce power to replicate the main effect at SNPM did

not significantly change and thus these results are not presented.

These results are available from the authors upon request.

Supporting Information

Figure S1 The effect described in Supplementary Figure S1 is

consistent across very large to very small heritability models (0.4 to

0.025). In most cases a change in allele frequency of less than 0.1 is

enough to reduce the power to replicate a main effect from 80% to

Figure 4. This flowchart represents a method by which candidate SNPs can be divided into tiers for later evaluation based on
statistical results and biological information. Tier 1 markers are likely to provide the easiest gene-function studies but provide the least new
information. Tier 2 markers have the potential to implicate previously unknown genes in known pathways and are also likely to lead to feasible gene-
function studies. Tier 3 markers have the greatest potential to implicate new genes and pathways in the disease process, but gene-function
confirmation is likely to be the most difficult for these markers, particularly if clues about role are limited.
doi:10.1371/journal.pone.0005639.g004
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20%. Results shown are for a sample including 200 cases and 200

controls.

Found at: doi:10.1371/journal.pone.0005639.s001 (0.86 MB EPS)

Figure S2 The effect described in Supplementary Figure S2 is

consistent across very large to very small heritability models (0.4 to

0.025). In most cases a change in allele frequency of less than 0.1 is

enough to reduce the power to replicate a main effect from 80% to

20%. Results shown are for a sample including 400 cases and 400

controls.

Found at: doi:10.1371/journal.pone.0005639.s002 (0.89 MB EPS)

Supplementary Material S1 Supplementary Tables

Found at: doi:10.1371/journal.pone.0005639.s003 (0.02 MB

PDF)
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