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Abstract

Background: CXC chemokines are induced by inflammatory stimuli in epithelial cells and some, like MIG/CXCL9, IP–10/
CXCL10 and I–TAC/CXCL11, are antibacterial for Streptococcus pyogenes.

Methodology/Principal Findings: SpeB from S. pyogenes degrades a wide range of chemokines (i.e. IP10/CXCL10, I-TAC/
CXCL11, PF4/CXCL4, GROa/CXCL1, GROb/CXCL2, GROc/CXCL3, ENA78/CXCL5, GCP-2/CXCL6, NAP-2/CXCL7, SDF-1/CXCL12,
BCA-1/CXCL13, BRAK/CXCL14, SRPSOX/CXCL16, MIP-3a/CCL20, Lymphotactin/XCL1, and Fractalkine/CX3CL1), has no
activity on IL-8/CXCL8 and RANTES/CCL5, partly degrades SRPSOX/CXCL16 and MIP-3a/CCL20, and releases a 6 kDa CXCL9
fragment. CXCL10 and CXCL11 loose receptor activating and antibacterial activities, while the CXCL9 fragment does not
activate the receptor CXCR3 but retains its antibacterial activity.

Conclusions/Significance: SpeB destroys most of the signaling and antibacterial properties of chemokines expressed by an
inflamed epithelium. The exception is CXCL9 that preserves its antibacterial activity after hydrolysis, emphasizing its role as a
major antimicrobial on inflamed epithelium.

Citation: Egesten A, Olin AI, Linge HM, Yadav M, Mörgelin M, et al. (2009) SpeB of Streptococcus pyogenes Differentially Modulates Antibacterial and Receptor
Activating Properties of Human Chemokines. PLoS ONE 4(3): e4769. doi:10.1371/journal.pone.0004769

Editor: Adam J. Ratner, Columbia University, United States of America

Received November 24, 2008; Accepted January 31, 2009; Published March 10, 2009

Copyright: � 2009 Egesten et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grants from the Swedish Research Council (projects 2005-4791 and 2007-2880), the Swedish Heart and Lung Foundation,
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Introduction

Streptococcus pyogenes is a strictly human pathogen that preferentially

colonizes the pharynx and the skin. Bacteria disseminating from the

primary site may cause life-threatening sepsis, necrotizing fasciitis,

and a toxic shock syndrome [1,2,3]. Despite the potential virulence

of S. pyogenes, many individuals are healthy carriers of the bacteria in

their upper airways, demonstrating that the bacteria can colonize

epithelial surfaces without eliciting an inflammatory response.

Extracellular enzymes from Streptococcus pyogenes have been

extensively studied and shown to be of importance for the

pathogenesis of this human pathogen. One of the most studied

enzymes is the streptococcal cysteine proteinase, SpeB. Several in

vitro, in vivo, and clinical studies have suggested a role for SpeB as an

important virulence factor [4,5,6,7,8]. The role for SpeB as

virulence factor in mouse models is not uncontroversial and there

have been reports using SpeB deletion mutants indicating that SpeB

is not a virulence factor [9,10]. SpeB has the ability to degrade the

human extracellular matrix protein fibronectin and vitronectin,

release inflammatory mediators such as interleukin 1b and

bradykinin from their precursors, cleave or degrade immunoglob-

ulins and complement factors, and also bind to the human cell

surface receptors integrins [11,12,13,14,15,16,17,18,19,20,21].

Dendritic cells, macrophages, and T-cells that reside in sub-

epithelial tissues recognize bacterial antigens, resulting in the

production of T-helper 1 polarized pro-inflammatory cytokines,

including IFN–c and TNF–a. These cytokines cause an inflamed

phenotype of epithelial cells, resulting in the production of host

defense molecules, including chemokines [22,23]. Chemokines are

divided into four groups, XC, CC, CXC, and CX3C chemokines,

depending on the presence of conserved NH2-terminal cysteine

residues [24]. MIG/CXCL9, IP–10/CXCL10 and I–TAC/

CXCL11 belong to the group of CXC chemokines [25,26,27].

They all share the ability to signal through CXC chemokine

receptor 3 (CXCR3), which is present on T cells and natural killer

cells. Ligand binding to the receptor results in the activation and

recruitment of these cells to sites of inflammation [28,29]. In

addition to the CXCR3 interactions, CXCL9, CXCL10, and
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CXCL11 also possess direct antibacterial activity in vitro [30].

Several other chemokines that are investigated in the present study

also possess direct antimicrobial activity (Table 1).

In a recent study, we showed that CXCL9, CXCL10, and

CXCL11 kill S. pyogenes, and that in particular CXCL9, is

produced at bactericidal concentration by inflamed pharyngeal

cells both in vivo and in vitro [31]. Furthermore, one of the major

surface proteins of S. pyogenes, the M protein, induces increased

production of MIG in IFN–c stimulated pharyngeal cells [32].

Proteolytic processing can significantly alter the signaling

activity of chemokines and is most likely one of the major

regulatory mechanisms for chemokines. The host proteases

gelatinase B/matrix metalloproteinase-9 (MMP-9) and neutrophil

collagenase/MMP-8 process several CXC chemokines including

CXCL9 and CXCL10 [33,34]. MMP-9 degrades CXCL10 and

cleaves CXCL9 at three different sites in its extended carboxy-

terminal region, while MMP-8 degrades CXCL9 and cleaves

CXCL10 at two positions [34]. It is currently not known how

proteolytic processing influences the antibacterial activity of

CXCL9, CXCL10, and CXCL11.

Corruption of innate immunity by bacterial proteases is a rapidly

growing field of research (for a recent comprehensive review see

[35]), and processing of chemokines by bacterial proteases has

recently gained substantial attention. Metalloproteases from

Pseudomonas aeruginosa degrade several chemokines [36]. Further-

more, an elastase from this bacterium degrades the chemokine-like

antimicrobial peptide LL-37 [37]. In the same study by

Schmidtchen et al. SpeB from S. pyogenes was also shown to degrade

LL-37, which is of particular interest for the present study. S. pyogenes

has recently been shown to produce another interesting protease,

the cell wall-anchored serine protease, SpyCEP, that degrades the

CXC chemokine, IL-8/CXCL8, and thus promotes resistance

against of neutrophil killing [38,39,40,41]. SpyCEP was very

recently also shown to degrade two additional CXC chemokines,

GCP-2/CXCL6 and GROa/CXCL1 resulting in impaired

neutrophil recruitment [42]. These findings, together with previous

observations concerning direct and indirect enzymatic activities on

host immune factors, highlight S. pyogenes as one of the most versatile

modulators of innate and adaptive immune responses.

Results

SpeB degrades or cleaves most human chemokines, but
not CXCL8 and CCL5

Since it has been shown that the streptococcal cysteine

proteinase SpeB can cleave and inactivate the antimicrobial

peptide LL-37 [37], we hypothesized that SpeB also could degrade

or process chemokines that share many properties with antimi-

crobial peptides. We therefore incubated 2 mg of the human

chemokines CXCL9, CXCL10, CXCL11, CXCL4, CXCL8,

CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7,

CXCL12, CXCL13, CXCL14, CXCL16, CCL5, CCL20,

CCL28, XCL1, and CX3CL1 with a small amount of SpeB

(pmol range) for 2 hours. When the samples were analyzed by

SDS-PAGE, this revealed that SpeB partially or completely

degrades most of these chemokines (Fig. 1A). However, CCL5 and

CXCL8 were completely resistant to cleavage by SpeB, and

CXCL16 and CCL20 were only partly degraded. It should be

added for clarity that both intact and fragmented chemokines

sometimes appear as multiple bands due to oligomerization, and

that CXCL9 migrates on SDS-PAGE as an apparently larger

molecule than its actual mass.

What was most interesting in relation S. pyogenes is that there

were differential SpeB activities on the closely related ELR-

Table 1. Known antimicrobial activities of the chemokines used in the present study.

Chemokine Activity Reference(s)

CXCL1/GRO-a E. coli, S. aureus, S. typhimurium, C. albicans [59,60]

CXCL2/GRO-b E. coli, S. aureus [59]

CXCL3/GRO-c E. coli, S. aureus [59]

CXCL4/PF4 S. typhimurium [60,61]

CXCL5/ENA-78 S. pyogenes [62]

CXCL6/GCP-2 S. pyogenes, E. coli, P. aeruginosa, S. dysgalactiae, S. aureus, N. gonorrhoeae, E. faecalis /
No activity on E. coli, S. aureus

[62,63]/[59]

CXCL7/NAP-2 S. pyogenes [62]

CXCL8/IL-8 S. aureus, S. typhimurium, C. albicans [60]

CXCL9/MIG E. coli, S. aureus, S. pyogenes, N. gonorrhoeae [31,59,64]

CXCL10/IP10 E. coli, S. aureus, S. pyogenes [31,59]

CXCL11/I-TAC E. coli, S. aureus, S. pyogenes [31,59]

CXCL12/SDF-1a E. coli, S. aureus [59]

CXCL13/BCA-1 E. coli, S. aureus [59]

CXCL14/BRAK E. coli, S. aureus [59]

CXCL16/SRPSOX N/D -

CCL5/RANTES No activity on E. coli, S. aureus / S. aureus, S. typhimurium, C. albicans [59] / [60]

CCL20/MIP-3a E. coli, S. aureus [59]

CCL28/MEC E. coli, S. aureus, S. pyogenes, S. mutans, K. pneumoniae, P. aeruginosa, C. albicans [65]

XCL1/Lymphotactin E. coli, S. aureus, S. typhimurium, C. albicans [59,60]

CX3CL/Fractalkine No activity on E. coli, S. aureus [59]

doi:10.1371/journal.pone.0004769.t001

SpeB Degrades Chemokines
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negative CXC-chemokines CXCL9, CXCL10, and CXCL11,

where CXCL9 was processed to a smaller fragment rather than

being degraded, CXCL10 was almost completely degraded, and

CXCL11 was completely degraded. Furthermore, SpeB processes

CXCL9 at lower concentrations and the generated fragment is

resistant to further degradation even after prolonged incubation or

higher concentrations of SpeB (Fig. 1B and data not shown). It

should be noted that in all SDS-PAGE separations except in

Fig. 1B, we utilized an SDS-PAGE loading buffer containing

dithiothreitol (DTT) and iodacetamide to disrupt oligomers of

chemokines. In the experiments shown in Fig. 1B we used

standard SDS-PAGE loading buffer only containing b-mercapto-

ethanol as a reducing agent. This allows for the visualization of

oligomers, and therefore our interpretation of Fig. 1B is that SpeB

either aids in the disruption of CXCL9 oligomers, or has direct

proteolytic activity on both monomers and oligomers of CXCL9.

Furthermore, CXCL9 was partly processed to fragments,

comparable to what could be seen with purified SpeB, after

incubation with sterile filtered culture supernatant from wild type

AP1 bacteria, while supernatant from the isogenic SpeB negative

strain did not hydrolyze CXCL9 (Fig 1C). This indicates that

under these conditions there is no other secreted factor than SpeB

from S. pyogenes that can degrade CXCL9.

The three CXC chemokines CXCL9, 10, and 11 are closely

related, act through the same receptor (CXCR3), are expressed in

the context of streptococcal pharyngitis, are antibacterial towards

S. pyogenes [31], and are induced by the cell wall-anchored M

protein from S. pyogenes [32]. We therefore decided to further

elucidate the receptor activating and antimicrobial activity of

CXCL9, CXCL10, and CXCL11 after SpeB hydrolysis.

Figure 1. SpeB degrades or processes several human chemokines. Panel A: The streptococcal cysteine proteinase was incubated with
human recombinant chemokines and separated on 16.5% Tris-Tricine SDS-PAGE. Chemokines (standardized ligand and common name) are indicated
above the panels and presence or absence of SpeB during incubation is indicated with minus or plus signs below the panels. Panel B: Recombinant
MIG/CXCL9 was incubated with 1, 0.1, or 1 pmol of active SpeB and separated on 16.5% Tris-Tricine SDS-PAGE. CXCL9 incubated with buffer alone is
shown to the left. Panel C: Two micrograms of recombinant human CXCL9 was incubated with dilutions (as indicated) of sterile filtered culture
supernatants from wild type S. pyogenes AP1 and SpeB-negative isogenic derivative AL1 and separated on 16.5% Tris-Tricine SDS-PAGE. CXCL9
incubated with buffer alone is shown to the left.
doi:10.1371/journal.pone.0004769.g001
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CXCL9, but not CXCL10 and CXCL11 remains
antibacterial after SpeB hydrolysis

In particular CXCL9, and to some degree CXCL10, CXCL11,

seem to be important for the antibacterial activity against S.

pyogenes on inflamed respiratory tract epithelium [31]. We

therefore investigated how SpeB cleavage affected the antimicro-

bial activity of these three chemokines on S. pyogenes strain AP1 of

the important M1 serotype. A viable count assay revealed that, not

surprisingly, the completely degraded CXCL11 and the nearly

completely degraded CXCL10 had very low or no killing activity

towards S. pyogenes AP1 bacteria, while the corresponding intact

CXCL10 and CXCL11 very efficiently killed the bacteria (Fig. 2B,

CXCL10 and CXCL116SpeB). This was also confirmed by

transmission electron microscopy (TEM) of bacteria incubated

with intact and SpeB-treated CXCL10 and CXCL11, where both

CXCL10 and CXCL11 caused membrane disruption and

disintegration of bacterial chains while SpeB-treated CXCL1010

and CXCL11 had no visible effect on that bacteria when

compared to bacteria incubated with buffer alone (Fig. 2B,

Control, CXCL10 and CXCL11, Buffer / SpeB). In contrast to

the findings for CXCL10 and CXCL11, there was no significant

difference in killing of AP1 bacteria between SpeB-treated and

intact CXCL9 (Fig. 2A, CXCL96SpeB). This was also confirmed

by TEM where CXCL9 irrespective of SpeB-treatment caused

membrane disruption and disintegration of bacterial chains

(Fig 2B, CXCL9, Buffer / SpeB).

Taken together, these experiments indicate that SpeB destroys

the antibacterial activity of CXCL10 and CXCL11, while SpeB-

processing of CXCL9 with loss of nearly half of the molecule does

not influence the potent antibacterial activity of CXCL9 against S.

pyogenes.

SpeB-cleaved CXCL9 does not signal through CXCR3
Since the SpeB-generated CXCL9 fragment had retained

antibacterial activity, we decided to examine if the receptor

activating properties were affected. In order to do this, we

incubated CXCL9 under reducing conditions (DTT) with or

without SpeB. To minimize the proteolytic activity SpeB might

have on cells, we terminated the reactions using the specific

cysteine proteinase inhibitor E-64 [43]. These samples were

analyzed by Tris-Tricine SDS-PAGE revealing that DTT and E-

64 treated CXCL migrated as an apparently slightly smaller

protein than untreated CXCL9 (Fig. 3A, lanes A and C). This

could possibly be explained by some minor spontaneous hydrolysis

of CXCL9. In contrast, addition of SpeB to the reaction led to a

complete conversion of CXCL9 into a fragment with an apparent

mass of approx. 10 kDa (Fig. 3A, lane B). Intact and SpeB-treated

CXCL9 was then investigated for receptor interaction by

measuring their effects on intracellular calcium levels in

CXCR3-transfected pre-B cells. The results show that SpeB-

processed CXCL9 had lost all the receptor-stimulating capacity of

intact CXCL9.

Identification and purification of the SpeB-generated
fragment of CXCL9

The finding that SpeB-processed CXCL9 had retained

antibacterial activity but lost its receptor stimulating activity was

somewhat surprising. We therefore attempted to identify the SpeB-

generated fragment of CXCL9 by mass spectrometry, after several

failed attempts to obtain an NH2-terminal sequence by Edman

degradation. CXCL9 was digested with SpeB as described above

for the receptor activating experiments and analyzed using

MALDI-TOF MS and matching against theoretical fragments of

the known CXCL9 holopeptide. These experiments demonstrated

two major CXCL9 cleavage products of 6,290.482 and 6,306.314

Dalton respectively (Fig. 4A). The Expasy FindPept tool analysis

revealed that this corresponds to a peptide from CXCL9 spanning

Figure 2. The effect of SpeB on the antibacterial activity of
0.5 mM CXCL9, CXCL1010, and CXCL11. Panel A: CXCL9, CXCL10,
and CXCL11 incubated with SpeB were compared to the intact
molecules for killing of S. pyogenes strain AP1. Bars represent mean
bacterial killing in percent with standard deviation determined from at
least three independent experiments. Panel B: Transmission electron
micrographs of AP1 bacteria incubated with intact (CXCL9-11, Buffer) or
SpeB treated (CXCL9-11, SpeB) CXCL9, CXCL10, and CXCL11. Control
bacteria were incubated with buffer alone. Scale bar within each picture
represents 1 mm.
doi:10.1371/journal.pone.0004769.g002
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amino acids 18 to 73 with a mass error of 0.03 Da (Fig. 4B).

Furthermore, the additional peak most likely represents the mass

of the same peptide but with an oxidized tryptophan (Fig. 4B, W),

strengthening the identification of the peptide within CXCL9.

This suggests, that the proteolytic activity of SpeB on CXCL9

occurs both in the amino-terminal and carboxy-terminal part of

the molecule, generating a fragment spanning the amino acids 18

to 73 of the CXCL9 holopeptide.

In order to confirm the antibacterial activity of the SpeB

generated CXCL9 fragment, a peptide spanning amino acids 18

to 73 of CXCL9 was synthesized. This peptide had no receptor

stimulating activity that was expected, but somewhat surprising the

antibacterial activity was also very low (data not shown). This

could be interpreted as a misidentification of the fragment or that

the synthetic peptide did not have its functionally correct

conformation. In order to elucidate this, we purified SpeB-

processed CXCL9 using anion exchange chromatography. This

approach is based on the fact that minor remaining fragments,

especially from the carboxy-terminal end of CXCL9 are highly

positively charged and would, under the conditions used, be

filtrated through the column, while the 18–73 fragment with a

lower pI will interact with the matrix (See Table 2). Using this

method we could purify the SpeB generated CXCL9 fragment to

homogeneity (Fig. 5, inset). This purified fragment was subse-

quently tested for antibacterial activity against S. pyogenes using the

viable count assay as described above. This revealed that SpeB-

generated MIG 18–73 has an antibacterial activity against S.

pyogenes comparable to intact CXCL9 (Fig. 5).

Homology modeling of the SpeB generated CXCL9
fragment

It was somewhat surprising that CXCL9 was much more

resistant to SpeB compared to the closely related molecules

CXCL10 and CXCL11. When aligning the amino acid sequences

of SpeB-processed CXCL9 with CXCL10 and CXCL11, there

are no obvious explanations for this phenomenon except minor

stretches of divergent sequence (Fig. 6A). Therefore, we generated

a structure homology model of SpeB-processed CXCL9 using the

recently developed M4T method [44] with a variant form of

CXCL5 [45] as template. This model was compared to the known

structures of CXCL10 and CXCL11 [46,47]. This revealed that

Figure 3. SpeB-hydrolyzed CXCL9 does not signal through
CXCR3. Panel A: CXCL9 was incubated with SpeB / DTT or DTT and
terminated by addition of the cysteine proteinase inhibitor E-64.
Samples were separate on 16.5% SDS-PAGE and compared with intact
CXCL9. Panel B: Analysis of calcium flux in Fura-2 loaded CXCR3-
expressing pre-B cells upon stimulation with MIG incubated with SpeB /
DTT or CXCL9 incubated with DTT alone, both terminated with E-64.
Peak values of the Ex340/380 ratio fluorescence curves are presented as
means and standard deviations from three independent experiments.
doi:10.1371/journal.pone.0004769.g003

Figure 4. CXCL9 is trimmed amino-terminally and carboxy-
terminally by SpeB. Panel A: SpeB-processed CXCL9 was analyzed by
MALDI-TOF mass spectroscopy. Masses in Dalton are indicated above
the to main intensity peaks. Panel B: The primary sequence of mature
CXCL9 with the proposed SpeB-generated fragment constituting amino
acids 18–73 in bold. The potentially oxidized tryptophan at position 67
is underlined.
doi:10.1371/journal.pone.0004769.g004
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SpeB-processed CXCL9 is strikingly similar to mature CXCL10

and CXCL11 with three amino-terminal antiparallel b-sheets and a

carboxy-terminal a-helix (Fig. 6B). Some of the differences that can

be noted is that CXCL11 has a somewhat less compact structure

compared to both CXCL9 and CXCL10 with several internal

flexible loops, and that CXCL has an additional internal predicted

310-helix between the b-sheets and the carboxy-terminal a-helix.

Discussion

For the first time we show that the cysteine proteinase SpeB

from the important human pathogen S. pyogenes has differential

proteolytic activity on human chemokines. Most chemokines are

completely degraded, while a few are partly or completely resistant

to the proteolytic activity of SpeB. The differential activity seen on

the closely related ELR-negative CXC chemokines CXCL9,

CXCL10, and CXCL11 was particularly interesting, since these

chemokines are highly expressed by inflamed pharyngeal epithe-

lium and have strong antibacterial activity against S. pyogenes [31].

More detailed analysis of these chemokines revealed that CXCL10

and CXCL11 were completely degraded by SpeB, resulting in loss

of antibacterial activity and consequently also receptor stimulating

activity. In contrast, CXCL9 has a SpeB-resistant core spanning

amino acids 18–73 that has no receptor stimulating activity but

with retained antibacterial activity against S. pyogenes. The finding

that such a fragment of CXCL9 has no CXR3-stimulating activity

is in concordance with previous findings that CXCL9 1–74 and

74–103 have low or no chemotactic activities [48], and further

establishes that both the carboxy-terminal and amino-terminal

parts of MIG are important for activation of the receptor. Our

previous finding that the synthetic peptide CXCL9 57–83 has a

strong antibacterial against S. pyogenes [31] could appear as being in

conflict with our present finding that synthetic CXCL9 18–73 is

not antibacterial and thereby indicate a misidentification of the

SpeB generated fragment. In addition to what we consider

unambiguous mass spectroscopy identification, CXCL9 57–83 is

derived from the putative amphiphatic a-helix containing a

classical sequence of antibacterial amino acids. CXCL9 18–73 on

the other hand is derived from the NH2-terminal region of the

holopeptide, and only contains some of the COOH-terminal

antibacterial motifs. Native CXCL9 (and recombinant) is held

together by two disulphide bonds corresponding to what in

CXCL8 and CXCL10 have been shown to be crucial for

oligomerization. The peptide CXCL9 18–73 is synthesized as a

linear peptide and it is very unlikely that it can adopt a structure

that allows the naturally occurring oligomerization. We hypoth-

esize that CXCL9 18–73 fragments generated by SpeB oligomer-

ize and thereby expose their antibacterial motifs in combination,

enhancing the antibacterial activity.

The structural differences between the homology model of

CXCL9 18–73 on one hand, and CXCL10 and CXCL11 on the

other hand, might partly explain the SpeB resistance of this part of

CXCL9; since SpeB is known to preferentially cleave extended

loops [49]. Nevertheless, most of the explanation probably lies

within the part of CXCL9 that is not in the model; the amino-

terminal and carboxy-terminal degraded by SpeB cannot be

modeled, indicating that these parts are largely unstructured or

flexible. This is also supported by the fact that there currently is no

experimentally determined structure of CXCL9. These potentially

unstructured or flexible parts of CXCL9 might serve as ‘‘bait’’ for

SpeB and other proteases to divert the activity from the

antibacterial core of the molecule. From an evolutionary point

of view, it is interesting that CXCL9 seems to have evolved

towards a robust antibacterial chemokine with relatively weak

receptor interaction, while CXCL10 and CXCL11 both have

more efficient interaction with the receptor but are less

antibacterial and more protease sensitive than CXCL9. What is

very surprising is that the highly antibacterial 18–73 fragment of

CXCL9 has a predicted structure that is very similar to CXCL10

and CXCL11, but is not as highly positively charged as these

molecules (Fig 6B and Table 2). This might indicate that the

Table 2. Biochemical properties of CXCL10, CXCL11 and CXCL9 (intact and SpeB cleaved).

Peptide
Molecular mass
(Da) pI

No. of hydrophobic
residues

No. of hydrophilic
residues

Positive
residues

Negative
residues

CXCL10 8645.4 11.22 31 23 17 6

CXCL11 8306.10 10.34 30 20 17 6

CXCL9 11723.38 10.59 29 38 29 7

CXCL9 18–73 6292.66 8.39 22 18 9 7

doi:10.1371/journal.pone.0004769.t002

Figure 5. Dose dependent killing of S. pyogenes killing by
CXCL9 and the SpeB generated fragment. The purified 18–73
SpeB generated CXCL9 fragment was compared to the intact CXCL9 for
killing of S. pyogenes strain AP1. Curves represent mean bacterial killing
in percent with standard error determined from at least three
independent experiments. Inset: Intact CXCL9 and ion exchange
chromatography purified SpeB generated CXCL9 fragment separated
on 16.5% SDS-PAGE.
doi:10.1371/journal.pone.0004769.g005

SpeB Degrades Chemokines

PLoS ONE | www.plosone.org 6 March 2009 | Volume 4 | Issue 3 | e4769



overall structure of an chemokine is more important for

antibacterial activity than overall charge, at least against S. pyogenes

and possibly other related Gram-positive bacteria.

Taken together, or results indicate that SpeB has the capacity to

destroy most of the signaling properties of chemokines expressed

by an inflamed epithelium by degradation of CXCL10, CXCL11,

and removing the signaling activity of CXCL9 through CXCR3.

CXCL9 on the other hand seems to have evolved to resist the

SpeB activity and to preserve its antibacterial activity towards S.

pyogenes. In the context of a bacterial infection with release of

several chemokines, other antimicrobial compounds, and impor-

tantly other bacterial proteins the situation is very complex and

cannot be reduced to a single interaction between a protease and a

substrate. For instance, the streptococcal inhibitor of complement

(Sic) can probably inhibit the antibacterial activity of the SpeB

generated CXCL9 fragment since it is known to inhibit intact

CXCL9-11 [31]. Furthermore, the cell wall-anchored serine

proteinase SpyCEP, most likely contributes to inhibition of pro-

inflammatory and antibacterial activities of chemokines during

infection [38,39,40,41,50]. Nevertheless, we believe that our

results deepen the understanding of innate immunity control of

S. pyogenes and emphasize the role for CXCL9 as one of the major

antimicrobial compounds on inflamed airway epithelium.

Materials and Methods

Chemicals, bacterial strains and proteins
Recombinant human chemokines were purchased from Pepro-

tech (London, UK). All other chemicals were purchased from

Sigma (St Louis, MO) if not noted otherwise. The S. pyogenes strain

AP1 (40/58) of serotype M1 from the WHO Collaborating Center

for Reference and Research on Streptococci, Prague, Czech

Republic. The S. pyogenes strain AL1 is an isogenic derivative of

strain AP1 lacking active SpeB production generated as previously

described [19,51]. For maximal SpeB production, S. pyogenes was

cultured in C-medium (CM) consisting of 0.5% (w/v) Proteose

Peptone No. 2 (Difco, Detroit, MI) and 1.5% (w/v) yeast extract

(Oxoid, Basingstoke, England) dissolved in CM buffer (10 mM

K2PO4, 0.4 mM MgSO4, and 17 mM NaCl pH 7.5) [52]. When

culturing strain AL1, CM was supplemented with 150 mg / ml of

kanamycin. SpeB was purified from the culture supernatant of

AP1 cultured in CM using ion exchange chromatography as

previously described [53]. Activity of SpeB was determined by

active site titration using the specific cysteine proteinase inhibitor

L-trans-epoxysuccinylleucylamido(4-guanidino)butane (E-64) [43]

as previously described [54]. Throughout the paper, the amount of

SpeB is described as pmol active enzyme.

Incubation of chemokines with SpeB or culture medium
Two mg each of recombinant chemokines CXCL9, CXCL10,

ICXCL11, CXCL4, CXCL8, CXCL1, CXCL2, CXCL3, CXCL5,

CXCL6, CXCL7, CXCL12, CXCL13, CXCL14, CXCL16,

CCL5, CCL20, CCL28, XCL1, and CX3CL1 were incubated

with 1 pmol SpeB in PBS supplemented with 10 mM dithiothreitol

(DTT) for 2 h at 37uC. Two mg of recombinant CXCL9 was

incubated for 2 h at 37uC with 5, 0.5, or 0.05 ml of 0.2 mm-filtered

culture medium from AP1 or AL1 in PBS supplemented with

10 mM DTT. Samples were analyzed on 16.5% Tris-Tricine SDS-

PAGE and stained with Commassie Brilliant Blue.

Viable count assay
AP1 bacteria were cultured to mid-exponential growth phase in

Todd-Hewitt Broth (TH) (Becton Dickinson, Sparks, MD),

washed, and diluted in 10 mM Tris-HCl (pH 7.5) with 5 mM

Figure 6. Sequence and structural comparison of CXCL10, CXCL11, and SpeB-processed CXCL9. Panel A: ClustalW alignment of the
SpeB-generated fragment of CXCL9 (18–73) with mature CXCL10 and CXCL11. Amino acid identities are shown in dark grey, similarities in light grey,
and consensus sequence is shown under the alignment. Panel B, visualization of the known structures of mature CXCL10 and CXCL11, and homology
model of the SpeB-generated CXCL9 fragment (18–73) using a CXCL7 -variant as the template. H-strands are shown in yellow, Æ-helices in purple, 310-
helices in blue, and loops in turquoise.
doi:10.1371/journal.pone.0004769.g006
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glucose. 50 ml of bacteria (26106 colony forming units (CFU) /

mL) were incubated together with chemokines, at various

concentrations or buffer alone for 2 h at 37uC. To quantitate

bactericidal activity, serial dilutions of the incubation mixtures

were plated on agar-solidified TH and the number of CFUs were

determined after an overnight incubation at 37uC.

CXCL9/SpeB incubation, CXCR3 transfectants, and
calcium flux experiments

10 mg of CXCL9 was incubated with 5 pmol SpeB in 20 ml PBS

supplemented with 10 mM DTT or in PBS/DTT alone for 2 h at

37uC. Reactions were terminated by addition of E-64 to a final

concentration of 20 mM. Samples were analyzed on 16.5% Tris-

Tricine SDS-PAGE. Stable transfectants of the pre-B cell line 300-

19 expressing CXCR3 [28], were used to assay for receptor

dependent responsiveness to CXCL9 and SpeB-processed CXCL9,

respectively. Fura-2 loaded transfectants were stimulated using

100 nM intact CXCL9, CXCL9 incubated with SpeB / DTT / E-

64 as described above, or SpeB / DTT / E-64. The [Ca2+]i -related

fluorescence changes were recorded as described [28,55,56].

Negative staining and transmission electron microscopy
Bacteria were incubated for 2 h at 37uC in incubation buffer with

the chemokines placed on a carbon coated copper grid and negatively

stained as described by Engel and Furthmayr [21]. The samples were

washed twice with water and stained on two drops 0.75% uranyl

formate. Samples were observed using a Jeol JEM 1230 transmission

electron microscope operated at 60 kV accelerating voltage, and

recorded with a Gatan Multiscan 791 CCD camera.

Statistical analysis
Statistical significance was determined based on the Student’s t-

test for paired observations.

Determination of the CXCL9 cleavage sites by MALDI-
TOF Mass Spectrometry (MS)

The CXCL9/SpeB reactions, terminated with E-64 as

described above, were desalted and concentrated using C18

Ziptips (Millipore, Bedford, MA) according to the manufacturer’s

instructions. Briefly, the micro-columns were washed with 0.1%

TFA and eluted with 1 ml 50–90% acetonitrile in 0.1% TFA

directly onto MALDI Anchorchip target plates pre-spotted with

1 ml of 1 mg/ml sinnapinic acid (SA) in 90% acetonitrile / 0.1%

TFA. The MALDI target plate was loaded into a Bruker Reflex III

MALDI-TOF mass spectrometer (Bruker Daltonic GmbH, Bre-

men, Germany). The polarity of the instrument was set for positive

ions with a delayed extraction and the detector for reflector mode.

The acceleration voltage was 20 kV and 50–75 shots per sample

were summed in each spectrum for an improved signal-to-noise

ratio. Spectra were calibrated using insulin and myoglobin

standards diluted to 1–2 mM and applied as above in 1 ml of

90% acetonitrile/0.1% TFA. Evaluated machine-specific proto-

cols and settings for the mass spectrometer were used for each of

the calibrants. The EXPASY server FindPept tool (http://www.

expasy.ch) was used to search for experimentally obtained peptide

masses matching with the CXCL9 sequence considering mass

values as well as post-translational / experimental modifications of

CXCL9. Tolerance was set to 0.5 Daltons, cysteines in reduced

form and methionines as well as tryptophans as oxidized.

Purification of the SpeB-generated CXCL9 fragment
For ion exchange purification of the SpeB generated CXCL9

fragments 200 mg of SpeB was incubated with 40 pmol SpeB and

10 mM DTT in 400 ml of PBS. The sample was applied to a

HiTrap SP HP column (GE Healthcare, Uppsala, Sweden) using

an Äkta Prime (GE Healthcare) liquid chromatography system.

The column was washed with 5 column volumes of 50 mM

HEPES (pH 7.5) and proteins were eluted using a linear gradient

over 25 column volumes reaching 1 M NaCl. The fractions were

analyzed on SDS-PAGE and relevant fractions were pooled and

concentrated using a Centricon YM 3000 (Millipore).

Homology modeling and structural comparisons
A homology model of the SpeB-processed form of CXCL9 was

generated using Multiple Mapping Method with Multiple

Templates (M4T) (http://www.fiserlab.org/servers/m4t) [44]

using a NAP-2/CXCL7 variant (PDB 1TVX) [45] as a template.

The CXCL9 model and the previously determined structures of

CXCL10 (PDB 1LV9) [46] and CXCL11 (PDB 1RJT) [47] were

visualized using VMD 1.8.6 (http://www.ks.uiuc.edu/Research/

vmd/) [57] and high-resolution images were generated using the

Tachyon ray tracer [58].

Acknowledgments

Pia Andersson, Ulla Johannesson, Maria Baumgarten, and Veronica

Johansson are acknowledged for excellent technical assistance. We are

most grateful to Dr. Bernhard Moser (The Theodor Kocher Institute,

University of Bern, Switzerland) for providing CXCR3 transfectants.

Author Contributions

Conceived and designed the experiments: AE HL MC. Performed the

experiments: AIO HL MY MM AK MC. Analyzed the data: AE AIO HL

MM AK MC. Contributed reagents/materials/analysis tools: AE AIO

MM AK MC. Wrote the paper: MC.

References

1. Bisno AL, Stevens DL (1996) Streptococcal infection of skin and soft tissue.

N Engl J Med 334: 240–245.

2. Bisno AL (2001) Acute pharyngitis. N Engl J Med 344: 205–211.

3. Vinh DC, Embil JM (2005) Rapidly progressive soft tissue infections. Lancet
Infect Dis 5: 501–513.

4. Talkington DF, Schwartz B, Black CM, Todd JK, Elliott J, et al. (1993)

Association of phenotypic and genotypic characteristics of invasive Streptococcus

pyogenes isolates with clinical components of streptococcal toxic shock syndrome.

Infect Immun 61: 3369–3374.

5. Kuo CF, Wu JJ, Lin KY, Tsai PJ, Lee SC, et al. (1998) Role of streptococcal

pyrogenic exotoxin B in the mouse model of group A streptococcal infection.
Infect Immun 66: 3931–3935.

6. Lukomski S, Burns EH, Wyde PR, Podbielski A, Rurangirwa J, et al. (1998)

Genetic inactivation of an extracellular cysteine protease (SpeB) expressed by
Streptococcus pyogenes decreases resistance to phagocytosis and dissemination to

organs. Infect Immun 66: 771–776.

7. Lukomski S, Montgomery CA, Rurangirwa J, Geske RS, Barrish JP, et al. (1999)

Extracellular cysteine protease produced by Streptococcus pyogenes participates in

the pathogenesis of invasive skin infection and dissemination in mice. Infect
Immun 67: 1779–1788.

8. Lukomski S, Sreevatsan S, Amberg A, Reichardt W, Woischnik M, et al. (1997)

Inactivation of Streptococcus pyogenes extracellular cysteine protease signifi-
cantly decreases mouse lethality of serotype M3 and M49 strains. J Clin Invest

99: 2574–2580.

9. Ashbaugh CD, Wessels MR (2001) Absence of a cysteine protease effect on

bacterial virulence in two murine models of human invasive group A
streptococcal infection. Infect Immun 69: 6683–6688.

10. Ashbaugh CD, Warren HB, Carey VJ, Wessels MR (1998) Molecular analysis of

the role of the group A streptococcal cysteine protease, hyaluronic acid capsule,
and M protein in a murine model of human invasive soft-tissue infection. J Clin

Invest 102: 550–560.

11. Matsuka YV, Pillai S, Gubba S, Musser JM, Olmsted SB (1999) Fibrinogen
cleavage by the Streptococcus pyogenes extracellular cysteine protease and generation of

antibodies that inhibit enzyme proteolytic activity. Infect Immun 67: 4326–4333.

12. Wolf BB, Gibson CA, Kapur V, Hussaini IM, Musser JM, et al. (1994)

Proteolytically active streptococcal pyrogenic exotoxin B cleaves monocytic cell

SpeB Degrades Chemokines

PLoS ONE | www.plosone.org 8 March 2009 | Volume 4 | Issue 3 | e4769



urokinase receptor and releases an active fragment of the receptor from the cell

surface. J Biol Chem 269: 30682–30687.
13. Kapur V, Majesky MW, Li LL, Black RA, Musser JM (1993) Cleavage of

interleukin 1b (IL-1b) precursor to produce active IL-1b by a conserved

extracellular cysteine protease from Streptococcus pyogenes. Proc Natl Acad Sci U S A
90: 7676–7680.

14. Kapur V, Topouzis S, Majesky MW, Li L, Hamrick MR, et al. (1993) A
conserved Streptococcus pyogenes extracellular cysteine protease cleaves human

fibronectin and degrades vitronectin. Microb Pathog 15: 327–346.

15. Herwald H, Collin M, Müller-Esterl W, Björck L (1996) Streptococcal cysteine
proteinase releases kinins: a novel virulence mechanism. J Exp Med 184:

665–673.
16. Burns EH, Marciel AM, Musser JM (1996) Activation of a 66-kDa human

endothelial cell matrix metalloprotease by Streptococcus pyogenes extracellular
cysteine proteinase. Infect Immun 64: 4744–4750.

17. Schmidtchen A, Frick IM, Björck L (2001) Dermatan sulphate is released by

proteinases of common pathogenic bacteria and inactivates antibacterial alpha-
defensin. Mol Microbiol 39: 708–713.

18. Stockbauer KE, Magoun L, M. L, Burns EH, Gubba S, et al. (1999) A natural
variant of the cysteine proteinase virulence factor of group A Streptococcus with an

arginine-glycine-aspartic acid (RGD) motif preferentially binds human integrins

avb3 and aIIbb3. Proc Natl Acad Sci USA 96: 242–247.
19. Collin M, Olsén A (2001) EndoS, a novel secreted protein from Streptococcus

pyogenes with endoglycosidase activity on human IgG. EMBO J 20: 3046–3055.
20. Collin M, Olsén A (2001) Effect of SpeB and EndoS from Streptococcus pyogenes on

human immunoglobulins. Infect Immun 69: 7187–7189.
21. Tsao N, Tsai WH, Lin YS, Chuang WJ, Wang CH, et al. (2006) Streptococcal

pyrogenic exotoxin B cleaves properdin and inhibits complement-mediated

opsonophagocytosis. Biochem Biophys Res Commun 339: 779–784.
22. Strieter RM, Belperio JA, Keane MP (2002) Cytokines in innate host defense in

the lung. J Clin Invest 109: 699–705.
23. Sauty A, Dziejman M, Taha RA, Iarossi AS, Neote K, et al. (1999) The T cell-

specific CXC chemokines IP-10, Mig, and I-TAC are expressed by activated

human bronchial epithelial cells. J Immunol 162: 3549–3558.
24. Baggiolini M (2001) Chemokines in pathology and medicine. J Intern Med 250:

91–104.
25. Luster AD, Ravetch JV (1987) Biochemical characterization of a gamma

interferon-inducible cytokine (IP-10). J Exp Med 166: 1084–1097.
26. Liao F, Rabin RL, Yannelli JR, Koniaris LG, Vanguri P, et al. (1995) Human

Mig chemokine: biochemical and functional characterization. J Exp Med 182:

1301–1314.
27. Cole KE, Strick CA, Paradis TJ, Ogborne KT, Loetscher M, et al. (1998)

Interferon-inducible T cell alpha chemoattractant (I-TAC): a novel non-ELR
CXC chemokine with potent activity on activated T cells through selective high

affinity binding to CXCR3. J Exp Med 187: 2009–2021.

28. Loetscher M, Gerber B, Loetscher P, Jones SA, Piali L, et al. (1996) Chemokine
receptor specific for IP10 and mig: structure, function, and expression in

activated T-lymphocytes. J Exp Med 184: 963–969.
29. Xanthou G, Williams TJ, Pease JE (2003) Molecular characterization of the

chemokine receptor CXCR3: evidence for the involvement of distinct
extracellular domains in a multi-step model of ligand binding and receptor

activation. Eur J Immunol 33: 2927–2936.

30. Cole AM, Ganz T, Liese AM, Burdick MD, Liu L, et al. (2001) Cutting edge:
IFN-inducible ELR- CXC chemokines display defensin-like antimicrobial

activity. J Immunol 167: 623–627.
31. Egesten A, Eliasson M, Johansson HM, Olin AI, Mörgelin M, et al. (2007) The

CXC chemokine MIG/CXCL9 is important in innate immunity against

Streptococcus pyogenes. J Infect Dis 195: 684–693.
32. Eliasson M, Frick I, Collin M, Sørensen OE, Björck L, et al. (2007) M1 protein

of Streptococcus pyogenes increases production of the antibacterial CXC chemokine
MIG/CXCL9 in pharyngeal epithelial cells. Microb Pathog 43: 224–233.

33. Van Den Steen PE, Wuyts A, Husson SJ, Proost P, Van Damme J, et al. (2003)

Gelatinase B/MMP-9 and neutrophil collagenase/MMP-8 process the chemo-
kines human GCP-2/CXCL6, ENA-78/CXCL5 and mouse GCP-2/LIX and

modulate their physiological activities. Eur J Biochem 270: 3739–3749.
34. Van den Steen PE, Husson SJ, Proost P, Van Damme J, Opdenakker G (2003)

Carboxyterminal cleavage of the chemokines MIG and IP-10 by gelatinase B
and neutrophil collagenase. Biochem Biophys Res Commun 310: 889–896.

35. Potempa J, Pike R (2009) Corruption of innate immunity by bacterial proteases.

J Innate Immun 1: 70–87.
36. Leidal KG, Munson KL, Johnson MC, Denning GM (2003) Metalloproteases

from Pseudomonas aeruginosa degrade human RANTES, MCP-1, and ENA-78.
J Interferon Cytokine Res 23: 307–318.

37. Schmidtchen A, Frick IM, Andersson E, Tapper H, Björck L (2002) Proteinases

of common pathogenic bacteria degrade and inactivate the antibacterial peptide
LL-37. Mol Microbiol 46: 157–168.

38. Hidalgo-Grass C, Dan-Goor M, Maly A, Eran Y, Kwinn LA, et al. Effect of a
bacterial pheromone peptide on host chemokine degradation in group A

streptococcal necrotising soft-tissue infections. Lancet 363: 696–703.
39. Edwards RJ, Taylor GW, Ferguson M, Murray S, Rendell N, et al. (2005)

Specific C-terminal cleavage and inactivation of interleukin-8 by invasive disease

isolates of Streptococcus pyogenes. J Infect Dis 192: 783–790.

40. Hidalgo-Grass C, Mishalian I, Dan-Goor M, Belotserkovsky I, Eran Y, et al.

(2006) A streptococcal protease that degrades CXC chemokines and impairs

bacterial clearance from infected tissues. EMBO J 25: 4628–4637.

41. Zinkernagel A, Timmer A, Pence M, Locke J, Buchanan J, et al. (2008) The IL-8

protease SpyCEP/ScpC of group A Streptococcus promotes resistance to

neutrophil killing. Cell Host Microbe 4: 170–178.

42. Sumby P, Zhang S, Whitney AR, Falugi F, Grandi G, et al. (2008) A chemokine-

degrading extracellular protease made by group A Streptococcus alters pathogen-

esis by enhancing evasion of the innate immune response. Infect Immun 105:

1698–1703.

43. Barrett AJ, Kembhavi AA, Brown MA, Kirshke H, Tamai M, et al. (1982) L-

trans-Epoxysuccinyl-leucylamido (4-guanidino)butane (E-64) and its analogues

as inhibitors of cysteine proteinases including cathepsins B, H and L. Biochem J

201: 189–198.

44. Fernandez-Fuentes N, Madrid-Aliste CJ, Rai BK, Fajardo JE, Fiser A (2007)

M4T: a comparative protein structure modeling server. Nucleic Acids Res 35:

W363–8.

45. Malkowski MG, Lazar JB, Johnson PH, Edwards BF (1997) The amino-terminal

residues in the crystal structure of connective tissue activating peptide-III (des10)

block the ELR chemotactic sequence. J Mol Biol 266: 367–380.

46. Booth V, Keizer DW, Kamphuis MB, Clark-Lewis I, Sykes BD (2002) The

CXCR3 binding chemokine IP-10/CXCL10: structure and receptor interac-

tions. Biochemistry 41: 10418–10425.

47. Booth V, Clark-Lewis I, Sykes BD (2004) NMR structure of CXCR3 binding

chemokine CXCL11 (ITAC). Protein Sci 13: 2022–2028.

48. Clark-Lewis I, Mattioli I, Gong JH, Loetscher P (2003) Structure-function

relationship between the human chemokine receptor CXCR3 and its ligands.

J Biol Chem 278: 289–295.

49. Doran JD, Nomizu M, Takebe S, Menard R, Griffith D, et al. (1999)

Autocatalytic processing of the streptococcal cysteine protease zymogen:

processing mechanism and characterization of the autoproteolytic cleavage

sites. Eur J Biochem 263: 145–151.

50. Sumby P, Barbian KD, Gardner DJ, Whitney AR, Welty DM, et al. (2005)

Extracellular deoxyribonuclease made by group A Streptococcus assists

pathogenesis by enhancing evasion of the innate immune response. Proc Natl

Acad Sci U S A 102: 1679–1684.
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