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Abstract

Genome sequencing continues to be a rapidly evolving technology, yet most downstream aspects of genome annotation
pipelines remain relatively stable or are even being abandoned. The annotation process is now performed almost
exclusively in an automated fashion to balance the large number of sequences generated. One possible way of reducing
errors inherent to automated computational annotations is to apply data from omics measurements (i.e. transcriptional and
proteomic) to the un-annotated genome with a proteogenomic-based approach. Here, the concept of annotation
refinement has been extended to include a comparative assessment of genomes across closely related species.
Transcriptomic and proteomic data derived from highly similar pathogenic Yersiniae (Y. pestis CO92, Y. pestis Pestoides F,
and Y. pseudotuberculosis PB1/+) was used to demonstrate a comprehensive comparative omic-based annotation
methodology. Peptide and oligo measurements experimentally validated the expression of nearly 40% of each strain’s
predicted proteome and revealed the identification of 28 novel and 68 incorrect (i.e., observed frameshifts, extended start
sites, and translated pseudogenes) protein-coding sequences within the three current genome annotations. Gene loss is
presumed to play a major role in Y. pestis acquiring its niche as a virulent pathogen, thus the discovery of many translated
pseudogenes, including the insertion-ablated argD, underscores a need for functional analyses to investigate hypotheses
related to divergence. Refinements included the discovery of a seemingly essential ribosomal protein, several virulence-
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associated factors, a transcriptional regulator, and many hypothetical proteins that were missed during annotation.
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Introduction

The vast majority of global microarray and proteomic studies
generate thousands of measurements representative of a system
under a specific set of treatment or growth conditions. Interpre-
tation of this high-throughput data is usually highly dependent on
protein-coding genes being properly annotated within an organ-
ism’s genome, making genome annotation a critical component of
modern biological research. The rapid pace of technological
Improvement in genome sequencing has triggered the generation
of genomic sequences at a pace previously inconceivable [1]. It
took the coordination of countless people from both public and
private sectors nearly a decade to sequence the first draft of the
human genome [2,3], yet Pushkarev et al. recently achieved this
feat in several weeks on a single instrument with a single operator
for under $50,000 [4]. Advances to the genome annotation process
appear modest by comparison. Computational tools for high-
throughput data are being steadily introduced [3], but many
challenges still exist (e.g., a lack of gold-standard gene models for
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training the ‘exotic’ organisms that are the focus of many second-
generation sequencing projects) [6]. Curation by knowledgeable
scientists remains an essential component to complement and
enhance computational work [7].

An understanding of the genome annotation process provides
insight into how experimental measurements can be used to
improve both the process itself and the extraction of biological
knowledge. Automated annotation efforts reduce the burden of
manual curation by employing algorithms to predict transcrip-
tional and translational start and stop sites, promoter regions,
protein coding regions, and untranslated regions, among other
genetic features [8]. However, even for prokaryotes which are
inherently less complex than eukaryotes in terms of gene structure,
the reliability of computational predictions remains imperfect. FFor
example, de Souza and colleagues analyzed a Mpycobacterium
tuberculosts culture filtrate sample to examine discrepancies between
two established gene prediction methods. Even with the reduced
complexity of a culture filtrate (~10% of the predicted M.
tuberculosis proteome), nearly 2% of the identified peptides were
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specific to only one of the two automated annotations suggesting
that a substantial number of missed genes are present in the
genome-wide annotation [9]. Bakke et al. compared annotations
of the entire expressed proteome of the archean Halorhabdus
utahensis using three different gene-calling platforms [10]. The
authors found that less than half of the nearly 3000 predicted
protein-coding regions were consistent across the automatic
annotations, supporting the speculation that significant deviations
in gene calling efforts would be revealed in global-scale analyses.

Evidence shows that automated annotations are subject to error,
yet financial constraints lead to most gene predictions being
directly incorporated into databases. Libraries of potential coding
sequences with varying levels of confidence are generated. These
libraries directly influence the quality of high-throughput biolog-
ical studies. For example, microarray chip probe selections are
typically chosen from libraries of predicted protein coding genes.
The absence of a probe targeting a specific nucleotide sequence
does not mean that complementary mRNA is not expressed; it
simply reflects the inherent bias of the microarray design. An
example of error propagation associated with proteomics relates to
databases comprised of candidate proteins, a crux of many
modern experimental proteomic studies. The majority of peptide-
centric proteomic analyses occur by matching, not direct
interpretation, of spectra [11]. Search tools rely on peptide-
matching algorithms to compare experimental MS/MS spectra to
in-silico peptide spectra generated from protein databases. Several
of the unmatched high-quality spectra present in bottom-up
proteomic analyses may be explained by errors in protein
predictions from the genome. Importantly, the same omics
datasets that suffer from incorrect or absent gene assignments
can 1n fact help provide experimental revisions to existing genome
annotations.

The practice of utilizing MS/MS data for genome annotation
refinement was documented as early as 1995 when Yates et al.
introduced the concept of searching a six frame translation of a
nucleotide sequence with tandem MS data [12]. Annotations of a
number of prokaryotic and eukaryotic systems have since been
investigated using this approach, commonly referred to as
proteogenomics, resulting in the validation of predicted genes
and elucidation of annotation errors. Gupta and colleagues
identified 8 novel genes, redefined boundaries for 30 genes, and
observed expression of 13 pseudogenes in Shewanella oneidensis MR-
1 [13]. Similarly, Castellana et al. estimated that 13% of the
Arabidopsis thaliana protein coding genes were incorrect or absent
from the genome annotation [14].

Comparative proteomics can be applied to extrapolate findings
of peptide identifications from a single species to orthologs based
on evolutionary constraints [15,16,17]. This approach allows
researchers to either salvage or increase the confidence of evidence
used for annotation refinement. This is extremely important for
coding sequences that are expressed at low levels, encode short
products, or exhibit poor detection efficiency. Transcriptional
knowledge can also be used for annotation refinement. High
density tiling arrays and RNA sequencing aid in the discovery of
novel genetic features, and while their data alone does not confirm
protein expression, detection provides supporting evidence.
Complementary evidence is indispensable in instances when
proteins are inferred by single peptide identifications, a situation
that is typically insufficient for a protein’s identification. The
greatest potential for annotation refinement should come from
simultaneously merging transcriptomic and proteomic data [18]
with a comparative genomic approach.

We undertook a comparative omics approach to simultaneously
refine the genome annotations of three highly orthologous Yersinia
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strains. The work presented herein extends typical proteogenomic
methodology by incorporating not only peptide measurements,
but also experimental oligo data and sequence comparisons across
strains. Yersinia was chosen as a model in part due to the high
genetic similarity between species possessing dissimilar character-
istics [19,20]. The examined strains were annotated by different
groups of researchers using different methods over several years
[21,22]; as such, variations in both sensitivity and specificity of
annotation are expected. Yersinia comprises three species patho-
genic to humans: Y. enterocolitica, V. pseudotuberculosis, and Y. pestis.
The latter two species diverged most recently, and while their
genomes are closely related, the bacteria exhibit markedly different
modes of transmission and pathogenecities [23]. Y. pseudotuberculosis
causes non-fatal gastrointestinal disease, and Y. pestis is the
causative agent of plague. The data described here characterize
Y. pseudotuberculosis PB1/+ and two 1. pestis strains, CO92 and
Pestoides F. The 7. pestis strains represent “epidemic” (CO92) and
“non-epidemic” (Pestoides F) isolates, which differ in their
biochemical properties, virulence to different animal species, and
rearrangements of the genome mediated by the insertion
sequences [24,25]. The genomes of the examined strains have
been sequenced [21,22] and are available at NCBI (www.ncbi.
nlm.nih.gov). Each strain is currently annotated with approxi-
mately 4000 protein coding genes (Table 1). Our results validate
predicted protein-coding genes and revise the current genome
annotations through identification of 96 unannotated or erroneous
protein coding regions among the three strains. The refined
genome annotations are immediately useful for the entire Yersinae
research community, and the comparative omics-based approach
is applicable to other organisms possessing similarity between
strains or species.

Results and Discussion

Comparative Yersinia omics-based annotation

A typical proteogenomic workflow integrates experimental
peptide evidence and computationally-predicted protein-coding
sequences. The approach presented herein (Figure 1) extends that
approach by also including orthogonal genome-wide measure-
ments (i.e., microarray probe hybridization). This comparative
omics approach was used to investigate current annotations for
three highly similar Yersinia strains: 1. pestis CO92 (YPO), 1. pestis
Pestoides F (YPDSF), and Y. pseudotuberculosis PB1/+ (YPTN).
Seventy-five matched RNA and protein samples from each strain
were collected across a range of thermal and temporal conditions
(26 or 37°C for 1, 2, 4, or 8 h) to maximize transcriptome and
proteome coverage. Analyses focused on validating predicted
genome annotations and discovering experimentally-supported
annotation errors. Existing genus level Yersinia annotations were
also compared across the examined strains to extrapolate putative
annotation errors. Experimental omics data were combined with
these findings to predict sequences that may exhibit protein
expression in the absence of experimental evidence.

A universal microarray was used to obtain genome-wide
expression measurements. Unlike a traditional microarray that
targets annotated genes for a single strain, this universal array
incorporated 7641 probes designed against seven sequenced
Yersinia strains on a single chip. As illustrated in Figure 2, 89%
of the probes were complementary to genes present in multiple, if
not all, represented ZYersinia strains. The remaining probes targeted
genes annotated as purportedly unique to one of the Yersina
strains. Comprehensive Yersinia genus level gene expression
measurements were made since each strain’s sample was
individually hybridized against the universal array. More specif-
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Table 1. Omics-driven genome annotation summary.

Y. pestis CO92 (YPO) Y. pestis Pestoides F (YPDSF) Y. pseudotuberculosis PB1/+ (YPTS)

Sequencing Center/year Sanger Institute/2001 JGI/2007 JGI/2008
Predicted pseudo genes 123 84 15
Protein-coding genes (total) 4066 4068 4237
Protein-coding genes (ortholog in =1 alternate strain) 3866 3895 3695
Summary of protein identification validations

Detected proteins (=2 peptides) 1682 (1641) 1773 (1751) 1603 (1550)
Detected proteins (single peptide) 380 (277) 392 (271) 398 (303)
Summary of genome annotation refinements

Novel genes 8 (4) 18 (16) 2 (1)
Translated “pseudo genes” 40 (36) 16 (15) 1(0)
Extended start sites 3(2) 303 2(2)
Frameshifts 0 3(3) 0

The total number of open reading frames with evidence (as described in Materials and Methods) are represented. Numbers within parentheses refer to the subset of
genes that have orthologs with experimental evidence in at least one of the alternate strains.
doi:10.1371/journal.pone.0033903.t001

ically, the expression of a nucleotide sequence (represented by a protein-coding sequence was currently annotated for the strain
probe targeted against at least one of the seven Yersinia genomes) being analyzed. Results were assessed for all probes present on the
was examined for individual strains regardless of whether or not a universal array for all three strains.
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Figure 1. Schematic showing the comparative omics-based genome annotation workflow employed for annotation refinement.
Transcriptomic data generated from an unbiased universal Yersinia microarray and peptide data matched to a 6-frame genome translation were
layered on existing genome annotations to validate predicted protein coding sequences and identify annotation anomalies. This evidence can be
used independently or combined with putative protein identifications derived from a comparative genomics approach for genome annotation
refinement.

doi:10.1371/journal.pone.0033903.g001
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Figure 2. Distribution of oligos for universal Yersinia microarray. A universal array was designed to represent genes from seven different
Yersinia strains on a single chip. A) A representative sample of oligos and their purported mapping to genes from each of the seven Yersinia strains
represented on the array is shown. The number of strains (n=x) for which a given oligo corresponds to an annotated protein coding sequence is
indicated, illustrating a subset of the possible combinations of unique or shared orthologs at the oligo level. B) The distribution of oligos based on
existing annotations is provided; oligos were predicted to be either unique to any one of the seven strains (n=1) or shared by multiple strains (n>1).

doi:10.1371/journal.pone.0033903.g002

In parallel to the transcriptional study, bottom-up proteomics
was used to identify peptides for inference of protein expression.
Approximately 1.6 million MS/MS spectra per strain were
searched against a stop-stop FASTA file comprised of a six-frame
translation (minimum length of 30 amino acids) of each
corresponding Yersinia genome. Data were filtered to <0.4%
false-discovery rate using a reversed sequence decoy strategy [26].
A modest number of redundant peptides (i.c., peptides that map to
multiple genomic loci) were excluded from the workflow to remove
potential ambiguity. Post-filtering, nearly 20,000 peptides per
strain were mapped to each respective genome, corresponding to
the expression of 41%, 44%, and 38% of YPO, YPDSF, and
YPTS proteins (minimum of two peptides/protein), respectively.
Table 1 summarizes these identifications and illustrates the high
level of orthology between strains. Additionally, genome annota-
tion refinements for both annotated and unannotated open
reading frames (ORF's) are reported, indicating the utility of the
comparative omics-based annotation presented herein.
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Identification of annotation anomalies exhibiting a
minimum of two peptides per ORF

Confident gene expression and peptide identification measure-
ments, along with predicted protein coding genes, were indepen-
dently layered on genome sequences for each JYersinia strain’s
chromosome and corresponding plasmid(s). Experimental evi-
dence observed within a protein-coding region of a gene was
considered validation of an existing annotation, and evidence
outside of annotated ORFs highlighted regions suggestive of
missed/incorrect annotation calls. Figure 3 shows the distribution
of experimental evidence across annotated ORFs (i.e., predicted
proteins) and unannotated ORFs (i.e., putative proteins not
associated with any existing transcript/protein annotations). Using
peptide measurements as primary evidence of protein expression,
it was determined that 1682, 1773, and 1603 predicted protein-
coding sequences were expressed with a minimum of two unique
peptide identifications for YPO, YPDSF, and YPTS, respectively.
Notably, greater than 98% of these protein identifications also had
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complementary oligo hybridization evidence as support. Kolker et
al. generated both protein and gene expression data for a
functional annotation study in S. oneidensis [27]. Gene expression
was observed for 2082 of 2252 predicted proteins (93%),
comparable to the overlap represented in this work. In contrast
to Kolker’s work, the microarrays utilized for the current studies
possess a unique advantage important for an omics-based
refinement study, i.e., the ‘unbiased’ nature of oligos present on
the universal chip aid in the discovery of unannotated sequence
expression. Figure 3a shows the identification of currently
unannotated ORFs exhibiting experimental evidence; 37 (29), 22
(20), and 1 (0) unannotated ORIFs mapped at least two unique
peptides (and a minimum of one oligo) for YPO, YPDSF, and
YPTS, respectively, warranting further investigation.

Proteins identified by single peptide identifications

It has been shown that random peptides exhibit a peptide-to-
protein distribution favoring single peptide correlations [28];
however many single peptide observations are in fact authentic,
confounding the choice to include or exclude these identifications.
Nearly universally, single peptides are discarded for proteomics
applications due to the high probability of false-positives for
proteins identified by a single unique peptide relative to proteins
with multiple unique peptides using a given set of filtering criteria.
These single peptide identifications (singlets) are often pejoratively

Omics-Based Genome Annotation of Yersiniae

referred to as one-hit wonders. Unfortunately, removal of singlets
by increasing the stringency of filter criteria results in the loss of a
large number of possible true-positive protein identifications
[29,30]. Omics-based annotation can benefit from retaining single
peptide identifications as the main goal is to provide layers of
experimental evidence of gene expression. Figure 3b illustrates
380, 392, and 398 annotated proteins that were identified by
evidence of a single peptide. Using the stringent filters chosen for
this study, >96.7% of the proteins corresponding to singlets also
had evidence of at least one oligo with hybridization. These
findings lend increased support to the validity of proteins inferred
from single peptide identifications in this study [29] and prompted
examination of a group of 44, 27, and 7 unannotated ORFs
eliciting both singlets and oligo evidence for YPO, YPDSF, and
YPTS, respectively.

Orthologous and single peptide identifications
Orthology has been employed for global applications including
the identification of core genomes and proteomes [31,32,33].
Proteomic profiles of diverse environmental and pathogenic
bacteria [31] revealed the expression of a core genome, indicating
conservation amid diverse speciation events. Bottom-up proteomic
data have been measured in five model eukaryotic species and
quantitative protein abundances were found to be significantly
correlated for orthologs across a conserved core proteome [33].
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Figure 3. Categorization of experimental evidence. Preliminary analysis shows the distribution of peptide and oligo evidence across annotated
open reading frames (ORFs) (i.e., predicted proteins) in black and unannotated ORFs in grey. Solid regions indicate ORFS with complementary oligo
and peptide evidence and hashed regions show ORFs with only peptide evidence. A) shows ORFs exhibiting two or more unique non-redundant
peptides and B) shows ORFs exhibiting a single unique non-redundant peptide.

doi:10.1371/journal.pone.0033903.g003
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Even for homologous proteins with varying sequences, individual
peptide biases averaged out at the protein level. Relevant to the
present work, core proteins with similar sequences are expected to
have comparable peptide abundances given an inherent peptide
“MS-detectability” [33]. While proteogenomics approaches are
qualitative in nature, the above concepts support the notion that
an orthologous peptide in one Yersinia strain has a high probability
of being detected in the alternate strains in the current
experiments. The caveat may be for regulated proteins where
differential protein abundance is sample dependent. For patho-
genic bacteria such as Yersinia, qualitative genomic divergence and
quantitative expression profiles contribute to a switch from a less-
pathogenic lifestyle (e.g., Y. pseudotuberculosis) to one of high
virulence (e.g., 1. pestis).

Ortho-proteogenomics and comparative proteogenomics, two
branches of proteogenomic pipelines, demonstrate the utility of
evolutionary constraints for refinements of genome annotation.
The ortho-proteogenomic approach has been demonstrated for
the Mycobacterium genus using M. smegmatis as the reference sample.
Genome refinements were made for the reference genome and
knowledge was propagated to other Mpycobacterium species [15].
This approach is invaluable, however care must be taken when
extrapolating annotations to homologous genomes [34]. Compar-
ative proteogenomics is a more definitive approach to refining
highly similar genomes. This method incorporates parallel
experimental peptide data from multiple orthologous proteomes
with their respective genome sequences as performed for Shewenella
[16].

Orthologous singlet peptides (i.e., related peptides found across
multiple species) can be used to infer protein translation [16]. In
this study, this group of putative annotation errors includes
unannotated ORFs that exhibit singlet peptide evidence but lack
oligo hybridization data. Identical singlet peptides are valued;
however, identification is more reliable when peptides are
correlated (i.e., differ in sequence in at least one position).
Correlated peptides are related through sequence but either
possess mutations or modifications at a given amino acid residue
or comprise different lengths (ladder sequences). This results in
different b- and y-ion fragments and thus differing mass spectra for
matching. The likelihood of two independent false-positives for
correlated peptides in conserved species is extremely low. Notably,
245 (63) of the 705 YPO singlet peptides, 246 (55) of the 708
YPDSF singlet peptides, and 234 (61) of the 638 YPTS singlet
peptides are identical (correlated) to a peptide found in at least one
of the other Yersima strains examined in this study (File S1).

Based on the preliminary analysis shown in Figure 3, the
following criteria were established to objectively generate a
conservative list of potential annotation errors for examination:
1) the presence of a non-redundant peptide and either an
additional non-redundant peptide or a hybridized oligo or 2) a
non-redundant peptide that has an orthologous peptide observed
in at least one alternate strain. Using these criteria, potential
protein sequences from unannotated regions were aligned to other
Yersinia species using BLASTp (NCBI). The presence of a highly
related structural homolog to an unannotated protein sequence
was considered evidence of a novel (i.e., missing) gene, incorrect
protein start site, or frameshift. Additionally, expression of
annotated pseudogenes was noted. This suggests that regions of
many of these ‘dead’ genes are in fact expressed, albeit not
necessarily functional, in agreement with other reports [17,35]. A
summary of these findings is shown in Table 1, and detailed
information for all annotation refinements including peptide and
oligo evidence, proposed gene boundaries, proposed protein
sequence, and corresponding ortholog data is provided in File S2.
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Identification of novel genes

The first category of annotation anomalies identified represents
‘novel’ genes that were missed during the annotation process.
These errors reveal experimental evidence in intergenic regions
that currently lack annotation. The protein coding sequences
corresponding to these novel genes are annotated in at least one
other Yersinia strain (determined by BLASTp) but are missing in
their entirety in the strain containing the error. This analysis found
evidence indicative of 8, 18, and 2 novel genes in YPO, YPDSF,
and YPTS, respectively (for detail see File S2). Figure 4 represents
a novel gene found in Y. pestis Pestoides I: 13 peptides
corresponding to the same translational frame were observed in
a 427 nucleotide ORF between YPDSF 3634 and YPDSE_3635.
Using the high level of orthology between Yersinia strains, the
potential sequence of this missed protein was predicted and maps
with 100% identity to both Y. pestis CO92 and 1. pseudotuberculosis
PB1/+. Peptide evidence represented 79% sequence coverage of
the predicted protein, and correlated peptides were found in YPO
and YPT'S supporting the inclusion of this hypothetical protein in
Y. pestis Pestoides F.

One major flaw of automated annotation is the under-
prediction of small genes. This often occurs because large ORFs
are conspicuous. Examination of protein lengths for these novel
genes substantiates this issue. Protein length histograms (Figure S1)
clearly show that the missed genes possess lengths that fall on the
short end of the range of annotated Yersinia proteins. Given that
short proteins yield fewer peptides, there is an increased likelihood
that short proteins will be identified by single peptide hits. Thus
the inclusion of confident singlet peptides is important, particularly
for genome refinement studies.

Protein coding genes may also fail to be predicted due to the
presence of an alternative translational start site. In the existing
annotations, 82%, 88%, and 91% of predicted proteins for YPO,
YPDSF, and YPT'S, respectively, have an AUG initiation codon.
Noticeably, YPDSF and YPTS have a higher percentage of
purported AUG start codons relative to YPO and another
enterobacteria, E. coli, which has been reported to use 83%
AUG [36]. Based on comparison with orthologous sequences in
other Yersimia strains, for YPO, YPDSF, and YPTS, respectively, 5,
6, and 2 of the novel genes found in this study are proposed to
have a less common initiation codon: UUG/UUA or GUG rather
than AUG. While no peptide evidence is present to confirm the
predicted N-termini of these novel genes, it seems plausible that
these genes were overlooked during annotation due to the
presence of less common start codons.

Comparison of missed proteins from the targeted strain with
orthologous sequences from the other two examined strains
highlights a significant intention of this study: highly similar strains
possess orthologous genes that can be used for cross-validation of
proteomics data and for genome refinement. Of the 8 missed
proteins in YPO, 6 and 4 orthologous proteins are not predicted in
either YPDSF or YPTS, respectively. Similarly, of the 18 missed
proteins in YPDSF, 5 and 2 orthologous proteins are presumed
absent in YPO and YPTS, respectively. Two proteins were missed
in YPTS; of these, 1 ortholog is not predicted in either YPO or
YPDSF, and the remaining ortholog is not predicted in YPDSF.
As YPO was the first Yersinia genome annotated, these results
suggest transitive annotation omissions. During the genome
annotation process, predicted protein coding genes are searched
against protein databases. Homology findings are based on the
quality of the software utilized and on the quality of the
annotations that compile the protein databases [37]. The overlap
of missing proteins across the three strains examined in this work
suggests a propagation of errors for Yersinia strains. These overlaps
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YPDSF: L
YPO:
YPOO0337
YPTS: 1 -
YPTS_0416
YPDSF: 1 MRYLLSLSVFLIVSLNPAFAEWTGDNVEGMHSGMIINKFHSGQVDGKPYFCIEAFKPSTTITACSVKDTSIWGASYNTLY 80
YPO: 1 MRYLLSLSVFLIVSLNPAFAEWTGDNVEGMHSGMI INKFHSGQVDGKPYFCTEAFKPSTTITACSVKDTSIWGASYNTLY 80
YPTS: 1 MRYLLSLSVFLIVSLNPAFAEWTGDNVEGMHSGMIINKFHSGQVDGKPYFCIEAFKPSTTITACSVKDTSIWGASYNTLY 80
81 DQAMYYYTTGKRIRVYYAPDVWTNNSFVRALTANALVGFSTCISESSCFGPDRKKHKFTVH 141
81 DQAMYYYTTGKRIRVYYAPDVWTNNSFVRALTANALVGFSTCISESSCFGPDRKKHKFTVH 141
81 DQAMYYYTTGKRIRVYYAPDVWTNNSFVRALTANALVGFSTCISESSCFGPDREKHKEFTVH 141

Figure 4. Representative identification of a novel gene. In the upper frame, gene level alignments are shown for the three strains examined in
this study. Predicted protein coding genes are shown in grey and oligo evidence is shown in black. Sequence alignments are shown in the lower
frame. Annotated protein sequences are underlined, and experimental peptide evidence is shown in black text. For YPDSF, this region reveals
substantial oligo and peptide evidence in an unannotated region indicating a novel gene.

doi:10.1371/journal.pone.0033903.g004

may be a result of failed searches against previously annotated
Yersimia genomes lacking predictions for the gene of interest.

Identification of upstream start sites

Another category of annotation error occurs when the
translational start site of a gene is predicted incorrectly. This type
of error has potentially deleterious effects for the structural
genomics community which relies on accurate protein sequences
for structure determinations and both function and localization
predictions. The accuracy of start site prediction has been
estimated to be as low as 80-90% [37]. Targeted proteogenomics
strategies have successfully been used to characterize N-termini of
Deinococcus proteins and findings revealed 73 incorrectly predicted
start codon sites and the use of several non-canonical translational
initiation codons [38]. Peptide evidence upstream of a predicted
start site, but C-terminal to a stop codon, suggests that the start site
was predicted to occur at the wrong codon. In YPO, YPDSF, and
YPTS, there is evidence for the incorrect prediction of 3, 3, and 2
start sites, respectively (File S2). Comparative analysis of BLASTp
results from sequences generated from a 5" extension of each gene
was used to assign new start sites. In all cases, orthologous

sequences implied new start codons that were consistent with the
observed experimental evidence. In 4 of the 8 start site anomalies,
peptide evidence spanned the existing start codon substantiating
extension to an upstream start site. Figure 5 shows an example of
an incorrectly predicted start site in 1. pestis CO92 with peptide
evidence spanning and oligo evidence 5’ of the existing TTG start
codon of YPO0453. Comparison of orthologs suggests that
translation should begin five residues upstream of the predicted
start site. Notably, translation of TTG as a start codon would
result in the generation of a methionine, however the unbiased
search performed for this study identified this amino acid as a
leucine supporting an incorrect start codon prediction.

Identification of translated pseudogenes

Pseudogenes can be described as sequences of DNA that possess
disruptions such as insertions, premature stop codons, or
frameshifts that render them nonfunctional [39]. As such, these
entries are typically excluded from protein databases because the
DNA is not thought to be translated to protein. Pseudogenes are
not uncommon in prokaryotes (although much less common than
in eukaryotes which lack compact genomes), but 1. pestis is

TKQFILITDEKQVSDSLNR
YPO0453: M T K Q FIM|T DE KQV SDSLNRQTAGNPYSAADPALSAE
ATGACARAACAATTTIT@ACTGACGARAAACAAGTGTCGGATTCACTTAATAGGCAGACGGCTGG

YPTS 0618: M T K Q FILITDEKQVSDSLNRQTAGNPYSAADPALSAE
YPDSF 3181: M T K QF|ILITDEKQVSDSLNROQTAGNPYSAADPALSAE
y3726: M T K Q F|LIT DE KOV SDSTNROTAGNPYSAADPATLSAE
YPA 4044: M T K O F|LITDEKOQOVSDSILNROTAGNPYSAAMDPALSAE
YPK 36122 MTEKQPF|LITDEKQVSDSLNROQTAGNPYSAADPALSAE

Figure 5. Representative identification of an incorrectly predicted translational start site. Protein sequence alignments are shown for the
three strains examined (YPO, YPDSF, and YPTS) in addition to several other Yersinia species. Annotated protein sequences are underlined and
experimental peptide and oligo evidence is shown in black text. For YPO0453, evidence flanks the predicted start site (shown by boxed region) and
the observed peptide sequence reveals translation of a leucine instead of methionine confirming an N-terminal extension.

doi:10.1371/journal.pone.0033903.g005
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reported to have a disproportionately high number of predicted
pseudogenes [20,40]. Divergence from Y. pseudotuberculosis required
a change in both the bacteria’s phenotype and mode of
transmission, and gene loss is presumed to play a major role in
Y. pestis acquiring its niche as a virulent pathogen [20,41,42,43]. It
was originally reported that the genome for 1. pestis CO92
contained 149 pseudogenes [22]. Subsequently, comparative
studies were performed and additional 7. pestis CO92 pseudogenes
that were missed during the original annotation have been
proposed [20,40]. In this work, 40, 16, and 1 pseudogenes from
YPO, YPDSF, and YPTS, respectively, exhibited experimental
evidence of protein expression. The finding of pseudogene
expression is not a novel proteogenomic observation. A number
of authors present evidence challenging the belief that pseudo-
genes are translationally silent [13,14,17,44,45]. Since the function
of expressed disrupted genes is ablated in most cases, the existence
of inteins [44] and the active expression of interrupted genes i vivo
[46] are very interesting. It seems valuable in high-throughput
studies to include all coding sequences with the potential for
expression in a protein database and allow biological validation
studies to guide functional conclusions.

We identified the translation of genomic regions currently
labeled as pseudogenes (File S2) belonging to two major categories.
First, split genes containing insertion elements/transposons or
other cargo, and second, altered genes containing indels or
nonsense mutations. The argD locus represents an example of a split
gene. In CO92, the DNA sequence homologous to argD 1is
interrupted by the insertion of two IS21 genes (File S3). Notably,
argD peptides and oligos were observed on both termini, flanking
the insertion. The expression of the N-terminal portion of argD is
presumably under the normal promotor structure. Inspection of
the DNA region between the second IS21 element and the C-
terminal portion of argD revealed that the promoter structure
typically used to drive the IS element had likely been co-opted to
drive expression of argD (Michael Chandler and Guy Duval,
personal communication, and [47]).

The presence of the transposable element insertion was tested in
a dozen Y. pestis strains of different biovars including eight biovar
orientalis (same as CO92) strains from USA, Indonesia, South
America, and Madagascar, and it was confirmed that the insertion
occurs only in CO92 (data not shown). In Yersinia, as well as other
species with high genomic fluidity [48], it is not unexpected to find
‘unique’ proteins lacking homology. Evolutionary relationships

YPO:

(Il T W

YPO1195

N

//’
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with transposons have been described [49], and speculatively, this
process may provide one driver for reassembly of domains that
could produce non-homologous proteins [50] for novel adaptive
functions. The nature of the “pseudogenes” identified as present as
translated proteins offers an enticing clue that the broad range of
proteins that are found to be unique within many sequenced
genomes may be driven by rapid evolution.

Another example of pseudogene expression in 1. pestis CO92 is
illustrated in Figure 6. YPO1195 encodes a 310 aa protein, but a
single point variation from A to T (confirmed by Sanger
sequencing, File S4) renders a premature TAG stop codon in
liecu of an AAG-encoded lysine rendering a truncated protein/
predicted pseudogene with a 155 aa N-terminus and a 154 aa C-
terminus. Interestingly, both peptide and oligo evidence span the
regions on either side of the stop codon. Regardless of the means
for expression, this example highlights a case where the YPO1195
protein sequence should be included in the CO92 protein
database.

Identification of translational frameshifts

Determination of translational frameshifts is one of the more
difficult tasks of genome annotation. This phenomenon, opposed
to mutational or replication-based frameshifts, occurs when the
ribosome either slips -1 base, stalls +1 base, or hops over a stretch
of nucleotides during translation causing two translational reading
frames to be expressed as a single protein [51]. Authentic
frameshifting events can either be spontaneous or programmed,
but what appear to be frameshifted proteins can also result from
DNA sequencing errors. Annotation predictions can be guided by
the referencing of known frameshifted proteins in similar species,
but more often than not, there are few if any proteins to reference.
Peptide chain release factor II (p7fB) is one example of a +1
frameshift observed in several bacterial genomes. While pifB is
annotated in some JYersinia, the frameshift is missing in many
strains [17] revealing the challenge in annotating frameshifts even
when reference frameshifts are known. As previously mentioned
with regard to incorrectly predicted start sites, missed frameshifts
result in truncated sequences that may impact structural biology
studies. The current analysis identified three genes, all found in 1.
pestis Pestoides F, that have evidence indicative of frameshifts (File
S2). These genes currently have protein coding sequences
predicted, but the predicted proteins appear to be truncated due
to an apparent frameshift. Eight predicted pseudogenes in 1. pestis

\

1 MALFLTRSRIFAVAAIMLSASSGISHAADNVRVGSKIDTEGSLLGNIIVQVLEANGIKTTNKSQOLGATKVVRGAITAGEL 80

81 DIYPEYTGNGAFFFSDEQDPAWKSAKAGYEKVKALDY EKNKLVWLSPAPANNTWTIAVRKDLATANNLRT LDDLG+WING 160

161 GGQFKLAASAEFIERPDALPAFQQAYGFTLNQDQLLSLAGGDTAVTIKAAAFQISGVNAAMAYGTDGPVAALGLQTLEDT 240

241 KGVQPIYAPAPIIREVTLKAHPNIPALLNPVFATLDGPTLOKLNARIAVEGODAKKVAANY LKDNGEIEN 310

Figure 6. Representative identification of an expressed pseudogene. Pseudogenes are considered translationally silent and typically
excluded from protein databases. YPO1195 is categorized as a pseudogene due to the presence of a stop site mid sequence (shown by vertical black
bar). Both oligo evidence (black boxes, upper frame) and peptide evidence (black text, lower frame) were observed on either side of the predicted

stop codon, indicating expression of this feature.
doi:10.1371/journal.pone.0033903.9g006
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CO92 have experimental evidence in multiple reading frames
suggestive of translational frameshifts which may explain a
misclassification as a pseudogene.

Figure 7 illustrates an apparent frameshift in YPDSF_1005, an
ortholog of YP0O2124. This gene encodes a hypothetical protein in
both Y. pestis strains. YPDSF_1005 encodes a 63 amino acid
protein, and the expression of YP02124 produces a 210 amino
acid product. Both genes have hybridization evidence showing
similar thermal shift expression patterns for three oligos. All three
oligos fall within the protein coding sequence boundaries for YPO,
but two of the three oligos lie 5" of the boundary for YPDSF_1005.
Examination of YPDSF peptide data revealed four peptides
upstream of the predicted start site, consistent with the oligo data.
Importantly, Sanger sequencing (File S4) confirmed that these
peptides all fell on a translational reading frame different from the
predicted polypeptide. Extension of the N-terminus of
YPDSF_1005 on the alternate frame allowed the entire 210 amino
acid product of YP0O2124 to be overlaid on the YPDSF_1005
sequence indicating the presence of a frameshift.

Utility of comparative data from orthologous strains

The genome annotation corrections presented here are in
addition to the recent Yersinia annotation revisions by Payne et al.
[17]. In that work, peptides were identified from 7. pestis KIM 6+
strain, and orthology clusters were used to extrapolate findings to
the remaining 11 complete published Yersinia genomes (including
the three examined in this work). Comparison of genome
refinements made solely based on the orthology of experimental
Y. pestis KIM 6+ results [17] with data gathered for this study
revealed many annotation error overlaps thereby validating the
prediction of proteins based on orthology. The comparative results
from this omics-based study were confirmed by experimental
design. Rather than extrapolating data to orthologous species,
orthologous data was generated for multiple Yersinia strains in
parallel. Unbiased oligo data is valuable evidence for these genome
annotation refinements. The high level of overlap between peptide
data and oligo data within coding sequences of predicted proteins
(Figure 3) validates the use of oligo data as complementary support
when the only evidence of protein expression is from singlet
peptides. By allowing oligo evidence and orthologous peptide
identifications to rescue singlets (Figure 8), 21, 18, and 5
annotation errors that otherwise would have been rejected by
the two-peptide rule [52] were retained in YPO, YPDSF, and
YPTS, respectively.

All errors described to this point were elucidated by the evidence
thresholds described previously and are thus considered primary
errors. Sequences of target strains possessing primary errors were
aligned to the other strains examined in this study (File S2). Eight
proteins had primary errors identified in multiple examined strains.
Four of these errors indicate novel proteins in both strains, 2 errors
suggest a novel protein in one strain and an upstream start site found
in an alternate strain, 1 error shows an upstream start site in two
strains, and 1 error shows a translated pseudogene in one strain and
an upstream start site in the other. This level of overlap suggests a
propagation of error during the predicted sequence searching
portion of the annotation process. Primary errors found in 8
proteins from the target strain suggest 14 ‘secondary annotation
errors’ in the orthologs. These secondary errors have experimental
oligo evidence but lack peptide data, thus explaining their exclusion
from the primary error list. Similar to ortho-proteogenomics studies,
this information can be extrapolated to the respective genomes and
these errors can be refined. It seems probable that as proteome
coverage increases, expression of many of these proteins will be
demonstrated with tangible evidence for each strain.
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Conclusions

Prokaryotic genome annotation is primarily performed ab-initio,
but recent studies demonstrate that a combinatorial approach with
both computational predictions and experimental evidence
increases the accuracy of annotations [34,35,53]. The ease and
utility of the proteogenomic approach is now well-documented
and suggests that incorporation of experimental data for genome
annotation refinement could become routine in the future. The
finding of 96 previously undocumented errors in this study
(Table 1) enforces the concept that genome annotation refinement
is required for accurate studies by the scientific Yersinia community.
Similar approaches could readily be applied to annotation
refinement studies of other larger prokaryotic or eukaryotic [54]
organisms.

The thresholds set for this comparative omics-based workflow
were based on peptide evidence with oligo evidence included as
optional secondary support, yet several hundred open reading
frames across the genomes examined exhibited oligo hybridiza-
tion without any confirmation that the mRNA was translated.
This suggests that many additional annotation errors likely exist
and implies that the refinement process is far from complete for
these three genomes. Nearly 40% of each strain’s predicted
proteome was covered by peptide identifications in this work.
Limitations of the technology contributed to incomplete cover-
age. Several bioanalytical factors inherent to bottom-up proteo-
mics likely affected detection: post-translationally modified
peptides and peptides from low abundance proteins or small
proteins are difficult to observe. Itshould also be noted that the
expression of many genes is tightly regulated and/or inducible
only under specific conditions. For example, as much as a third of
the Salmonella typhimurium proteome has been shown to be
regulated at the translational level by the single virulence
regulator Hfq [55,56]. Hfq is only one mechanism of post-
transcriptional regulation, but it does highlight the fact that
regulation of translation and protein turn-over can lead to limited
detection of highly regulated proteins. The conditions used here
for Yersimia are intended to simulate important environmental
transitions during pathogenesis so it is reasonable to assume that
some RNA are transcribed but not translated into protein. A
protein’s observation is informative of a gene’s presence,
however, the absence of a protein when a transcript is present
requires further analysis. Proteome depth will become greater
and many of these oligo-supported protein predictions will be
clarified as more experimental data is generated, growth
conditions are tested, sample throughput is increased, and
Instrument sensitivity is improved.

The universal microarray used in these experiments proved
fruitful for the discovery of annotation errors. High density tiling
arrays and next generation sequencing technologies show even
more promise for genome refinement studies. These newer
technologies have the potential for increased sensitivity, specificity,
and dynamic range relative to microarray profiling, and most
importantly for annotation studies, the expression of open reading
frames that have not been predicted to encode protein coding
sequences can be measured [45,57,58].

The comparative omics-based approach employed in this study
corroborates the utility of similar proteogenomic (simultaneously
examining orthologous genome annotations) [16] and evidence-
based (combining both transcriptional and peptide data) [18] work
in different prokaryotic organisms. These results also help to define
the transcription unit architecture [59,60], a fundamental property
that provides the basis for understanding key cellular processes
such as metabolism and transcriptional regulation at the genome
scale, of the Yersinia strains examined.
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A)
Y. pestis CO92 (YPO) Y. pestis pestoides F (YPDSF)
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C YPO2124 YPDSF_1005
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Figure 7. Representative identification of a putative translational frameshift. A) Hybridization evidence for oligos labeled A, B, and C is
shown. Expression levels are shown normalized to each oligo’s mean (via a Z-score calculation) across a time course/thermal switch (37°C/26°C)
experiment for Y. pestis CO92 (YPO) and Y. pestis Pestoides F (YPDSF). Green indicates down-regulation relative to the mean, and red indicates up-
regulation relative to the mean. Genome annotations are labeled for YPDSF_1005 and YPO2124 corresponding to annotated coding sequences.
Although oligos A and B purportedly lack a corresponding transcription for YPDSF (NA =not applicable), evidence clearly shows hybridization
consistent with oligo C. B) illustrates the 210 aa translation of YP02124 and C) illustrates the 63 aa translation of YPDSF_1005. Frame translations are
shown below gene level detail with oligo evidence (black) overlaid on each gene and peptide evidence (red) overlaid on the appropriate reading
frame. For YPDSF_1005, gene alignment with YPO2124 reveals two oligos upstream of the coding region. Corroborating peptide evidence was also
seen upstream but in a different reading frame than the existing annotation. This evidence supports the expression of YPDSF_1005 as a frameshifted
protein.

doi:10.1371/journal.pone.0033903.g007
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A) Y. pestis CO92
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Figure 8. Venn diagram overlap of evidence for unannotated
proteins identified by single peptide identifications. Open
reading frames with evidence were initially filtered based on the
presence of a non-redundant peptide. All singlet peptides were
required to have corroborating oligo evidence or it was required that
the singlet peptide mapped to an orthologous peptide in one of the
alternate strains examined.

doi:10.1371/journal.pone.0033903.9g008

Materials and Methods

Cultivation of bacterial strains

Y. pseudotuberculosis PB1/+, Y. pestis Pestoides F, and a wild-type
Y. pestis CO92 cured from pPCP1 plasmid were grown in a
chemically defined medium BCS [61] in which neutral pH 7.2
was maintained by addition of 50 mM of morpholinopropane-
sulfonic acid (MOPS) as described previously [62]. Bacterial
cultures were grown in Erlenmeyer flasks aerated at 200 rpm at
26°C. A starter culture was grown, diluted to optical density
OD600=0.1 to begin overnight culture, and grown to an OD600
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of ~3.0. The overnight culture was back-diluted to OD600 = 0.1
and grown in two flasks at 26°C. When the cultures reached
OD600 ~0.5, one flask was moved to 37°C. Aliquots from both
cultures were taken at 0, 1, 2, 4, and 8 hours, OD’s measured, and
samples prepared as described below for proteomics and
transcriptomics.

Reversed-phase nanocapillary LC-MS/MS analyses

Approximately 2 x10'° bacteria were harvested from the culture
at each time point, pelleted, and immediately frozen at —80°C.
Thawed cell pellets were washed with 100 mM NHHCO;
(pH 8), lysed via bead beating, and global protein digestions were
performed as described previously [63]. Peptides were concen-
trated in a Speed-Vac (ThermoFisher, Savant) to ~100 ul, a
BCA protein assay performed to quantitate peptide concentration,
and samples were either diluted for analysis or subjected to SCX
fractionation. Aliquots (60 ug) from each time point were pooled
together for each strain and subjected to offline LC fractionation
by strong cation exchange (SCX) chromatography on a
200 mm x2.1 mm Polysulfoethyl A column (PolyLC, Columbia,
MD) preceded by a 10 mm x2.1 mm guard column, using a flow
rate of 0.2 mL/min. LC separations were performed using an
Agilent 1100 series HPLC system (Agilent, Palo Alto, CA). Mobile
phase solvents consisted of (A) 10 mM ammonium formate, 25%
acetonitrile, pH 3.0 and (B) 500 mM ammonium formate, 25%
acetonitrile, pH 6.8. Once loaded, isocratic conditions at 100% A
were maintained for 10 min. Fraction collection began at 2.8 min.
Peptides were separated using a gradient from 0 to 50% B over
40 min, followed by a gradient of 50 to 100% B over 10 min. The
gradient was then held at 100% solvent B for 10 min. Following
lyophilization, all 24 fractions for each of the two pools collected
during this gradient were dissolved in 25 mM ammonium
bicarbonate and stored at —80°C. Peptides (0.5 ug/uL) from
global preparations (i.e., total unfractionated lysate) were run in
triplicate on a linear ion trap (LTQ) Orbitrap Velos mass
spectrometer (Thermo Scientific) (n=30 LC-MS/MS runs per
strain), and SCX fractionated samples were run on a LT(Q) mass
spectrometer (Thermo Scientific) (n =48 fractionated samples run
per strain). Peptides were separated by a custom-built nanocapil-
lary HPLC system as previously described [64,65]. The eluate
from the global preparations and fractionated samples was directly
analyzed by electrospray ionization (ESI). The MS instruments
were operated in data-dependent mode with m/z range of 400—
2000, collision energy of 35 eV, and the 10 most intense peaks
were selected for fragmentation. Raw data are available to the
public at omics.pnl.gov and further information available at www.
SysBEP.org.

Six-frame peptide identification

MS/MS fragmentation spectra were searched against a six
frame translation (minimum open reading frame length of 30
amino acids) of the 1. pestis CO92 genome and plasmids (NC_
003143), 1. pestis Pestoides F genome and plasmids (NC_009381),
and Y. pseudotuberculosis PB1/+ genome and plasmid (NC_010634)
located at NCBI using SEQUEST [66] peptide identification
software. The parent and fragment mass tolerances used for
matching were set to =3 and *=1 Da, respectively. The average
peptide mass errors for the high resolution data were 0.79, 1.11,
and 1.09 ppm for YPCO, YPPF, and YSTB, respectively. Peptide
identifications were retained based upon the following criteria: 1)
SEQUEST DelCn2 value =0.10; 2) SEQUEST correlation score
(Xcorr) =1.9 for charge state 1+ for fully tryptic peptides and
Xcorr =2.20 for 1+ for partially tryptic peptides; Xcorr =2.2 for
charge state 2+ and fully tryptic peptides and Xcorr =3.3 for
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charge state 2+ and partially tryptic peptides; Xcorr =3.3 for
charge state 3+ and fully tryptic peptides and Xcorr =4.0 for
charge state 3+ and partially tryptic peptides. For each strain, the
distribution of charges for detected peptides was as follows: YPCO
(ql =3.8%, q2=155.5%, and q3 =40.7%), YPPF (q1 =3.8%, q2 =
56.7%, and q3 =39.5%), and YSTB (ql = 3.4%, q2 =54.9%, and
q3=41.7%). Redundant peptides (i.e., peptides that map to
multiple proteins) were excluded from the analysis to minimize
potential ambiguity. Using the reverse (decoy) database approach,
the false discovery rate (FDR) of filter-passing spectra/proteins
(minimum of two unique peptides per protein) was estimated to be
0.2%/0.1% for the Velos data, 0.8%/0.6% for the LTQ data, and
0.4%/0.8% for the combined data. Higher false-positive rates
were associated with singlet peptide identifications, so annotations
for these spectra are provided in the supporting data. As multiple
pieces of evidence (peptide, oligo, and orthology) were used to
identify annotation errors, we feel that the true FDR values are
nominally lower than the peptide-based FDR values reported.

Universal Yersiniae microarray design

A universal Yersiniae array was designed to contain probes
targeting genes for seven different Yersimia genomes on a single
microarray chip. In order to incorporate probes representative of
both unique and homologous genes between the seven strains,
gene FASTA files containing predicted ORF sequences for . pestis
strains CO92, KIM, Pestoides F, Antiqua, Nepal516, and biovar
Microtus str. 91001, and Y. pseudotuberculosis strain PB1/+ were
collected as targets for oligonucleotide design. Homologous genes
with high sequence similarity (i.e., >99% identity over the full
length of the genes) were combined resulting in a single
representative homolog for each homologous group. ArrayOligo-
Selector (http://arrayoligosel.sourceforge.net/) was used to design
70-mer oligonucleotides for each target with the goal of
maximizing oligo to target gene binding energy (assessed as
melting temperature, T,,) while optimizing specificity by mini-
mizing cross hybridization with non-target gene sequences.
Following the first round of design, resultant oligos were assessed
for the potential to cross hybridize with genes other than the
intended target. Gene targets having ambiguous oligos mapping to
other genes underwent a second round of design. The second
round of design tiled the remaining gene sequences with matching
oligos, followed by selection of the oligo for having the lowest
number of unintended gene hits. Preference was made for
designed oligos to target the 3’ end of each gene. Blastn
(W=15, bit score>=280) was used to create a target map
detailing each oligo’s gene matches exhibiting a bit score > =280
(90% 1identity over 70 bases). The final universal array included
7641 designed oligos which were printed in duplicate, in addition
to 1000 control and 1958 empty probes. The array platform
description and oligo list are available at NCBI Gene Expresssion
Omnibus (GEO) under accession GPL9009.

Microarray analysis of transcripts

At the appropriate times, 2040 mL from each culture was
removed and immediately mixed with an equal volume of cold
RNAlater (Qiagen). Total RNA was isolated with a Qiagen Midi
kit according to manufacturer’s protocol. RNA was isolated from
approximately 8x10” bacteria per sample and concentrated with
ethanol. RNA concentrations were determined by spectropho-
tometer (SmartSpecPlus, BioRad), quality was assessed by gel
electrophoresis, and purified RNA was stored at —80°C until
analysis. RNA samples were treated further to remove residual
DNA contamination prior to labeling and microarray hybridiza-
tions with Ambion Turbo DNA-free DNAse. Microarray

@ PLoS ONE | www.plosone.org

12

Omics-Based Genome Annotation of Yersiniae

hybridizations with cDNA probes were accomplished on version
5QYP aminosilane-coated slides printed with a set of 18,240
elements; scanning, image analysis, and normalization were
performed as outlined in PFGRC standard protocol (http://
pfgrc.jevi.org/index.php/microarray/protocols.html). Individual
TIFF images from each channel were analyzed with JCVI
Spotfinder software, and microarray data were normalized by
LOWESS normalization using TM4 software MIDAS (both
available at http://pfgrc. jevi.org/index.php/bioinformatics.html).
Oligos generating intensity signals =35,000 (=3¢ of control
probes across all chips) were considered to have positive
hybridization above background and therefore incorporated as
experimental measurements. While not presented for all findings,
in cases where multiple oligos map to a single open reading frame,
expression patterns of annotated mRNA (as shown in Figure 7)
can support the identification of anomalous hybridization signals
across experimental samples. Transcriptomics data have been
deposited the GEO repository under series accession

GSE30634.

in

Data processing and genome refinement

Peptides that are correlated (i.e., differ at a single amino acid
residue due to divergence/modification or otherwise identical
peptides that differ in length) across strains were identified using
PepAligner, an in-house program that compares two peptide files
using Smith-Waterman alignment. The following criteria were
established to objectively filter potential annotation errors based
on experimental peptide and oligo evidence: 1) a non-redundant
peptide and =1 additional non-redundant peptide or hybridized
oligo or 2) a singlet peptide that has an orthologous peptide
observed in =1 alternate strain. For the latter case, mass spectra
were manually validated for confidence of protein expression (File
S5). Distributions of evidence are provided in File S6. Experi-
mental evidence was visualized using the Artemis genome browser
[67] or Visual Exploration and Statistics for Proteomic Analyses
(VESPA)  ((https://www.biopilot.org/docs/Software/index.php).
Using the established criteria, potential protein sequences from
unannotated 5’ or intergenic regions were aligned to other Yersinia
spp. and the non-redundant database using BLASTp [68].

Supporting Information

File S1 Lists of orthologous peptides. All two-way
comparisons from the three strains examined are provided. Singlet
peptide observations from one strain are compared against all
peptide observations from another strain. Detailed information
including coverage and alignments is given.

(XLSX)

File S2 Comparisons of errors across strains. Both
peptide and oligo evidence of errors is provided as visualized
using the Artemis viewer. Errors were assigned arbitrary numerical
values for organization only, and each proposed error (along with
orthologous sequences from the other examined strains regardless
of their error statuses) is represented on an individual page.
JForward and reverse DNA strands are labeled, along with each of
the six translational reading frames. Vertical black bars represent
stop codons, white regions represent DNA features, cyan regions
represent protein coding sequences, yellow regions represent oligo
evidence, and magenta regions represent peptide evidence.

(PDE)
File S3 Peptide evidence related to the insertion-

ablated pseudogene, argD. The regions encompassing argD
loci from Yersinia pestis strains CO92 and Pestoides I are shown.
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Annotated open reading frames are colored in yellow. Detected
peptide evidence is mapped by blue arrows and sequences are
provided.

(PDE)

File S$4 Sanger sequencing. Mcthodology, primer sequences,
primer maps, and sequence alignments are shown for YPO1195

and YPDSF_1005.

(PDE)

File S5 Singlet peptide validations. Three errors were
supported by singlet identifications. Annotated spectra are

provided for these peptides.
(PDF)

File S6 Evidence summaries. Evidence for all detected open
reading frames is provided for each of the three strains.

(XLSX)
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Figure S1 Protein length histograms. Bins are used to show
the distribution of protein lengths for all protein coding genes
(black) and novel annotation errors (grey).

(TIF)
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