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Abstract

The neurotransmitter glutamate is released by excitatory projection neurons throughout the brain. However, non-
glutamatergic cells, including cholinergic and monoaminergic neurons, express markers that suggest that they are also
capable of vesicular glutamate release. Striatal cholinergic interneurons (CINs) express the Type-3 vesicular glutamate
transporter (VGluT3), although whether they form functional glutamatergic synapses is unclear. To examine this possibility,
we utilized mice expressing Cre-recombinase under control of the endogenous choline acetyltransferase locus and
conditionally expressed light-activated Channelrhodopsin2 in CINs. Optical stimulation evoked action potentials in CINs and
produced postsynaptic responses in medium spiny neurons that were blocked by glutamate receptor antagonists. CIN-
mediated glutamatergic responses exhibited a large contribution of NMDA-type glutamate receptors, distinguishing them
from corticostriatal inputs. CIN-mediated glutamatergic responses were insensitive to antagonists of acetylcholine receptors
and were not seen in mice lacking VGluT3. Our results indicate that CINs are capable of mediating fast glutamatergic
transmission, suggesting a new role for these cells in regulating striatal activity.
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Introduction

As the primary excitatory neurotransmitter in the central

nervous system, the amino acid glutamate mediates synaptic

output from the majority of projection neurons in the brain,

including pyramidal cells of the neocortex and hippocampus.

However, a growing body of evidence indicates that some

populations of inhibitory and modulatory neurons may also use

glutamate as a co-transmitter. Histological studies have demon-

strated glutamate-immunopositive monoaminergic cells in the

brainstem and mesencephalon [1] and revealed the presence of

phosphate-activated glutaminase, the primary glutamate synthetic

enzyme, in cholinergic and dopaminergic neurons [2,3]. In

addition, the Type-2 vesicular glutamate transporter co-localizes

with tyrosine hydroxylase in brainstem catecholaminergic neurons

[4]. Furthermore, the Type-3 vesicular glutamate transporter

(VGluT3) is rarely expressed in traditional glutamatergic neurons

but is present in serotonergic cells of the raphe nuclei, in

cholinergic neurons of the striatum and basal forebrain, and in

GABAergic interneurons of the hippocampus [5,6,7,8]. Ultra-

structural analysis has shown that VGluT3 co-localizes with the

vesicular acetylcholine (ACh) transporter in presynaptic terminals

in the striatum, suggesting a role in neurotransmission [6,7,9].

Physiological evidence for synaptic glutamate release from

traditionally non-glutamatergic cells was initially limited to cell

culture systems in which serotonergic and dopaminergic neurons

were shown to make functional glutamatergic autapses [10,11].

However, recent work has demonstrated that both electrical and

Channelrhodospin2 (ChR2)-mediated optical stimulation of mid-

brain dopaminergic cells can evoke monosynaptic glutamatergic

responses in the ventral striatum [12,13,14]. Additionally, optical

stimulation of serotonergic neurons in the raphe nuclei evokes

glutamatergic potentials in hippocampal interneurons capable of

triggering action potentials [15].

Striatal cholinergic interneurons (CINs) provide the sole source

of ACh in the striatum and are thought to correspond to ‘‘tonically

active neurons (TANs)’’ recorded in vivo [16,17]. The activity of

TANs is regulated by behavioral context, exhibiting pauses of

several hundred milliseconds following presentation of salient

sensory stimuli [18,19]. Although they comprise only ,3% of all
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striatal cells, CINs are hypothesized to regulate striatal synaptic

transmission and long-term plasticity via nicotinic and muscarinic

ACh receptors [20,21,22]. However, co-expression of VGluT3 in

cholinergic presynaptic terminals suggests that CINs may also

utilize glutamate for transmission in some capacity [7,9]. Recent

studies indicate that in vivo activity of CINs alters firing of

neighboring medium spiny neurons [23], although the possible

role of glutamate release in this process was not examined.

Previous work suggested that VGluT3 may energetically facilitate

loading ACh into vesicles, as VGluT3 knockout mice exhibit

reduced evoked cholinergic release [9]. However, it remains

unclear whether CIN expression of VGluT3 is sufficient to support

functional glutamatergic synapses capable of activating postsyn-

aptic receptors.

To answer this question, we selectively expressed a conditional

form of ChR2 in cholinergic neurons of the dorsal striatum,

enabling us to reliably evoke action potentials in CINs. Recordings

from medium spiny neurons (MSNs) in acute brain slices revealed

excitatory postsynaptic potentials (EPSPs) that were triggered by

ChR2-mediated firing of CINs and were blocked by glutamate

receptor antagonists. The fractional contribution of NMDA-type

glutamate receptors (NMDARs) were significantly different for

CIN-evoked glutamatergic responses compared to those arising

from optical stimulation of corticostriatal projections, suggesting

differential activation of postsynaptic receptors by these two

afferent populations. Similar CIN-evoked glutamatergic EPSPs

were seen in MSNs using a second, independent mouse line that

expresses Cre recombinase in cholinergic neurons but could not be

elicited in mice lacking VGluT3. Thus, our results demonstrate

that direct and VGluT3-dependent release of glutamate from

striatal CINs can evoke fast glutamatergic responses in postsyn-

aptic targets, suggesting a previously unknown role for these

interneurons in the control of striatal circuitry.

Results

To selectively activate striatal cholinergic interneurons (CINs),

we utilized knock-in mice that express Cre-recombinase down-

stream of the native choline-acetyltransferase promoter and an

internal ribosomal entry site (IRES) [24]. ChAT-IRES-Cre mice

express Cre-recombinase in cholinergic neurons of the striatum,

basal and septal nuclei, and neocortex (Rossi et al., 2011).

Intracranial injection of adeno-associated virus encoding a Cre-

dependent (double floxed inverted) Channelrhodopsin2-mCherry

fusion protein (DFI-ChR2-mCherry) [25,26] into the striatum of

these mice enabled the CIN-specific expression of the light-

activated excitatory ChR2, which was clearly observed 7–14 days

after injection (Fig. 1A, see methods).

We characterized the ability of ChR2 to drive CIN activity in

an acute brain slice using cell-attached recordings obtained from

ChR2-positive CINs that were visually identified under epifluor-

escence (Fig. 1B). Recordings were made at room temperature to

reduce spontaneous firing of CINs [17]. Brief pulses (2–5 ms) of

whole-field blue light delivered through the microscope objective

reliably evoked action potentials (APs) in CINs with a mean

latency measured from the start of the light pulse of 4.260.5 ms

(n = 8), demonstrating that virus mediated Cre-conditional expres-

sion of ChR2 provides a viable tool for driving activity in this

population of genetically-defined local interneurons.

Previous studies of CIN function in the striatum have focused on

the actions of nicotinic and muscarinic ACh receptors, which

modulate glutamate, GABA, and dopamine release at striatal

synapses and directly depolarize the principal striatal cells,

medium spiny neurons [MSNs, 20,21,22]. To determine whether

activation of CINs could produce a direct postsynaptic response,

we made current-clamp recordings from MSNs in brain slices

containing CINs expressing ChR2 (Fig. 2). Pulses of blue light

applied through the microscope objective to the area surrounding

the recorded MSN evoked a transient depolarization from a

resting potential of 280 mV (Fig. 2A). On average (n = 10), the

evoked response had an amplitude of 1.960.5 mV and occurred

with a latency of 7.060.5 ms from the light pulse onset.

The light-evoked response was resistant to blockade of GABAA

receptors (50 mM picrotoxin) as well as nicotinic and muscarinic

ACh receptors (1 mM mecamylamine and 10 mM scopolamine,

respectively), indicating that it was not mediated by acetylcholine

receptor-dependent direct depolarization or by indirect reversed

inhibition via activation of nicotinic receptor-expressing GABAer-

gic interneurons (Fig. 2B). Instead, the depolarization was sensitive

to application of the AMPA/kainate-type glutamate receptor

(AMPAR) antagonist NBQX (10 mM), which significantly reduced

the response magnitude to 22.4 6 2.5% of control (n = 5,

Student’s T-test p,0.001, Fig. 2B). The remaining response was

eliminated by the NMDA-type glutamate receptor (NMDAR)

antagonist CPP (10 mM, data not shown). Thus, our results

indicate that firing of CINs generates glutamatergic excitatory

postsynaptic potentials (EPSPs) in nearby MSNs.

As CIN-evoked EPSPs exhibited a NBQX-resistant component,

we further examined the relative contribution of NMDA-type

glutamate receptors (NMDARs) to CIN-evoked currents. Voltage-

clamp recordings were obtained from MSNs at room temperature

using a cesium-based internal solution, in the prensence of

picrotoxin, mecamylamine, and scopolamine. Light-evoked excit-

atory postsynaptic currents (EPSCs) were measured at hyperpo-

larized and depolarized membrane potentials. At a holding

potential of 270 mV, CIN stimulation evoked an average (n = 7)

inward peak current of 16.764.4 pA (Fig. 2C), estimating the

contribution of AMPARs. It is possible that these measurements

are contaminated with a contribution of current flow through

NMDARs, although this is likely due to the Mg block of NMDARs

and the lack of a prolonged phase of the EPSC at this potential. In

the same cells, we quantified the NMDAR contribution as the

current evoked at a holding potential of +40 mV, measured

150 ms after the light pulse (35.2615.5 pA). The average ratio

(+40:270) of these measures was 1.9 6 0.4. (Fig. 2F).

To directly compare optically-evoked glutamatergic inputs from

CINs with similarly evoked inputs from cortical afferents, we

expressed a Cre recombinase-independent version of the ChR2-

mCherry fusion protein in motor cortex neurons projecting to the

striatum [27]. At 7–14 days following injection, axonal fibers

descending from the overlying cortex could clearly be seen

branching throughout the dorsal striatum (Fig. 2D). As above, we

made voltage-clamp recordings in MSNs and delivered light pulses

through the microscope objective (Fig. 2E), evoking EPSCs with

an average (n = 5) latency to 4.160.3 ms. From a holding

potential of -70 mV, the average peak inward current amplitude

was 50.5617.3 pA, while from a holding potential of +40 mV, the

average current at 150 ms was 28.266.4 pA (Fig. 2E,F). Calcu-

lating the ratio of currents at the two holding potentials (+40:270)

yielded an average value of 0.86 6 0.3, significantly smaller than

for currents evoked by stimulation of CINs (p,0.05, Student’s T-

test, n = 5, Fig. 2F). These experiments, performed at room

temperature, indicate that ChR2-mediated activation of striatal

CINs from a quiescent state is capable of evoking glutamatergic

responses in striatal MSNs that is independent of cholinergic

actions.

In order to confirm both the robustness of these findings and

that they represent vesicular release of glutamate by CINs, several

Cholinergic Interneurons Release Glutamate
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additional experiments were performed (Fig. 3). First, analysis of

ChR2-mediated glutamatergic responses in MSNs was repeated at

near physiological temperatures (32–34uC) at which CINs are

spontaneously active (mean firing frequency in cell-attached

recordings = 1.660.3 Hz, n = 6). At this temperature, brief blue

light illumination also triggered EPSCs in MSNs at holding

potentials of 270 mV (116.4618.7 pA) and +40 mV

(29.765.4 pA, Fig. 3A, D). Importantly, the smaller relative

NMDAR contribution, in comparison to data in Figure 2, was due

to the faster kinetics of the evoked EPSC at near-physiological

temperatures which results in substantial decay by 150 ms after

stimulus.

Second, in order to confirm the robustness of our findings in an

independent mouse line, similar experiments were performed in

the GENSAT GM60 mouse line in which Cre is expressed in

cholinergic interneurons following integration of a bacterial

artificial chromosome spanning the ChAT genetic locus and in

which the ChAT coding sequence has been replaced with that of

Cre [28]. As above, blue light stimulation of acute slices prepared

from DFI-ChR2-mCherry AAV-infected mice elicited EPSCs in

MSNs at both 270 and +40 mV (Fig. 3B). On average (n = 7),

these currents were 46.763.6 pA and 52.865.9 pA, for 270mV

and +40mV, respectively, Fig. 3D.

Third, although the lack of sensitivity of the observed responses

in MSNs to cholinergic and GABAergic antagonists suggests direct

release of glutamate from CINs, we examined the dependence of

CIN-mediated glutamatergic EPSCs in MSNs on the expression of

the vesicular glutamate transporter VGluT3. Importantly, in the

striatum, this transporter is expressed exclusively in CINs. GM60

mice were bred with VGluT32/2 mice [29] to generate

GM60;VGluT32/2 animals. Blue-light stimulation of DFI-

ChR2 AAV infected striatal slices of these mice failed to trigger

EPSCs at holding potentials of 270 or +40 mV (n = 6, Fig. 3C,D).

Thus, glutamatergic EPSCs in MSNs triggered by optogenetic

stimulation of ChR2-expressing CINs requires VGluT3, strongly

suggesting that VGluT3 expression in CINs is required to package

glutamate within vesicles that are subsequently released in an

activity-dependent manner.

Discussion

Here, we demonstrate that action potentials in striatal CINs

generate glutamatergic postsynaptic responses in MSNs that

exhibit distinct properties compared to activation of cortical

afferents. The ability of CINs to mediate glutamatergic

transmission is consistent with reports that these cells express

Figure 1. ChR2-mediated activation of striatal cholinergic interneurons. (Ai) Confocal image of mCherry-positive ChR2-expressing neurons
in the dorsal striatum of a ChAT-IRES-Cre mouse injected with AAV encoding DFI-ChR2-mCherry. (Aii) Fluorescence immunohistochemical staining for
ChAT reveals cholinergic neurons. (Aiii) Merged image. (B) inset, Schematic diagram of the recording conditions: cell-attached recordings were made
from ChR2-expressing CINs (red) in the dorsal striatum and blue light was delivered to the surrounding area (blue circle) through the microscope
objective. main panel, Example action potential recorded in cell-attached mode from a ChR2-expressing CIN evoked by a 4 ms pulse of 473 nm light.
doi:10.1371/journal.pone.0019155.g001
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the vesicular glutamate transporter VGluT3, which co-localizes

with the vesicular ACh transporter in the same presynaptic

terminals [6,7,9]. Earlier work suggested that the function of

VGluT3 at these synapses was to facilitate cholinergic vesicle

loading, as the ACh transporter requires anion co-entry for

continual activity [9]. Moreover, transgenic mice lacking

VGluT3 show reduced ACh release in striatal slices [9]. Our

results show that, in addition to supporting cholinergic signaling,

VGluT3 expression is necessary for CIN-mediated glutamatergic

responses in MSNs. However, our results do not allow us to

Figure 2. Light-evoked CIN action potentials evoke glutamatergic responses in MSNs. (A) inset, Schematic diagram of the recording
conditions: whole-cell recordings were made from MSNs that neighbored ChR2-expressing CINs (red). The blue circle indicates the region stimulated
by blue light. main panel, Example EPSP recorded in an MSN in response to a 4 ms light pulse (blue bar). (B) Amplitudes of light-evoked EPSPs in the
presence of antagonists of GABAA (Picrotoxin, Ptx), muscarinic (Scopolamine, Scop), and nicotinic (Mecamylamine, Mec) receptors and following
application of the AMPA/kainate glutamate receptor antagonist NBQX. (C) Example of light evoked (blue bar) CIN-mediated EPSCs in a voltage-
clamped MSN at holding potentials of 270 and +40 mV demonstrating the large current that is visible more than 100 ms after the light pulse at
+40 mV. The amplitudes of the rapid 270 and prolonged +40 mV EPSC components were measured in the periods indicated by the gray bars. (D)
Confocal image of mCherry-positive ChR2-expressing fibers in the motor cortex, white matter (WM) and underlying striatum (Str). Large bundles of
corticofugal fibers (white arrowheads) and diffuse small axonal collaterals are visible throughout the dorsolateral striatum. Scale bar 200 mm. (E) inset,
Schematic diagram of the recording conditions: whole-cell recordings were made from MSNs neighboring ChR2-expressing corticostriatal fibers (red),
and blue light was delivered to the region indicated by the blue circle. main panel, Example EPSCs recorded in an MSN in response to a blue light
pulse at the indicated holding potentials. (F) left, Average amplitudes of light-evoked EPSCs measured in MSNs held at either 270 or +40 mV in
response to ChR2-mediated activation of either CINs or corticostriatal fibers (Cx). right, Average ratio of +40/270 mV current amplitudes measured
following ChR2-mediated activation of either CINs or corticostriatal fibers.
doi:10.1371/journal.pone.0019155.g002
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determine whether individual vesicles contain both ACh and

glutamate.

As CIN ‘‘function’’ has generally been assessed using bath-

applied cholinergic pharmacological agents, our findings highlight

the importance of studying the endogenous synaptic outputs of

these cells. Along with recent studies demonstrating glutamatergic

release from dopaminergic and serotonergic cells [12,13,14,15],

our results suggest that glutamate transporter expression may be a

general mechanism used in modulatory neurons to increase their

repertoire of neurotransmitters. In addition, the reliable relation-

ship between a single presynaptic action potential and a single

postsynaptic EPSP at short latency (,3 ms) strongly suggests that

CINs release glutamatergic vesicles via conventional exocytosis

machinery. These results are supported by the finding that CIN-

evoked glutamatergic currents are not seen in MSNs of mice

lacking VGluT3, the sole vesicular glutamate transporter ex-

pressed in CINs.

We found that EPSCs evoked by CIN stimulation exhibited a

significantly larger fractional contribution of NMDARs when

compared to those triggered by stimulation of cortical afferents.

Ultrastructural analyses indicate that cholinergic terminals are

typically apposed to dendritic shafts and the necks of dendritic

spines, in contrast to the spine heads targeted by cortical synapses

[30]. Thus, one possible explanation for the large NMDAR

contribution is that glutamate from CINs activates a distinct set of

postsynaptic receptors. Alternatively, glutamate from CINs may

diffuse from the release site to nearby postsynaptic densities under

traditional synaptic contacts. The relatively higher glutamate

affinity of NMDARs versus AMPARs [31] might explain the

greater NMDAR activation by this volumetric signal. This model

is consistent with the hypothesis that ACh acts primarily via

volume transmission [32].

Our results also indicate that, in the context of ongoing

spontaneous (.1 Hz) activity, the addition of a single ChR2-

triggered spike is able to trigger a postsynaptic response, suggesting

that glutamate release is maintained at these firing rates. Future

studies are necessary to determine if similar release also occurs at

higher rates in vivo, and in animals outside of the 3–4 week old age

group studied here.

The function of glutamate release by CINs is unclear. One

possibility is that VGluT3 is necessary for effective vesicular

loading of ACh at CIN terminals, and glutamate release is an

unintended byproduct of the subsequent co-localization of these

two transmitters. Alternatively, the tonic activity of CINs in vivo

[19] may provide a steady release of low levels of glutamate into

the striatum. Synaptic plasticity in the striatum is thought to be

critical for normal motor learning, and many forms are dependent

on activation of both NMDARs and metabotropic glutamate

receptors [33]. Thus, tonic CIN activity may keep plasticity

systems in a constant low level of activation. Conversely, in vivo

TANs, which are thought to correspond to cholinergic neurons,

transiently reduce their firing in response to behaviorally relevant

sensory cues [19], suggesting that appropriately timed pauses in

glutamate release may contribute to learning stimulus-reward

associations.

Methods

Slice preparation and pharmacology
All animal handling was performed in accordance with

institutional and federal guidelines guidelines and were approved

by the Harvard (03551) and UCSF (AN083939-01) Institutional

Animal Care and Use Committees. These protocols include

specific approval for the animal procedures used in this study – i.e.

stereotactic intracranial virus injection and euthanasia followed by

tissue harvest. Recordings were made from CINs or MSNs in

striatal slices taken from male and female postnatal day 22–28

mice that were euthanized under isoflurane anesthesia. Coronal

slices (300 mm thick) were cut in ice-cold external solution

containing 110 mM choline, 25 mM NaHCO3, 1.25 mM

NaH2PO4, 2.5 mM KCl, 7 mM MgCl2, 0.5 mM CaCl2,

25 mM glucose, 11.6 mM sodium ascorbate, and 3.1 mM sodium

pyruvate, bubbled with 95% O2 and 5% CO2. Slices were then

transferred to ACSF containing 127 mM NaCl, 25 mM

NaHCO3, 1.25 mM NaH2PO4, 2.5 mM KCl, 1 mM MgCl2,

2 mM CaCl2, and 25 mM glucose, bubbled with 95% O2 and 5%

CO2. After an incubation period of 30–40 minutes at 34uC, the

slices were maintained at 22–25uC until use. Experiments were

conducted at room (22–24uC) or near-physiological (32–34uC)

temperatures as noted in the text. For some experiments (see text),

one or more of the following drugs (Tocris) were added to the

ACSF at the following concentrations (in mM): 50 picrotoxin, 10

scopolamine, 1 mecamylamine, 10 NBQX, and 10 CPP.

In order to address concerns that the presence of choline in the

cutting solution might have altered the physiology of CINs,

experiments were repeated using slices that were cut either in ice-

cold standard ACSF or in a sucrose-based cutting solution

consisting of (in mM): 79 NaCl, 23 NaHCO3, 68 sucrose, 12

glucose, 2.3 KCl, 1.1 NaH2PO4, 6 MgCl2, and 0.5 CaCl2. No

differences were noted across these conditions, and results were

pooled for presentation.

Figure 3. CIN-mediated glutamatergic currents in MSNs require
VGluT3 expression. (A) Example light-evoked EPSCs at 32–34uC in an
MSN held at 270 or +40 mV in an acute striatal slice of a DFI-ChR2-
mCherry AAV injected ChAT-IRES-Cre mouse. (B) As in Panel A, showing
recordings at 32–34uC obtained from an MSN in an acute slice of a DFI-
ChR2-mCherry AAV injected GM60 mouse that expresses Cre under
control of a BAC spanning the ChAT genomic locus. (C) As in Panel B,
showing failures to evoke EPSCs in an MSN of a DFI-ChR2-mCherry AAV
injected GM60; VGluT32/2 mouse. (D) Average light-evoked EPSC
amplitudes measured in MSNs at holding potentials of 270 and
+40 mV in acute slices prepared from mice of the indicated genotypes.
doi:10.1371/journal.pone.0019155.g003
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Electrophysiology and imaging
Cell-attached recordings (voltage-clamp mode, holding poten-

tial adjusted to eliminate any holding current) were obtained from

red-fluorescing (ChR2-mCherry-positive) CINs identified with

video-IR/DIC and epifluorescence. Whole-cell recordings were

obtained from MSNs identified with video-IR/DIC. For current-

clamp recordings, glass electrodes (2–3.5 MV) were filled with

internal solution containing (in mM): 135 KMeSO3, 10 HEPES, 4

MgCl2, 4 Na2ATP, 0.4 NaGTP, and 10 Na2CreatinePO4,

adjusted to pH 7.3 with KOH. For voltage-clamp recordings,

cesium was substituted for potassium. Recordings were made using

an Axopatch 200B amplifier, and data was filtered at 5 kHz and

digitized at 10 kHz. Data in Fig. 3B,C were collected with a

Molecular Devices Multiclamp 700B. Liquid junction potentials

were not corrected and estimated as ,8 mV.

Viral Channelrhodopsin2 expression and activation
To express the light-activated membrane channel Channelrho-

dopsin2 (ChR2) in either CINs or corticostriatal afferents, we

injected 1.0 ml of a recombinant adenoassociated virus (serotype

2/8, Harvard Gene Therapy Institute) into the striatum or motor

cortex of p8–p14 mice, respectively. The virus carried either a

double-floxed-inverted Channelrhodopsin2-mCherry construct

under control of the Ef1a promoter (CINs) or non-conditional

construct coding for Channelrhodopsin2-mCherry under the

synapsin promoter (corticostriatal) [34]. After 7–14 days post-

injection, mice were euthanized for slice preparation as above and

exhibited strong labeling of targeted cells. Selective expression of

ChR2 in CINs was verified by staining striatal slices from injected

mice with a primary antibody raised against ChAT (Millipore

AB144P, 1:1000). To activate Channelrhodopsin2-positive fibers,

light from a 473 nm laser (Optoengine) was focused onto the back

aperture of the microscope objective, producing a wide-field

exposure around the recorded cell of 10–20 mW/mm2. Brief (2–

5 ms) pulses of light were delivered under control of the acquisition

software. In some experiments, blue light was restricted to a

,106300 micron stripe in the field of view using a cylindrical lens.

Results obtained with this illumination arrangement were not

significantly different than those obtained with whole-field

illumination.

Data acquisition and analysis
Data were acquired using National Instruments and Heka ITC-

18 D/A data acquisition boards and custom software written in

MATLAB (Mathworks). Off-line analysis was performed using

custom routines written in MATLAB and Igor Pro (Wavemetrics).

The amplitudes of all EPSPs and non-NMDAR-mediated EPSCs

were calculated by averaging over a 3 ms window around the

peak, whereas a 10 ms window was used to calculate amplitudes of

NMDAR-mediated EPSCs at 150 ms following the stimulus.
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