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Abstract

Background: Multiple sclerosis (MS) is a heterogeneous disease. In order to understand the partial responsiveness to IFNß in
Relapsing Remitting MS (RRMS) we studied the pharmacological effects of IFNß therapy.

Methodology: Large scale gene expression profiling was performed on peripheral blood of 16 RRMS patients at baseline
and one month after the start of IFNß therapy. Differential gene expression was analyzed by Significance Analysis of
Microarrays. Subsequent expression analyses on specific genes were performed after three and six months of treatment.
Peripheral blood mononuclear cells (PBMC) were isolated and stimulated in vitro with IFNß. Genes of interest were
measured and validated by quantitative realtime PCR. An independent group of 30 RRMS patients was used for validation.

Principal Findings: Pharmacogenomics revealed a marked variation in the pharmacological response to IFNß between
patients. A total of 126 genes were upregulated in a subset of patients whereas in other patients these genes were
downregulated or unchanged after one month of IFNß therapy. Most interestingly, we observed that the extent of the
pharmacological response correlates negatively with the baseline expression of a specific set of 15 IFN response genes
(R = 20.7208; p = 0.0016). The negative correlation was maintained after three (R = 20.7363; p = 0.0027) and six
(R = 20.8154; p = 0.0004) months of treatment, as determined by gene expression levels of the most significant correlating
gene. Similar results were obtained in an independent group of patients (n = 30; R = 20.4719; p = 0.0085). Moreover, the ex
vivo results could be confirmed by in vitro stimulation of purified PBMCs at baseline with IFNß indicating that differential
responsiveness to IFNß is an intrinsic feature of peripheral blood cells at baseline.

Conclusion: These data imply that the expression levels of IFN response genes in the peripheral blood of MS patients prior
to treatment could serve a role as biomarker for the differential clinical response to IFNß.
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Introduction

Multiple sclerosis (MS) is a common inflammatory disease of

the central nervous system characterized by progressive neurolog-

ical dysfunction. The disease has a heterogeneous nature, which

is reflected in the clinical presentation, ranging from mild to

severe demyelinating disease. No curative therapy is currently

available, and the majority of affected individuals are ultimately

disabled.[1]

IFNs were the first agents to show clinical efficacy in RRMS.

Interferon beta (IFNß) decreases clinical relapses, reduces brain

disease activity, and possibly slows down progression of disability.

However, therapy is associated with a number of adverse

reactions, including flu-like symptoms and transient laboratory
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abnormalities. Moreover, the response to IFNß is partial, i.e.

disease activity is suppressed by only about one third.[2] Clinical

experience suggests that there are IFN ‘responders’ as well as ‘non

responders’, however clear criteria for such classification are still

lacking.[3] In the absence of predictive biomarkers the question

remains who will respond to therapy and who to treat when

inconvenience and costs are significant.

Part of the unresponsiveness to IFNß can be explained by

immunogenicity. However, since not all unresponsive patients

develop neutralizing antibodies (Nabs), and Nabs can disappear

over time,[4–7] other mechanisms have to be involved to explain

unresponsiveness. Hence, there have to be biological disease

mechanisms in a subpopulation of patients that results in

insensitivity or resistance to the effects of IFNs. This implies that

pharmacological responses may differ between patients, leading to

inter-individual differences in clinical efficacy. We hypothesize

that an in depth understanding of the pharmacological factors

underlying the therapeutic mechanisms and therapy unrespon-

siveness is the key for the identification of predictive markers.

In normal physiology type I IFNs achieve their biological effects

by binding to multi-subunit receptors IFNAR-1 and -2 on the cell

surface, thereby initiating a complex cascade of intracellular

secondary messengers that emerge in two divergent pathways.

One pathway, leads to activation of the transcription factor IFN-

stimulated gene factor 3 (ISGF3), a complex of phosphorylated

Signal Transducer and Activator of Transcription (STAT) 2 with

STAT1 and IFN regulatory factor 9 (IRF-9; p48) that binds to the

IFN-stimulated response element (ISRE) present in multiple

genes.[8,9] The other pathway involves STAT2/1 and STAT2/

3 heterodimers and STAT1 homodimer (IFN-a-activated factor,

AAF), which bind to the IFN gamma-activated sequence (GAS)

response element.[9–12] Ultimately, the IFN-induced activation of

ISRE and GAS enhancer elements switch on a wide variety of

genes[13] leading to specific transcriptional changes.

With the aid of genomics technology, we are now in a position

to provide sufficient knowledge to determine pharmacological

outcomes that will allow us to search for predictors of therapeutic

outcomes. Previously we demonstrated that gene expression

signatures in MS may differ significantly between patients.[14]

We found that a subgroup of MS was characterized by an

increased expression of an immune defense response gene set,

including a type I IFN response signature. Here we generated and

analyzed pre- and post- IFNß treatment gene expression patterns

of RRMS patients with the aim of identifying pre-existing and/or

drug-induced signatures that will allow us to make predictions on

the expected pharmacological effects of IFNß treatment. We show

that the expression level of IFN response genes prior to treatment,

could serve a role as biomarker for the pharmacological

differences between patients with MS at the molecular level.

Methods

Patients
A first group of 16 Dutch patients (10 females and 6 males) and

a second group of 30 Dutch patients (17 females and 13 males)

with clinically definite relapsing-remitting MS was recruited from

the outpatient clinic of the MS Centre Amsterdam. Mean age at

start of IFNß therapy for the test group is 40.667.7, mean EDSS is

2.361.3 (range 1–6). Blood samples were obtained at a fixed time

during the day just before treatment and 1, 3 and 6 months after

start of the therapy. Patients received either Avonex (n = 4),

Betaferon (n = 7), Rebif 22 ( = 2) or Rebif 44 (n = 3). For the

validation group, mean age at start of IFNß therapy is 34.069.9,

mean EDSS 2.361.1 (range 0–4.5). Patients received either

Avonex (n = 7), Betaferon (n = 8), Rebif 22 (n = 4) or Rebif 44

(n = 11).

The study was approved by the ethics committee of the VUmc

and all patients provided written informed consent.

Blood sampling
From each patient blood was drawn into one PAXgene tube

(PreAnalytix, GmbH, Germany) and three heparin tubes (Beckton

Dickinson, Alphen a/d Rijn, Netherlands). After blood collection,

tubes were transferred from the clinic to the lab within one hour in

order to isolate fresh peripheral blood mononuclear cells (PBMCs)

from heparinized blood using lymphoprep (Axis-Shield, Lucron)

density gradient centrifugation. PAXgene tubes were stored at

room temperature (RT) for two hours to ensure complete lyses of

all blood cells after which tubes were stored at 220 until RNA

isolation. Total RNA was isolated within 7 months after storage.

Tubes were thawed 2 hours at RT prior to RNA isolation. Next,

RNA was isolated using the PreAnalytix RNA isolation kit

according to the manufacturers’ instructions, including a DNAse

(Qiagen, Venlo, Netherlands) step to remove genomic DNA.

Quantity and purity of the RNA was tested using the Nanodrop

spectrophotometer (Nanodrop Technologies, Wilmington, Dela-

ware USA).

Microarray hybridization
We used 43K cDNA microarrays from the Stanford Functional

Genomics Facility (http://microarray.org/sfgf/) printed on ami-

nosilane-coated slides containing ,20.000 unique genes. First

DNA spots were UV-crosslinked to the slide using 150–300

mJoules. Prior to sample hybridisation, slides were prehybridized

at 42 degrees Celsius for 15 minutes in a solution containing 40%

ultra pure formamide (Invitrogen, Breda, Netherlands), 5% SSC

(Biochemika, Sigma), 0.1% SDS (Fluka Chemie, GmbH, Switser-

land) and 50 mg/ml BSA (Panvera, Madison, USA). After

prehybridization slides were briefly rinsed in MilliQ water,

thoroughly washed in boiling water and 95% ethanol and air-

dried. Sample preparation and microarray hybridisation was

performed as described previously,[15] apart from the different

postprocessing and prehybridization described above.

Microarray analysis
Data storage and filtering was performed using the Stanford

Microarray Database[16] (http://genome-www5.stanford.edu//)

as described previously.[14] Statistical Analysis of Microarrays

[17] (SAM) was used to determine significantly differential

expressed genes. A gene was considered as significantly differential

expressed if the False Discovery Rate (FDR) was equal to or less

than 5%. Cluster analysis[18] was used to define clusters of co-

coordinately changed genes after which the data was visualized

using Treeview.

Microarray data in this paper are stored in the publicly

accessible Stanford Microarray Database website http://smd.

stanford.edu/which supports the MIAME guidelines. In addition,

data is stored in the Gene Expression Omnibus (GSE10655). The

National Center for Biotechnology Information (www.ncbi.nlm.

nih.gov/) Genbank accession numbers for the genes and gene

products discussed in this paper are listed in Table S1.

Realtime PCR
RNA (0.5 mg) was reverse transcribed into cDNA using a

Revertaid H-minus cDNA synthesis kit (MBI Fermentas, St. Leon-

Rot, Germany) according to the manufacturers’ instructions.

Quantitative realtime PCR was performed using an ABI Prism

Pharmacogenomics of IFNb
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7900HT Sequence detection system (Applied Biosystems, Foster

City, CA, USA) using SybrGreen (Applied Biosystems). Primers

were designed using Primer Express software and guidelines

(Applied Biosystems) and are listed in table 1. To calculate

arbitrary values of mRNA levels and to correct for differences in

primer efficiencies a standard curve was constructed. Expression

levels of target genes were expressed relative to housekeeping gene

glyceraldehydes-3-phosphate dehydrogenase (GAPDH).

In vitro study
Freshly isolated PBMCs were washed using PBS containing 1%

fetal calf serum (FCS; BioWhittaker, Cambrex) and plated in 24-

wells culture plates at a density of 26106 cells per ml per well.

Cells were left unstimulated or activated with 10 Units

recombinant IFNß (Abcam, Cambridge, UK) for 4 h after which

RNA was isolated using the Rneasy Qiagen RNA isolation kit

(Qiagen) according to the manufacturers’ instructions. A DNAse

(Qiagen) step was included to remove genomic DNA. Quantity

and purity of the RNA was tested using the Nanodrop

spectrophotometer (Nanodrop Technologies, Wilmington, Dela-

ware USA)

Statistical analysis
Correlation analyses were performed using Graphpad Prism 4

software. First, data was tested for normal distribution. For

normally distributed data, a Pearson correlation was used. A

Spearman rank correlation was calculated in case of nonparamet-

ric distribution of the data. Correlations were considered

significant if p-values were less than 0.05.

Results

Pharmacogenomics of IFNß therapy in MS
In order to understand the pharmacological effects of IFNß

therapy we analysed the peripheral blood gene expression profiles

of 16 RRMS patients at baseline and one month after the start of

therapy. Two class paired analysis using Significant Analysis of

Microarrays (SAM) at a False Discovery Rate (FDR) of less than

5% between pre- and post-therapy data was applied to identify

genes that significantly changed in expression after IFNß

treatment. Surprisingly, only 3 genes, ‘‘Interferon alpha-inducible

protein 27’’ (IFI27), ‘‘Tripartite motif-containing 69’’ (TRIM69) and

‘‘Epithelial stromal interaction protein 1 (breast)’’ (EPSTI1), showed a

significant change.

Given the heterogeneous nature of MS we questioned whether

the observed poor yield of response genes upon IFNß treatment of

the whole MS cohort could be a reflection of averaging out

differences as a consequence of variation in pharmacological

responsiveness between the patients. To test this hypothesis we

investigated the pharmacological response at the individual patient

level by calculating for each patient and for each gene the ratio of

gene expression pre- vs. post therapy (log-2 ratios). We selected

genes that showed at least a two-fold change in expression after

IFNß treatment in at least 7 patients. A total of 126 genes met this

criteria and were subsequently subjected to a two-way hierarchical

(unsupervised) cluster analysis (Figure 1A). Compliant with our

hypothesis, this analysis showed a marked variation in biological

response to IFNß between patients. Some patients showed

upregulated genes, whereas in other patients the same genes were

downregulated or unchanged after IFNß therapy. As anticipated,

part of this gene expression pattern is consistent with expression of

known IFN response genes [13]. We next selected the cluster of

genes showing the most inter-individual variation resulting in 28

IFN-induced genes (Table S1) that clustered tightly together

(R = 0.925) indicating a coordinate regulation of these genes

(Figure 1B). The expression data of some of the IFN-induced genes

was validated by quantitative realtime PCR and showed a good

correlation with the microarray data (Table 2). These findings

confirmed the hypothesis that there exists considerable variation in

the pharmacological effects of IFNß between patients with RRMS.

Relationship between pharmacological response and
baseline gene expression levels

Previously, we demonstrated significant differences in the

expression of type I IFN-induced genes between untreated RRMS

patients.[14] Here we investigated whether there is a relationship

between the differential in vivo responsiveness to IFNß and baseline

expression levels of IFN-induced genes. Therefore, we tested for

each patient whether there is an association between the mean

Table 1. Primers used for quantitative realtime PCR

Genes Genbank accession nr. Sense primer Antisense primer Length PCR product (bp)

MxA NM 002462 TTCAGCACCTGATGGCCTATC GTACGTCTGGAGCATGAAGAACTG 92

OAS1 NM 016816 TGCGCTCAGCTTCGTACTGA GGTGGAGAACTCGCCCTCTT 175

STAT1 NM 007315 TGCATCATGGGCTTCATCAGC GAAGTCAGGTTCGCCTCCGTTC 156

RSAD2 NM 080657 GTGGTTCCAGAATTATGGTGAGTATTT CCACGGCCAATAAGGACATT 90

IRF7 NM 004031 GCTCCCCACGCTATACCATCTAC GCCAGGGTTCCAGCTTCAC 99

ISG15 NM 005101 TTTGCCAGTACAGGAGCTTGTG GGGTGATCTGCGCCTTCA 151

IFNß NM 002176 ACAGACTTACAGGTTACCTCCGAAAC CTCCTAGCCTGTCCCTCTGGGACTGG 93

doi:10.1371/journal.pone.0001927.t001

Table 2. Correlation between microarray data and realtime
PCR data

Genes p value R value

MxA 0.0188 0.4335

OAS1 ,0.0001 0.6972

STAT1 ,0.0001 0.7371

RSAD2 ,0.0001 0.7086

IRF7 0.0014 0.5648

ISG15 ,0.0001 0.7051

doi:10.1371/journal.pone.0001927.t002
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expression levels of the IFN response gene cluster (shown in

Figure 1B) before therapy with the response ratio after therapy.

This analysis demonstrated that the mean baseline expression of

the 28 IFN response genes negatively correlates with the in vivo

IFN-induced response levels (p = 0.0049 and R = 20.6657)

(Figure 2A), suggesting that the baseline gene expression level of

Figure 1. A. Biological response to IFNß therapy in MS patients Two-way hierarchical cluster analyses using gene expression ratio’s
(biological response). This diagram contains genes that were at least two-fold up- or downregulated after IFNß therapy in at least seven patients.
Upregulated genes after therapy are indicated by a red colour, downregulated by a green colour and genes that show no differences in expression
after therapy are indicated in black. B. Cluster of IFN-induced genes Selection of genes clustering together based on similar biological response
profiles within the patient group. The genes clustered together with a correlation of 0.925 and are known to be induced by IFN. The mean expression
ratio of all genes in this IFN cluster is referred to as the biological IFN response.
doi:10.1371/journal.pone.0001927.g001
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these genes could serve a role as predictive marker for the

pharmacological responsiveness to IFNß.

In order to create a gene set that best predicts the

pharmacological response to IFNß we selected those genes whose

expression shows the most significant negative correlation between

baseline and biological response (with a cut off of p,0.01 and

R,20.65). This resulted in a gene set containing 15 genes

(Table 3). Comparing baseline gene expression levels and

biological response using the average of these 15 genes revealed

a significant negative correlation (R = 20.7208; p = 0.0016)

(figure 2B). To exclude a potential bias of the gene selection at

baseline, we analyzed the correlation of the biological response

determined by the mean expression value of the selected 15 IFN-

induced genes with the baseline values of all genes on the array.

This resulted in three additional genes (IFI44L, MT1E and

IMAGE:1879725; R,20.65 and variance .1.00) that significant-

ly correlated with the pharmacological response to IFNß therapy.

Although these genes did not cluster tightly together with the

previously selected genes, they may be important in the response

to IFNß.

To investigate whether the observed negative correlation

between baseline and treatment induced changes are stable over

time we measure the expression level of the most significant

correlating gene (RSAD2; see Table 3) again after three and six

months of IFNß therapy. The negative correlation between

baseline expression level and biological response was maintained

after 3 months (p = 0.0027, R = 20.7363) and 6 months

(p = 0.0004, R = 20.8154) of therapy (figure 2C and D). To

validate our results, we measured expression levels of RSAD2 in a

second independent group of patients (n = 30) before and after

IFNß treatment. In this independent study group we confirmed

the negative correlation between baseline gene expression level

and treatment induced biological response (p,0.0085 and

R = 20.4719).

Comparative analyses of different treatment regimens
Since in the present study different pharmaceutical IFNb

preparations were used for treatment, we wanted to exclude the

possibility of potential differences in pharmacokinetics and

Figure 2. Correlation between baseline and biological response to IFNß therapy. Biological responses were calculated, using a set of IFN-
induced genes (A and B) or a single IFN-induced gene (C and D) and correlated with baseline levels, resulting in a significant negative correlation. In C
and D the expression levels of RSAD2 is measured by quantitative realtime PCR and normalized to the expression levels of GAPDH. A. IFN cluster as
described in Figure 1B; B. Selection of 15 genes; C. Biological response after three months, using RSAD2 gene expression levels; D Biological response
after six months using RSAD2 gene expression levels.
doi:10.1371/journal.pone.0001927.g002
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exposure as an explanation for our findings. Different studies have

indicated no or negligible differences in bioavailability between

different treatment preparations and routes of administration

[19,20]. To exclude a possible bias in our results due to differences

in frequency of injection [20,21] we divided our patients in two

groups based on frequency of injection and compared their

biological responses. One group of patients (group A) consists of

patients with weekly treatment (Avonex) and the other group of

patients (group B) who are treated three to four times a week

(Rebif and Betaferon). Comparison of the response rates between

the treatment groups revealed a similar range of response levels

independent of the treatment regimen for both the test cohort

(group A, n = 4 and group B, n = 12) based on microarray data,

and the validation cohort (group A n = 6 and group B n = 24)

based on quantitative PCR data (Figure 3). To provide further

evidence that our results were not influenced by the frequency of

injection we confirmed the negative correlation between the

response rate and baseline IFN response gene expression in the

group of frequently dosed patients (group B: test cohort (n = 12),

R = 20.8361, p = 0.0007; validation cohort (n = 24), R = 20.4513,

p = 0.0269).

Altogether, these results reveal that the observed negative

correlation between baseline IFN signature and the extent of the

biological response is not biased by the treatment regimen.

Confirmation of ex vivo findings by in vitro IFNß
stimulation of PBMC isolated at baseline

To further confirm that the observed inter-individual pharma-

cological differences were a consequence of differential respon-

siveness of peripheral blood cells and to exclude i. blood sampling

error differences because of possible differential time-intervals

between blood sampling and injection of IFNß, and ii. interference

of inhibitory plasma proteins such as neutralizing antibodies, we

performed an in vitro cell stimulation assay. Therefore we used

purified PBMCs isolated prior to treatment, which were cultured

for 4 hours in the presence of recombinant IFNß. To analyze the

in vitro response to IFNß at baseline we measured the expression of

a selected set of three known IFNß response genes and IFNß itself

in resting and IFNß treated PBMCs by quantitative realtime PCR.

The selected IFNß response genes were i. RSAD2, which showed

the most significant correlation of biological response versus

Figure 3. Comparative analysis between different treatment regimens. Comparison of biological response of Avonex treated patients and
Betaferon or Rebif treated patients. A. Average biological response using the set of 15 IFN-induced genes in the test group of 16 RRMS patients; B.
Biological response using PCR based gene expression levels for RSAD2 in the second independent validation group of 30 RRMS patients.
doi:10.1371/journal.pone.0001927.g003

Table 3. Correlation between baseline and therapy induced
(ratio) expression levels measured at single gene level

Symbol Accession number p value R value

RSAD2 NM_080657 0.0011 20.7983

IFIT1 NM_001548 0.0004 20.7746

MX1 NM_002462 0.0006 20.7619

ISG15 NM_005101 0.0008 20.7532

IMAGE:1926927 AI347124 0.0026 20.7168

EPSTI1 NM_001002264 0.0059 20.7162

Transcribed locus Hs.552346 0.0038 20.6977

IRF7 NM_004031 0.0029 20.6925

IMAGE:545138 59EST AA075776; 39EST
AA075725

0.0065 20.6881

LY6E NM_002346 0.0035 20.6834

OAS1 NM_016816 0.0051 20.6822

OAS3 NM_006187 0.0076 20.6787

IMAGE:504372 AA142842 0.0087 20.6707

SERPING1 NM_000062 0.0064 20.6688

Transcribed locus Hs.97872 0.0047 20.6677

IFI44L NM_006820 0.0196 20.6353

Transcribed locus Hs.125087 0.0108 20.6175

MT2A NM_005953 0.011 20.6166

TRIM22 NM_006074 0.0118 20.6115

SAMD9L NM_152703 0.0121 20.6102

IMAGE:2562181 = OAS2 NM_002535 0.0203 20.591

OAS2 NM_002535 0.0169 20.5865

DHX58 NM_024119 0.0222 20.5842

PARP12 NM_022750 0.0343 20.5482

TOR1B NM_014506 0.0532 20.4914

IFIT2 NM_001547 0.086 20.4426

RTP4 NM_022147 0.1759 20.369

LGALS3BP NM_005567 0.314 20.279

doi:10.1371/journal.pone.0001927.t003
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baseline at single gene level (Table 3), ii. MxA, which showed a

good negative correlation and is known as a marker of IFN

bioactivity, [22] and iii. STAT1, which is one of the components

important for IFNß signaling. We hypothesized that baseline

expression level of these genes influences subsequent IFNß

signaling upon treatment. We compared the in vitro biological

response of these genes to the mean in vivo biological response of

the selected 15 genes. For all genes a significant correlation was

revealed between the in vitro and in vivo biological response

(Table 4). From these results we concluded that the differential

IFNß responsiveness in MS is a consequence of intrinsic

differences of peripheral blood cells in their responsiveness to

IFNß. Moreover, the consistency between the in vivo and in vitro

response to IFNß provides further evidence to exclude the

involvement of different types and dosages of treatment on the

observed pharmacological differences.

Biological IFN response and clinical parameters
The results described above could point towards a method to

predict responsiveness to IFNß therapy based on baseline

expression levels of IFN-induced genes. In the clinic the response

status of a patient is measured by evaluation of Expanded

Disability Status Scale (EDSS) progression, relapse rate and

disease activity on Magnetic Resonance Imaging (MRI). For the

first patient group (n = 16) EDSS progression, number of steroid

interventions and relapse rate two years before initiation of

treatment were assessed retrospectively and compared to the first

two years after start of treatment. With this limited set of response

criteria no association with the predictive pharmacological gene

set of 15 IFN induced genes could be observed.

Discussion

Our results reveal that RRMS patients show a heterogeneous

pharmacological response to IFNß therapy. In some patients we

demonstrate that administered exogenous IFNß induces functional

activation of the IFN pathway, whereas other patients do not

reveal a functional IFNß response. The latter are characterized by

a biomarker profile reflecting a saturated IFN activation pathway

prior to treatment. Hence the baseline expression of the biomarker

profile reflecting the baseline status of the IFN activity negatively

correlates with the pharmacological effects of IFNß treatment.

This indicates that the baseline expression levels of the selected set

of 15 IFN-induced genes can be used as a predictive marker for

the responsiveness to IFNß treatment.

Thus patients with clinically defined similar disease may have

intrinsic different modes of immune status. These findings make

more evident the complexity of the disease and the relationship to

therapy responsiveness.

Although different regimens of IFNß treatment were used in this

study evidence is available that this does not affect our conclusions.

Firstly, there is accumulating evidence that there is no or little

difference between different types of IFNb in terms of their

biological activity and routes of administration [19,20]. Extent and

duration of clinical and biologic effects were independent of the

route of administration of IFNb. Rebif when given s.c. or i.m. was

found to be bioequivalent to Avonex [23,24]. Moreover, there

were no major differences between the results with IFNb1a and 1b

in the duration of the changes in the pharmacodynamic markers

after the two routes of injection [25,26].

Secondly, we excluded a possible bias in our results due to

frequency of injection by analyzing different treatment groups

separately. No significant differences in the range of biological

response levels between Avonex treated patients and Rebif or

Betaferon treated patients were observed, and selection of the

high-frequently (Rebif and Betaferon) dosed patients by excluding

weekly–treated (Avonex) patients from our analyses still resulted in

a negative correlation between baseline IFN levels and biological

response rate.

Thirdly, in the present study we show that the observed negative

correlation between biological response and baseline levels of IFN

induced genes is consistently observed over time, at one, three and

six months after start of the therapy.

Finally, we showed that response-rates of in vitro stimulated

PBMC isolated prior to treatment are consistent with those of the

ex vivo results. These results convincingly supported the conclusion

that the in vivo biological response is independent of differences in

treatment regimens and interfering serum proteins such as

neutralizing antibodies (Nabs).

Hence, we concluded that the inter-individual variation in

pharmacological response to IFNß therapy is an intrinsic property

of the peripheral blood cell compartment.

Several investigators have recently reported on transcription

based responses to IFNß in MS. Baranzini and colleagues [27]

used a pre-selected set of 70 genes and reported that (un)supervised

two-way hierarchical clustering does not reveal significantly

differential expressed genes between responders and non-respond-

ers. Using quadratic discriminant analysis-based integrated

Bayesian inference system they found a gene triplet consisting of

apoptosis-related genes as best predictive for good responder

versus poor responder classification. Most of the 70 genes they

selected are represented on our microarray but we didn’t observe a

difference for these genes using a gene-by-gene approach.

However, the majority of genes that we found as predictive for

responsiveness using an open survey approach were not present in

the gene set selected by Baranzini and colleagues and therefore not

identified in their study. A careful comparison between the

different IFNb pharmacogenomics studies [28,29] learns that

there is consistency between these reports and our data with

respect to the heterogeneity of the IFNb response. Although not

explicitly mentioned in these reports, we learned that they

contained evidence for inter-individual differences in response to

IFNb. Overall, despite basic differences in the designs, we confirm

and extend the trends observed in these reports with respect to the

heterogeneity in treatment response rates. In addition, our paired

analysis method provides an ideal approach for a patient centric

mode of data analysis and discloses significant differences in the

expression of an IFN driven response gene set at baseline in

relation to the pharmacological response. Our findings provide a

perfect explanation for the inter-individual variation in the

pharmacological responses mentioned above.

Our data based on paired analysis at the individual patient level

clearly show that there is evidence for differences in IFNß

Table 4. Correlation between biological responses of single
IFN-induced genes measured in vitro and mean biological
response (using 15 genes) measured in vivo

Genes p value R value

RSAD2 0.0012 0.7518

MxA 0.0280 0.6064

STAT1 0.0100 0.6614

IFNß 0.0036 0.7675

doi:10.1371/journal.pone.0001927.t004
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responsiveness between patients with MS. The inter-individual

differences in IFNß responsiveness may be the result of genetic

variation in the IFNß biology.[2,30] Feng and colleagues [31]

showed that IFN-induced levels of mRNA and protein for IFN-

regulatory genes (IRF-1 and IRF-2) and antiviral genes (MxA and

29, 59-OAS) were significantly lower in PBMC from patients with

clinically active MS compared to normal controls. They

demonstrated that clinical disease activity was related to decreased

phosphorylation of Ser-STAT-1 and proposed that this could be a

mechanism explaining a defective IFN response. Whereas these

studies provided insight into the IFN responsiveness in terms of a

group average the issue of inter-individual heterogeneity was not

addressed. Other mechanisms that could account for differential

responsiveness to IFNß include variation in activity of inhibitory

transcription factors. Evidence exists that crosstalk with other

cytokine-activated pathways, could cause tachyphylaxis to type I

IFNs. Although type I IFNs have an essential function in

mediating innate immune responses against viruses, they may

already be produced at very low levels in the absence of viral

infections [32] in serum of a subset of MS patients. Since e.g. IFNa
is known to desensitize further responses to IFNs, the presence of

low endogenous IFNs could block IFNß-induced signals.[33,34]

This explorative pilot study suggests a predictive value of

baseline gene expression levels of IFN-induced genes. Since the

molecular differences most likely reflect distinct pathophysiologic

processes underlying disease, it is tempting to speculate that these

differences will predict individual responsiveness to treatment.

Clinical response to IFNß may be determined by disability

progression and relapse rate. Because MS is a chronic disease with

an unpredictable clinical course it remains difficult to assess

clinical responder status at an individual patient level. A more

objective method for determining disease activity is the measure-

ment of MRI parameters, e.g. CNS atrophy measures or T1

gadolinium enhancing or the appearance of new T2 le-

sions.[3,35,36] However, using these methods it is still extremely

difficult to precisely define the state of responsiveness after a short

period of treatment or preferably before start of the treatment.

These facts emphasize the importance of finding pharmacological

predictors and/or determinants for treatment responsiveness. We

realize that the design of this study does not allow any firm

conclusions to be drawn concerning the clinical parameters

associated with the molecular phenotype.

Hence, further studies in a large cohort of patients starting IFNß

treatment are needed to validate and further investigate the

predictive value of baseline IFN response gene expression levels

and it is of great importance to find a correlation between clinical

parameters and the biological IFN response. In future, molecular

stratification of patients at baseline may be helpful in assembling

homogeneous populations of patients, which will improve the

likelihood of observing drug efficacy in clinical trials.

Supporting Information

Table S1 Gene details for the cluster of 28 genes shown in

figure 1B

Found at: doi:10.1371/journal.pone.0001927.s001 (0.05 MB

DOC)
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