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Abstract

Our understanding of dynamic cellular processes has been greatly enhanced by rapid advances in quantitative fluorescence
microscopy. Imaging single cells has emphasized the prevalence of phenomena that can be difficult to infer from
population measurements, such as all-or-none cellular decisions, cell-to-cell variability, and oscillations. Examination of these
phenomena requires segmenting and tracking individual cells over long periods of time. However, accurate segmentation
and tracking of cells is difficult and is often the rate-limiting step in an experimental pipeline. Here, we present an algorithm
that accomplishes fully automated segmentation and tracking of budding yeast cells within growing colonies. The
algorithm incorporates prior information of yeast-specific traits, such as immobility and growth rate, to segment an image
using a set of threshold values rather than one specific optimized threshold. Results from the entire set of thresholds are
then used to perform a robust final segmentation.
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Introduction

The analysis of behavior in individual cells is essential to

understand cellular processes subject to large cell-to-cell variations.

Bulk measurements and cell synchronization methods are

insufficient to study such processes because a lack of synchrony

masks oscillations, all-or-none effects, sharp transitions, and other

dynamic processes operating within individual cells

[1,2,3,4,5,6,7,8]. The vast majority of all single cell studies

ultimately relies on the ability to accurately segment and track

cells. We here refer to segmentation as the process of separating

regions of interest (cells) from background (non-cells) in an image

[9]. Moreover, high quality data for studying dynamic processes

can only be obtained if segmentation is coupled with the ability to

track cells, i.e., to correctly identify the same cell over consecutive

time points in an experiment.

Segmentation of individual cells relies on the ability to detect

cell boundaries and classify all pixels in a given image as ‘cell’ or

‘non-cell’ pixels. This differentiation is accomplished by specifying

a threshold or a threshold function. There are several ways in

which this threshold can be determined, ranging from simpler

intensity based thresholds to usage of more complex functions such

as graphical models [10,11], pattern recognition [12], deformable

templates [13], cell contours [14] or the watershed algorithm [15].

Despite these efforts, we still lack a unified approach that robustly

detects all cells for all time points.

This is a major challenge in image analysis as the intensity of

areas to be designated as ‘cell’ can vary significantly through time

and even within the same cell due to varying cellular morphol-

ogies, imaging artifacts, and organelles. Moreover, most cells do

not have an easily defined and constant geometrical form;

therefore, fitting predefined objects on cells does not work in

most cases. Besides, segmentation has to be very accurate for

successful analyses of time-lapse microscopy, since the overall

time-series segmentation success rate decreases geometrically with

the length of the time series. For example, the probability of

successfully tracking a cell for 100 time-points given a 99%

segmentation success rate is only ,37% ( = 0.99100 from assuming

an identical and independently distributed segmentation proba-

bility).

To address these image processing problems for the widely-used

model organism Saccharomyces cerevisiae (budding yeast), we devel-

oped a novel segmentation and tracking algorithm. Budding yeast

is ideal for single cell time-lapse imaging studies because it

combines considerable variation in key cell characteristics (protein

levels and expression, cell size, shape, and age), with a short

generation time and immobility [16,17,18]. So far, considerable

progress has been made towards solving the yeast segmentation

problem by refining algorithms for segmentation

[10,11,13,15,19,20,21,22,23], as well as for tracking

[11,20,22,23]. Additional algorithms exist to characterize mor-

phology [24,25] and protein localization [12,19,20,26]. However,

we still lack a robust approach for the segmentation and tracking

of budding yeast that is easy to implement and computationally

efficient.

More specifically, our algorithm is based on the idea that

summing multiple repeated segmentations of the same phase

contrast image using sequentially varying thresholds is more robust

than any algorithm based on a sole potentially optimized

threshold. Such a strategy generates an unsupervised, and accurate

final segmentation. We show that this method segments and tracks
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Figure 1. Seeding and initial selection: (A) Open the last image of the time-series to segment and track. An example cell is selected to
build the initial seed (red arrow). (B) A watershed algorithm is applied to the image using a manually set threshold between 0 and 255 (threshold
used here = 65). (C) Defects in the watershed are corrected manually. Subsections of the cell may be joined as indicated by the yellow arrow, wheras
non-cell material may be removed as indicated by the pink arrow. Compare with the boxed region in (B). (D) The program automatically fills holes
and one-pixel ‘cracks’ to complete the seed. (E) Final image for the entire field of view with 16 seeded cells inducated by their color.
doi:10.1371/journal.pone.0057970.g001
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cells with different morphologies as well as cells within dense

colonies with very high accuracy. We also present an example of

how this algorithm can be used to determine specific cell cycle

phases and dynamics. Our algorithm is fully automated following

an initial manual seeding of the cells to be tracked. Moreover, the

algorithm is easy to implement, and we have constructed a

graphical user interface (GUI) to facilitate its application (see

Supporting Information S1).

Results

Algorithm
We here present the main outline of the algorithm. For a

detailed step-by-step description of the algorithm see materials and

methods section ‘algorithm outline’ and figures 1, 2, 3, and 4.

Before segmentation, images are typically processed in one or

more steps such as filtering and rescaling, and then processed by a

threshold function that differentiates ‘cell’ regions from ‘non-cell’

regions. The procedure of generating such a threshold function

has proven a major challenge, as a specific threshold that might

work for a given cell at some points in time and space might not

necessarily work at other times and/or for other cells. In fact, it is

not even certain that we can find a good threshold for any given

cell since the intensity of boundaries and intercellular regions

might vary significantly. Moreover, depending on the complexity

of the threshold and pre-processing methods, the segmentation

may take excessive processor time, be specific for each imaging

pipeline, and require manual input.

To overcome these difficulties, we developed an algorithm that

uses all possible thresholds to segment an image. Next, the

algorithm uses a ‘plurality vote’ or sum of all segmentations to

achieve a robust highly accurate final segmentation.

The algorithm is divided into three parts: First, cells are selected

(seeded) semi-manually from the last time frame. Next, the seeds

are segmented and tracked backwards in time, and, finally, the

data obtained from the experiment are extracted and analyzed.

Segmenting backwards in time provides the following advan-

tages: (i) As all cells are selected in the last frame, no subroutines

are needed to identify newborn cells (buds). (ii) As all cells are

present at the last time point, backward segmentation allows for

the selection of only the cells of interest, avoiding uninteresting

(e.g., dead or newborn) cells. (iii) Since we begin segmenting cells at

their presumed maximal size, we can set a bound on the upper cell

size through the movie to prevent ‘out of control growth’

missegregations. We note that our algorithm relies on budding

yeast not moving significantly between frames and requires that

the cell growth rate is significantly smaller than the sampling

frequency.

Figure 2. Flowchart of the image analysis algorithm (see text).
doi:10.1371/journal.pone.0057970.g002
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Cell Seeding
Manual selection of all cells of interest in the last time point of

interest (seeding) is required to initiate the algorithm. Any frame

can be chosen as the last time point of interest. Note that we will

use the ‘first time point’ to denote the first point we segment even

though this is often the last time point in the experiment (t = tmax).

Similarly, the term ‘last time point’ refers to the last time point we

segment, which most often is the first time point in the experiment

(t = 0).

To select cells of interest, we segment the first time point semi-

manually using a watershed algorithm with an adjustable

threshold. Manual correction ensures accurate seeding and is

facilitated by a graphical user interface (Figure 1a,b). The outcome

of the seeding step is a seed image with all selected cells numbered

from left to right (Figure 1c,d,e).

Cell Segmentation and Tracking
Once the seed has been selected, cells are segmented one by one

and tracked backwards through time. To segment images, we

apply a watershed algorithm to all possible thresholds in the image

(one for each possible level of brightness, here ranging from 0 to

255 as we are using 8bit images), and sum up the results

(Figure 3a–d). The resulting composite image (Figure 3e) where

each pixel has a value between 0 (segmented for no threshold) to

255 (segmented for all thresholds) (cf Figure3b and 4c, see also

steps 1–10 in the algorithm description in the materials and

methods sections). This approach resembles statistical bagging,

where data is resampled and weighted to achieve a more robust

model for estimation [27]. The difference is that the composite

image/dataset is here generated systematically using all possible

thresholds instead of by bootstrapping.

After the generation of the final composite image it is processed

in two steps before segmentation. First, we calculate the Euclidean

distance of a pixel to the nearest pixel in the previously segmented

image and subtract it from the composite score image to penalize

cellular movements (figure 4a,b). Next, the original phase image is

subtracted from the composite score image (figure 4c). This

prevents boundary regions (cf bright white in Figure 3a) from

being scored as ‘cell’ (see also steps 11–13 in algorithm description

in the materials and methods sections).

Next, the final composite image is segmented using two

thresholds: one permissive for regions classified as ‘cell’ in the

previous time-point, and one restrictive for regions that were not

classified as ‘cell’ (steps 14–20 in algorithm description;

Figure 4d,e). This approach has two main benefits: First, it

balances the need to segment the entire cell with the natural

shrinkage of the cell (as the segmentation runs backwards in time

growing cells tend to get smaller); Second, it automatically tracks

the cell. Note that these two thresholds are typically the only ones

changed from experiment to experiment and they are easily

adjusted upon inspection and do not require complicated

optimization procedures. Once a cell has been segmented, the

segmentation is stored and used as a seed for the next time point

(steps 21–22 in the algorithm).

Algorithm Performance
To test the performance of our algorithm, we used a

commercially available microfluidics system to grow budding

Figure 3. Segmentation. (A) A phase image region around the previously selected seed is opened. (B) The phase image is transformed into a series
of binary images by applying thresholds such that any pixel that is lower than the threshold is assigned as ‘putative cell’ (red regions) or ‘non-cell’
(blue regions). In total 256 ( = 28) thresholds are applied corresponsing to all possible values the phase image can take (example thresholds 2, 50 and
130 are shown here). (C) The watershed algorithm is applied to all thresholded images from (B). The result is a set of distinct regions. Each region is
compared with the seed (inset) and the phase image and classified as ‘cell’ or ‘non-cell’. (D). All ‘cell’ areas, from all thresholds, are summed together
(E). The composite image allows for more accurate segmentation than an optimized single threshold.
doi:10.1371/journal.pone.0057970.g003

Figure 4. Final image thresholding. (A,B) First, we use the seed image to calcuate the euclidean distance from each non-cell pixel to the nearest
cell-pixel and subtract it from the composite image (cf Figure 3e). This penalizes cell movements between frames. (C) The phase image multiplied by
a constant is subtracted from the distance transformed image shown in B. (D) The intensity of each pixel from (C) is normalized and compared to a
pair of thresholds. There are two conditions under which a pixel is assigned as part of the cell: (i) If the value is higher than the low threshold AND
present in the seed or (ii) If the value is higher than the high threshold regardless of wheather the pixel is present in the seed. (E) All pixels fulfilling the
two conditions are included in the final segmentation. Note that by allowing for ‘new’ pixels to be included in the cell, albeit at a higher threshold, we
fulfill the need to balance changes in cell volume and slight cell movements with robust segmentation.
doi:10.1371/journal.pone.0057970.g004

Algorithm for Yeast Segmentation and Tracking

PLOS ONE | www.plosone.org 5 March 2013 | Volume 8 | Issue 3 | e57970



yeast for 300 minutes in synthetic complete media containing 2%

glucose [28]. Images were taken every three minutes. Next, phase

images were exported and subsequently segmented and tracked

using our algorithm. To avoid selection bias, we selected all

available cells present in the last frame of the movie (first time

point for the algorithm; t = 300 min). In total, 263 cells were

selected in three fields of view, and 11727 segmentations were

performed. On average, cells were present in the movie for 134

minutes or ,45 frames with a standard deviation of 93 minutes

(many cells are born near the end of the movie; Figure 5a). In total,

segmentation took approximately 300 minutes corresponding to

approximately 40 segmentations per minute using a computer

with an Intel(R) core(TM) Quad CPU at 2.83 GHz and 4.00GB

RAM running on a 32-bit windows vista operating system. As

experiment itself took 300 minutes to perform, our algorithm can

segment data in real time on a standard desktop computer.

To determine the quality of the segmentation, all cells were

inspected manually and scored as being either properly segment-

ed, having a minor error or having a major error (Figure 5). We

defined a cell as ‘properly segmented’ if over 95% of its area was

segmented correctly. We scored cells as having a ‘minor error’ if

90–95% of the area was correctly segmented and as having a

‘major error’ if less than 90% of the cell area was correctly

segmented. The vast majority of all segmentation errors were

classed as minor. Notably, we observed that major errors only

occurred as a result of unexpected cell movements (Figure 5b,c;

Table1; Movies S1, S2, S3). In total, 83% of all cells were

segmented without any errors throughout the movie, and our error

rate (major or minor) was less than 1 in 140 (Table 1).

To test the effectiveness of the segmentation algorithm when

faced with different cell shapes, we took advantage of the fact that

yeast cells exposed to low concentrations of mating pheromone (a-

factor), exhibit a pseudohyphal-like morphology characterized by

elongated, polarized growth [29]. After 90 minutes, growing cells

were exposed to a brief pulse (30 minutes) of high (240 nM) a-

factor concentration, followed by a long period (450 minutes) of

low (3 nM) a-factor concentration. We then applied our algorithm

to segment and track the cells using the same metric as above

(Figure 5d; Movie S4). As expected, the more irregular shape of

the pheromone-arrested cells lowered the performance of the

algorithm (see Table1). However, the performance remained

acceptable as almost 90% of all segmentation events were classified

as without error. In conclusion, this shows that our algorithm

performs well on cells with several different morphologies.

Extracting Features
The purpose of segmentation and tracking is to extract

information about some particular property through time (cf step

21 in the algorithm section). Whereas the segmented phase image

allows for the extraction of morphological features such as cell

area, minor/major axis, circumference and center point

(Figure 6a–c), fluorescent markers can be used to determine

dynamics of proteins of interest. To demonstrate the applicability

of our algorithm, we investigated cells expressing a C-terminal

GFP fusion of the transcriptional inhibitor Whi5 from the

endogenous locus. Whi5 is exported from the nucleus during the

cell cycle phase G1 (prior to DNA replication) and imported again

at the end of the cell cycle, making it an excellent reporter of cell

cycle dynamics (Figure 6d,e) [1,30,31]. Cells were grown, tracked,

and segmented, and a 2D Gaussian function was fit around the

peak-GFP signal to determine the dynamics of Whi5-GFP. For a

practical example of how this method can be used to characterize

cell cycle transitions, see [1].

Figure 5. Performance. (A) Sorted cell traces for 263 example cells.
All cells are present at the first (tmax = 300 min) segmented time point
because the tracking and segmentation runs backwards in time. (B)
Example of a minor segmentation error is indicated by the red arrow.
Note that these errors are identified manually and represent cells whose
area is segmented between 90% and 95% correctly. (C) Example of a
major segmentation error, corresponding to a cell whose area is
segmented less than 90% correctly as shown in the right panel. Note
that the vast majority of major segmentation errors stem from
unexpected cell movement. As seen here, the erroneously segmented
cell moves significantly between the frames shown in the left and right
panels. (D) Sorted cell traces for cells arrested in mating pheromone,
colors indicate segmentation errors as in ‘A’.
doi:10.1371/journal.pone.0057970.g005
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Out-of-focus Correction
Even with the use of a hardware-based automatic focus tool

such as Definite Focus (Zeiss, Germany), the cell nucleus may still

be out of the plane of focus due its movement (Figure 6f). To

correct for variation in a nuclear (e.g., Whi5-GFP) signal that are

caused by movement of the nucleus relative to the plane of focus, it

is possible to use a more constant-brightness nuclear marker as a

standard for comparison. Here, we used a histone (Htb2) fused

with a red fluorescent protein (mCherry) expressed from the

endogenous locus to identify time periods with a consistent

decrease in the mean nuclear intensity. Since the mean nuclear

intensity, as measured by the Htb2-mCherry signal per nuclear

area, is supposed to only increase during S-phase, we assume that,

after smoothing, any decrease in the mean nuclear intensity,

especially if accompanied by a decrease in Whi5-GFP, indicates an

out-of-focus nucleus in G1. In these sections, we correct the Whi5

signal by increasing it in direct proportion to the fractional

decrease in the mean nuclear intensity of the Htb2-mCherry signal

in the red channel (Figure 6g).

To verify this approach in general, and the use of directly

proportional correction in particular, we applied this algorithm to

analyze pheromone-arrested cells. Arrested cells are ideal for

testing because we expect them to maintain a high level of nuclear

Whi5 [reference doncic ‘11] so that variation in the Whi5 signal

likely due to nuclear movement. Indeed, when we optimized the

coefficient of proportionality to minimize variation in Whi5 levels

for individual cells, we have found that the direct proportionality (a

coefficient of 1) was close to, and not statistically different from,

optimal. We therefore conclude that direct proportionality can be

used to correct nuclear signals from distortion due to nuclear

movement relative to the plane of focus.

Conclusion
Recent advances in the automation of time-lapse microscopy

and microfluidics greatly facilitate the generation of high quality

single-cell data. However, analysis of such data relies on accurate

cell segmentation and tracking over many frames. We here present

an accurate and easy-to-implement algorithm for automatically

segmenting budding yeast phase images over long time-courses.

The main principle underlying our algorithm is the application

and addition of all possible segmentation thresholds, which results

in a very accurate and robust segmentation.

The fundamental challenge when segmenting any object is to

segregate between the object of interest and the background.

Whereas most segmentation algorithms find an optimal threshold

given some segregation method (e.g., filtering, edge detection,

watershedding) we here use all thresholds using one algorithm:

watershedding. This makes the segmentation very accurate,

because we capture much more information in the ensemble than

could be captured in any one segmentation event. Moreover,

although the majority of cells can be segmented with a single

optimized threshold, the optimized threshold is rarely able to

segment all of the cells, all of the time. Thus, ‘optimal threshold’

methods will necessarily be more error prone as more information

is lost when the single threshold is applied.

Our algorithm has several further benefits: It does not require

that cells take any particular geometric shape and can therefore

segment hyperpolarized and shmooing cells as well as round and

oblong ones. The algorithm allows for manual selection of cells in

the last time frame, so no time is spent on out of focus cells, buds,

dead cells or other uninteresting objects. Our algorithm can

segment arbitrarily large colonies, as it segments and tracks cells

one-by-one backwards through time.

As a proof of concept, we have also shown how our algorithm

can be used as a basis for extracting quantitative dynamic traces of

a fluorescent protein translocated from the nucleus in a cell cycle

dependent manner. Accuracy in increased when this approach is

combined with a subroutine that corrects for nuclear drift. High

quality quantification of fluorescent proteins in single cells can

later be used to elucidate more complex cellular behavior such as

transcriptional dynamics, size control and cell fate decisions

[1,5,32]. Notably, our algorithm is modular, so that segmentation

and tracking (phase) is done by separate subroutines from

fluorescence measurement. It is therefore easy to add custom

subroutines to detect and quantify specific fluorescent proteins of

interest.

The algorithm described here is not limited to yeast phase

images because preliminary tests suggest that it can also be applied

to bright-field yeast time series and slow moving mammalian cells

with distinct boundaries (AD, unpublished data). However, such

applications will require extensive modification of the implemen-

tation described here, and are beyond the scope of this paper.

Many cellular processes are governed by all-or-none effects,

memory, and oscillations. Because these phenomena are masked

in bulk assays, their study requires high quality single-cell data. As

time-lapse microscopy can be performed by off-the-shelf instru-

mentation, the bottleneck in the generation of high quality single

cell data has become image processing. Here, we applied the

simple principle of democratically summing up segmentations for

all possible thresholds to develop an efficient algorithm for

segmenting and tracking yeast phase images. The simplicity of

the underlying idea suggests that this approach could be used to

improve single-cell studies in a variety of contexts.

Table 1. Algorithm performance on cycling cells and cells exposed to mating pheromone (see Figure 5 and text).

Segmentation statistics Cycling cells Low a-factor

Total number of segmented cells 263 40

Mean segmented frames per cell 44 140

Total number of segmentation events 11727 5657

Fraction of accurate segmentations 98.6% 88.1%

Fraction of minor segmentation errors 1.3% 4.2%

Fraction of major segmentation errors 0.1% 7.7%

Fraction of individual time-series without any errors 83.3% 37.5%

doi:10.1371/journal.pone.0057970.t001
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Figure 6. Example of fluorescence and morphological signal extraction. (A–C) Morphological parameters, here major/minor axis and cell
area are calculated using our algorithm (the same colors represent the same cells in A–C). (D) Composite phase and fluorescence images of cells
containing Whi5-GFP and Htb2-mCherry. (E) Example cell trace of nuclear Whi5-GFP. The nuclear Whi5-GFP is calcualted by fitting a 2D Gaussian to
the brightest point for each cell after applying an averageing filter and assigning the brightest 25% as the nucleus. (F) Example of a cell whose
nucleus is initially in focus at the 240th minute, but subsequently goes out of focus. (G) Example trace of observed and corrected nuclear Whi5-GFP
for the cell shown in (F). Pheromone was added at the 153rd minute, and the cell shown is shmooing at the 390th minute. All Whi5-GFP is expected to
be nuclear during pheromone arrest, supporting our use of the corrected (red) trace over the uncorrrected (green) trace, which drops significantly.
doi:10.1371/journal.pone.0057970.g006
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Materials and Methods

Algorithm Outline
To facilitate the implementation of our algorithm for segment-

ing and tracking cells, we here present a point-by-point description

accompanied by a graphical representation (algorithm flowchart;

Figure 2, also note that variable names are written in italics). To

users not familiar with programming we have also provided a user

friendly GUI that implements our algorithm (see Supporting

Information S1 for more details).

1. Set current cell number to 1.

2. Set current time-point to first time point (tmax).

3. For the current cell and current time-point, check if the cell still

exists against a list of all cells (all cells always exist in the first time

point).

4. Set the current segmentation threshold to 0 and let the current phase

image be a fixed sub-region of the phase image for the current

time-point around the location of the cell for the previous time-

point (the seed) (Figure 3a). Create an empty image of the same

dimensions to be the next segmentation image.

5. Increase the current segmentation threshold by 1. Note that this

threshold is related to the intensity of the pixels in the phase

image we are about to segment. We use uint8 images where

each pixel can take 28 values ranging from 0 (black) to 255

(white).

6. Use the current segmentation threshold to divide the current phase image

into a binary image of putative ‘cell’ and ‘no-cell’ areas. Pixels

in the current phase image below the current segmentation threshold

are considered to potentially belong to the ‘cell’ category

(Figure 3b).

7. Segment the binary image from step 6 using the watershed

algorithm. We use the Ferdinand Meyer algorithm via the

MATLAB watershed function [33]. Briefly, the watershed

algorithm separates the continuous cell or no-cell regions from

step 6 into distinct sub-regions (Figure 3c). In practice, this is

accomplished by calculating the distance transform of the

complement of the binary image defined in step 6 and

assigning any pixels that do not belong to any object as minus

infinity. Thus a ‘topographic map’ is created for the object to

which the watershed algorithm can be applied.

8. To determine whether any such sub-region is part of the cell,

score each sub-region as 1 (cell) if three criteria are satisfied: (i)

the area overlaps more than 40% with the seed image; (ii) less

than 33% of the area consists of non-cell regions as classified in

step 6; and (iii) no part of the region is located at the image

border. Otherwise, score the sub-region as 0 (no cell). Repeat

this for all sub-regions for this cell for the current segmentation

threshold (Figure 3d).

9. Add the image from step 8, consisting of the scored watershed

regions, to the next segmentation image.

10. Increase the current segmentation threshold by 1 and repeat steps

6 through 9 until the current segmentation threshold reaches 256.

The next segmentation image will thus be a composite image

whose pixels are all between 0 and 256 depending on how

many watershed segmentations scored it as ‘cell’ (Figure 3e).

11. To penalize cell movements perform a Euclidean distance

transformation on the seed image to calculate the distance

from each ‘non-cell’ pixel to a ‘cell’ pixel. Next, subtract this

image from the next segmentation image (Figure 4a,b).

12. To penalize regions with high phase intensity, such as cell

boundaries (white regions in Figure 1a), rescale the current

phase image and subtract it from the next segmentation image. Let

the resulting image be the next segmentation image (Figure 4c).

13. After the transformations in steps 11 and 12, the

segmentation scores are normalized by calculating the 90th

percentile of the distribution of values for the next segmentation

image. This value is called the normalized segmentation score.

14. Identify pixels from the next segmentation image that are above

a certain fraction of the normalized segmentation score and are

present in the seed (this fraction is typically set between 0.2

to 0.4 as we have found these values to work well). This

allows for easier acceptance of regions that were previously

scored as ‘cell’ in the preceding segmented time point

(Figure 4d; upper panels).

15. Identify pixels from the next segmentation image that are above

a specified fraction of the normalized segmentation score (this

fraction is normally set 0.2 higher than the threshold in step

14). This allows for the incorporation of previously ‘no-cell’

areas if their score is high enough (Figure 4d; lower panels).

16. Add the results from step 14 and 15 to get a binary image of

the putative segmentation (Figure 4e).

17. Compare the area for the putative segmentation with the seed

area. If the area has grown by more than a specified fraction

(typically set between 5% and 10%), increase the thresholds

used in steps 14 and 15 by 0.2 and the repeat these two

steps. Note that this threshold increase is to prevent

uncontrolled growth and is only applied once.

18. Confirm that the putative segmentation consists of one

continuous object, which is larger than the minimal allowed

cell area (typically 10 pixels). If this condition is not fulfilled,

retain the largest sub-object as the new putative segmentation

and discard all other objects.

19. Next, terminate the segmentation for the current cell if at

least one of the following conditions are satisfied: (i) the cell

is smaller than the minimal area; (ii) the cell is larger than

the maximally allowed area (normally 133% of the area of

the largest cell in the initial field of view); or (iii) the increase

of size for the last time-point was more than 50% of its

previous size. When a cell segmentation is terminated it is

marked as non-existing (cf step 3) and its time of

disappearance is recorded (this normally corresponds to its

Table 2. List of strains.

Strain name Genotype source

AD4-47c MATa, cln3::LEU2, bar1::URA3 trp1::TRP1-MET3pr-CLN2 WHI5-GFP-kanMX, HTB2-
mCherry-spHIS5

This study

JS136-3c MATa bar1::URA3 trp1::TRP1-MET3pr-CLN2 WHI5-GFP-kanMX HTB2-mCherry-spHIS5 [1]

All strains used are congenic with W303.
doi:10.1371/journal.pone.0057970.t002
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birth, if condition (i) is met). Next, increase the cell number by

one if it is less than the maximum cell number and return to step

2 to segment the next cell of interest.

20. If the segmentation has not been terminated, then save the

putative segmentation as the next seed for this cell.

21. To extract desired information from the segmented cell, call

a specific routine to quantify fluorescence and/or morphol-

ogy. The specific routine called will depend on the type of

signal one is trying to extract. Above, we presented an

example of the quantification of the nuclear concentration

of a fluorescent protein (see also Figure S4 and Supporting

Information S1).

22. If there are more time-points to segment, i.e., current time-

point.last time point (which is usually 1) decrease current time

point by 1 and start over at step 4. Alternatively, if the last

time-point was reached and the cell number equals the total

number of cells, terminate the program. Otherwise increase cell

number by one, return to step 2 and continue until all cells

are segmented.

Cell Culture and Microscopy
Segmentation requires that the objects to be segmented remain

visible throughout the duration of the experiment. In the case of

yeast, this requires that growing colonies be restricted to two

dimensions. We used a commercially available flowcell from

Cellasic to grow the cells (Table 2) at a temperature of 30uC while

being exposed to constantly flowing SCD (synthetic complete

media with 2% glucose) at a flow rate of 5psi (,34 KPa).

Images were taken every three minutes with a Zeiss Axio

Observer Z1 microscope using an automated stage and a plan-apo

63X/1.4NA oil immersion objective. Zeiss Definite Focus

hardware was used for automatic focusing. The WHI5-GFP strain

was exposed for 100 ms using a Colibri LED 470 module and the

HTB2-mCherry strain was exposed using the Colibri 540-80 LED

module, both at 25% power.

GUI
See Supporting Information S1, Figures S1, S2, S3 and tables

S1, S2 for instructions regarding the GUI.

Supporting Information

Movie S1 See main text for details.
(AVI)

Movie S2 See main text for details.
(AVI)

Movie S3 See main text for details.
(AVI)

Movie S4 See main text for details.
(AVI)

Supporting Information S1.

(PDF)
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