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Abstract

Background: Oxidative stress related genes modify the effects of ambient air pollution or tobacco smoking on lung function
decline. The impact of interactions might be substantial, but previous studies mostly focused on main effects of single
genes.

Objectives: We studied the interaction of both exposures with a broad set of oxidative-stress related candidate genes and
pathways on lung function decline and contrasted interactions between exposures.

Methods: For 12679 single nucleotide polymorphisms (SNPs), change in forced expiratory volume in one second (FEV1),
FEV1 over forced vital capacity (FEV1/FVC), and mean forced expiratory flow between 25 and 75% of the FVC (FEF25-75) was
regressed on interval exposure to particulate matter ,10 mm in diameter (PM10) or packyears smoked (a), additive SNP
effects (b), and interaction terms between (a) and (b) in 669 adults with GWAS data. Interaction p-values for 152 genes and
14 pathways were calculated by the adaptive rank truncation product (ARTP) method, and compared between exposures.
Interaction effect sizes were contrasted for the strongest SNPs of nominally significant genes (pinteraction,0.05). Replication
was attempted for SNPs with MAF.10% in 3320 SAPALDIA participants without GWAS.

Results: On the SNP-level, rs2035268 in gene SNCA accelerated FEV1/FVC decline by 3.8% (pinteraction = 2.561026), and
rs12190800 in PARK2 attenuated FEV1 decline by 95.1 ml pinteraction = 9.761028) over 11 years, while interacting with PM10.
Genes and pathways nominally interacting with PM10 and packyears exposure differed substantially. Gene CRISP2
presented a significant interaction with PM10 (pinteraction = 3.061024) on FEV1/FVC decline. Pathway interactions were weak.
Replications for the strongest SNPs in PARK2 and CRISP2 were not successful.

Conclusions: Consistent with a stratified response to increasing oxidative stress, different genes and pathways potentially
mediate PM10 and tobacco smoke effects on lung function decline. Ignoring environmental exposures would miss these
patterns, but achieving sufficient sample size and comparability across study samples is challenging.
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Introduction

Lung function is an important determinant of respiratory health

and life expectancy [1,2,3,4]. Its longitudinal course is affected by

different environmental exposures such as active tobacco smoking,

environmental tobacco smoke exposure [5], possibly workplace

exposures to dusts and fumes [6,7,8,9] as well as ambient air

pollution [10]. Both air pollution and tobacco smoke are known to

contain free radicals and to induce their direct formation at the

tissue level causing damage of cell walls, proteins and DNA, and

chronic tissue inflammation and remodeling in the long run

[11,12]. Upon exposure, different protein systems including those

scavenging reactive oxygen species (ROS) are up-regulated, and

the level of response is influenced by variation in underlying genes.

Likewise, polymorphisms in oxidative stress related candidate

genes like gluthathione s-transferases (GSTs), microsomal epoxide hydrox-

ylase (EPHX), or heme-oxygenase 1 (HMOX-1), have been associated

with lung function decline and chronic obstructive pulmonary

disease (COPD), a disease characterized by accelerated, progres-

sive lung function loss [13,14,15,16]. But most of these candidate

genes have not been consistently replicated across studies and

populations according to a recent review [15]. Similarly, genome-

wide association studies (GWAS) of lung function partially

struggled with replication [17,18]. Further, in GWAS on lung

function level or COPD prevalence [17,18,19,20,21,22] associa-

tion signals in known oxidative-stress genes were not strong [23].

Reasons for non-replication could be genetic heterogeneity

across populations, or also sub-phenotypes of disease [24].

However, it is also possible that differences in environmental

factors, and hence presence of gene-environment interaction play

a role. To the best of our knowledge, only one published genome-

wide interaction study examining the effect of farming exposure on

childhood asthma has taken into account gene-environment

interaction in respiratory disease to date [25]. This gap in the

scientific literature is probably due to increased sample size

requirements when assessing gene-environment interactions with

classical analysis methods [26,27]. However, their importance in

respiratory disease has previously been shown in candidate gene

studies focusing on single genes and SNPs therein [28,29,30], as

well as follow-up studies of GWAS [31,32].

Analysis methods such as pathway- or gene-set analyses [33] can

at least partly overcome sample size restrictions by reducing the

dimensionality of the data, and thus offer a promising alternative

study approach. Based on biological knowledge of genes and their

organization into molecular pathways, the longitudinal course of

lung function might be better explained by accumulating

interaction signals between environmental exposures and multiple

SNPs of the same gene, or different genes involved in the same

canonical pathway contributing to a functional entity in the

organism.

We thus aimed to investigate to which extent oxidative-stress

related genes and pathways interact significantly with interval

exposure to ambient particulate matter of mean diameter ,10 mm

(PM10) or active tobacco smoking on natural lung function decline

using genome-wide data from non-asthmatic adults of the Swiss

Study on Air Pollution and Lung and Heart Diseases in Adults

(SAPALDIA). SNP-level interaction signals were integrated onto

upper biological levels to identify significantly interacting genes

and pathways. The impact of PM10 exposure on lung function

decline was contrasted to tobacco smoking by comparing patterns

of associations at the gene- and pathway level, as well as

interaction effect sizes for the strongest interacting SNP within

genes.

Methods

Ethics Statement
All participants gave written informed consent. The study was

approved by the Overall Regional Ethics Commission for Clinical

Medicine (Swiss Academy of Medical Sciences, Basel, Switzerland)

and the responsible cantonal ethics committees of each study

centre (Ethics Commissions of the cantons Aarau, Basel, Geneva,

Grisons, Ticino, Valais, Vaud, and Zürich).

Study Population
SAPALDIA is a population-based cohort study established in

1991 to assess the effects of long-term exposure to ambient air

pollution on respiratory health, with a first follow-up examination

in 2002. Participants were residents from 8 communities

throughout Switzerland aged 18–60 years at baseline. Details of

the study design and methodology were published elsewhere

[10,34,35].

The current work is based on up to 669 non-asthmatic

participants with genome-wide data fulfilling quality control

criteria and complete data on sex, age, height, PM10- and

smoking exposure (see Figure S1). Participants without genome-

wide data served as replication sample.

Spirometric Measurements
Spirometry was performed without bronchodilation. Identical

spirometry protocols and devices (Sensormedics model 2200,

Yorba Linda, USA) were used in 1991 and 2002 [36,37].

Participants were in an upright sitting position and performed

three to eight forced expiratory lung function maneuvers

according to American Thoracic Society quality criteria [38]. At

least two acceptable measurements of forced vital capacity (FVC)

and forced expiratory volume in the first second (FEV1) were

obtained. Forced expiratory flow between 25 and 75% of the FVC

(FEF25–75) was recorded.

In the present study we studied the decline of FEV1, the ratio

FEV1/FVC and FEF25–75 between 1991 and 2002, as measures of

airway obstruction, calculated by subtracting the first measure-

ment from the second (measurement at SAPALDIA2– measure-

ment at SAPALDIA1).

Health Questionnaire Data
Smoking information was assessed by questionnaire. At each

examination, never smokers were defined as having smoked less

than 20 packs of cigarettes or 360 g of tobacco in their life, ex-

smokers as having quit smoking at least 30 days before the

interview, and current smokers as those who reported active

smoking [39]. Packyears smoked between baseline and follow-up

examination were used for comparison with interval PM10

exposure, and were calculated by dividing the number of cigarettes

per day by 20 (giving number of cigarette packs) and multiplying

the result with years of exposure.

Air pollution Exposure
Similarly to calculating packyears, interval PM10 exposure was

defined by summing individual average home outdoor exposure to

PM10 over each year of follow-up, giving estimates in (mg/m3) *

years. Annual average exposures were calculated by using

exposure estimates from Gaussian Dispersion models on a

200m6200m grid throughout Switzerland for years 1990 and

2000, and interpolating historical trends from fixed air pollution

monitoring stations. Participants were assigned individual annual

exposure estimates via their geo-referenced residence addresses,
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taking account of residence changes during follow-up. Details on

exposure modeling are given elsewhere [40].

SNP Genotyping and Imputation
Blood for DNA-analysis was drawn in 2002 in participants

giving consent to genetic analyses [34].

Genome-wide genotyping was done on the Illumina Human

610quad BeadChip in the framework of the EU-funded GABRI-

EL study [41], a large consortium aiming to uncover genetic and

environmental causes of asthma. The current work focused on the

non-asthmatic portion of participants.

5679589 successfully genotyped autosomal SNPs were imputed

to 2.5 Mio using MACH v 1.0 software [42] and the HapMap v22

CEPH reference panel of Utah residents with ancestry from

northern and western Europe [43].

Strict quality control (QC) was applied by excluding samples

with ,97% genotyping success rate, non-European origin, cryptic

relatedness or sex-inconsistencies, as well as SNPs with Hardy-

Weinberg equilibrium p-value,1024, call rate ,97%, minor

allele frequency (MAF) ,5% or low imputation quality (Rsq,0.5).

A total of 291689681 SNPs withstood QC, and genome-wide data

was finally available in 669 non-asthmatic individuals with

environmental exposure data.

Replication genotyping was attempted for two interacting SNPs

(rs360563 in gene CRISP2, and rs12190800 in PARK2) with

MAF.10%. Genotyping was done using the iPLEX Gold

MassARRAY (SEQUENOM, San Diego, USA) on the whole

SAPALDIA study population including the analysis sample, as the

costs for manual sample selection outweigh those of additional

genotyping. The replication sample consisted of 3320 successfully

genotyped participants with complete data for covariates and all

three lung function parameters (see Figure S1).

Definition of Oxidative-stress Genes and Pathways
Oxidative stress related genes were defined as either coding

proteins that directly scavenge or endogenously produce ROS,

their immediate regulators, or key genes in cascades triggered by

oxidative stress. They were identified by searching the Gene

Ontology database [44] with the term ‘‘response to oxidative

stress’’ and GeneCards with ‘‘oxidative stress’’ in the pathway field

of the advanced search option (http://www.genecards.org/index.

php?path = /Search/Advanced/, accessed November 2010). Re-

sulting gene lists were further enriched by literature reviews

[45,46,47,48,49]. By feeding the gene lists into Ingenuity Pathway

Analysis (IngenuityH Systems, www.ingenuity.com), 14 molecular

pathways related to oxidative stress and environmental exposures

of interest were identified (Table 1).

Gene regions were defined by retrieving transcription start and

end positions in the ‘gene track’ of the UCSC browser (http://

genome.ucsc.edu/) [50], genome build 18 (March 2006), and

adding 20 kilo-bases to each end. Referring to dbSNP version 126,

available SNP data was matched to gene regions. Data was

available for 152 autosomal genes (Table 1), of which 46 mapped

once to a pathway, 33 twice, and 37 three times or more. Thirty-

six genes did not map to one of the 14 pathways, but were related

to oxidative stress based on their function. Details on gene size,

SNP-coverage and pathway mapping are given in Table S1 (see

Table 1. Mapping of candidate oxidative-stress genes to molecular pathways of interest.

PATHWAY GENES

Arachidonic Acid
Metabolism

ALOX12 CYP1A1 CYP1A2 DHRS2 EPHX2 GPX1 GPX2 GPX3 GPX4 GPX5 GPX6 GPX7 GPX8 GSTK1 GSTT1 GSTZ1 MGST2 MGST3 PLA2G4A
PRDX6 PTGS1 PTGS2

Aryl Hydrocarbon Receptor
Signaling

ARNT CDKN1A CYP1A1 CYP1A2 EP300 FOS GSTK1 GSTM1 GSTM2 GSTM3 GSTM4 GSTM5 GSTO1 GSTO2 GSTP1 GSTT1 GSTT2 JUN MGST1
MGST2 MGST3 NFE2L2 NFKB1 NQO1 NQO2 RELA TP53

fMLP Signaling in
Neutrophils

MAP2K1 NCF2 NFKB1 NOX3 NOX4 PLCB1 PRKCA RAC1 RELA

Glutathione Metabolism GCLC GCLM GLRX GPX1 GPX2 GPX3 GPX4 GPX5 GPX6 GPX7 GPX8 GSR GSS GSTK1 GSTM1 GSTM2 GSTM3 GSTM4 GSTM5 GSTO1 GSTO2
GSTP1 GSTT1 GSTT2 GSTZ1 IDH1 MGST1 MGST2 MGST3 PRDX6

IL-6 Signaling CHUK COL1A1 FOS GRB2 JAK2 JUN MAP2K1 MAPK14 NFKB1 RELA

Metabolism of Xenobiotics
by Cytochrome P450

AKR1A1 CYP1A1 CYP1A2 DHRS2 EPHX1 GSTK1 GSTM1 GSTM2 GSTM3 GSTM4 GSTM5 GSTO1 GSTO2 GSTP1 GSTT1 GSTT2 GSTZ1 MGST1
MGST2 MGST3

Methane Metabolism CAT EPX LPO MPO PRDX1 PRDX2 PRDX5 PRDX6 TPO

Mitochondrial Dysfunction CAT GLRX2 GPX4 GPX7 GSR NDUFA12 NDUFA13 NDUFA6 NDUFS1 NDUFS2 NDUFS3 NDUFS4 NDUFS8 PARK2 PARK7 PRDX3 PRDX5
PSEN1 SNCA SOD2 TXN2 TXNRD2 UCP2

NF-kB Signaling CHUK EGFR EP300 INSR NFKB1 RAC1 RAC2 RELA RIPK1 TGFBR2 TLR4

NRF2-mediated Oxidative
Stress Response

ABCC1 AKR1A1 AKR7A2 AKR7A3 AOX1 CAT EP300 EPHX1 FOS FOSL1 GCLC GCLM GPX2 GSR GSTK1 GSTM1 GSTM2 GSTM3 GSTM4
GSTM5 GSTO1 GSTO2 GSTP1 GSTT1 GSTT2 HMOX1 JUN KEAP1 MAP2K1 MAPK14 MGST1 MGST2 MGST3 NFE2L2 NQO1 NQO2 PRDX1
PRKCA SOD1 SOD2 SOD3 TXN TXNRD1

Oxidative
Phosphorylation

NDUFA12 NDUFA13 NDUFA6 NDUFS1 NDUFS2 NDUFS3 NDUFS4 NDUFS8

Production of Nitric Oxide
and Reactive Oxygen
Species in macrophages

CAT CHUK CYBA FOS JAK2 JUN MAP2K1 MAPK14 MPO NCF2 NFKB1 NOS2 PLCG1 PPP2CB PRKCA RAC1 RAC2 RELA STAT1 TLR4

Xenobiotic Metabolism
Signaling

ARNT CAT CYP1A1 CYP1A2 EP300 FMO2 GCLC GSTK1 GSTM1 GSTM2 GSTM3 GSTM4 GSTM5 GSTO1 GSTO2 GSTP1 GSTT1 GSTT2 HMOX1
KEAP1 MAP2K1 MAPK14 MGST1 MGST2 MGST3 NFE2L2 NFKB1 NOS2 NQO1 NQO2 PPP2CB PRKCA RELA SOD3

NOT MAPPED TO
PATHWAY

AATF AGT AGTR1 ATOX1 CCL5 CP CRISP2 CYGB DHCR24 DUSP1 ERCC1 GLRX3 GLRX5 GSTCD HMOX2 HP MSRA MT2A NAPRT1 NOS1
NOS3 NOX5 NOXO1 OGG1 OXR1 PNKP PSMB5 PTK2B PXDN PYCR1 SCARA3 SEPP1 SLC23A2 SRXN1 STK25 TXNIP

doi:10.1371/journal.pone.0040175.t001
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Table S1). Gene specific allele dosage files in MACH format were

used for analysis.

Statistical Analysis
Characterization of study population. The distribution of

sex, age, baseline lung function parameters, their change during

follow-up as well as packyears exposure during follow-up was

tabulated according to categories of smoking status (never, former

and current smokers) and interval PM10 exposure (high versus low

exposure, defined by the median value) (Table 2). To assess a

potential impact of loss to follow-up on our results, our study

population consisting of up to 669 non-asthmatic adults with high

quality genome-wide data and complete information on model

covariates was compared to non-asthmatic participants examined

at follow-up without genome-wide data (n = 3833), and to those

completing only baseline examination (n = 1299) by means of

descriptive tables and tests for independent samples (see Table S2).

Gene- and pathway-environment interaction

analysis. The interaction of genetic variation and exposure to

PM10 or tobacco smoke on lung function decline was assessed in

different stages.

First, SNP level analyses on decline in FEV1, FEV1/FVC and

FEF25–75 were done for each gene separately using multiple

linear regression in ProbABEL v0.1.3 (http://www.genabel.org)

[51] with robust sandwich-estimation of standard errors. Models

specified an additive SNP-effect, main effects for packyears

smoked and interval PM10 exposure between surveys, and an

interaction term between the SNP-variable and either exposure.

They adjusted for sex, age and height at follow-up, packyears

smoked up to baseline, principal components of population

Table 2. Distribution of main characteristics by smoking status at follow-up and PM10 exposure during follow-up (N = 6501).

Interval PM10 EXPOSURE

(median:239.0 mg/m3*years)

SMOKING CATEGORY exposure , median exposure$ median

variable value2 range value2 range

Never n 152 145

Smoker female sex [%] 67.1 53.8

age at follow-up [years] 53.0 31.1 – 71.5 52.7 29.8 – 71.8

FEV1 [L] 3.4 2.0 – 5.2 3.6 2.4 – 6.0

FEV1 decline [L] 20.3 21.1 – 1.0 20.3 21.5 – 0.5

FEV1/FVC [%] 79.2 61.4 – 98.0 81.0 62.5 – 99.8

FEV1/FVC decline [%] 23.9 213.2 – 9.4 24.4 221.6 – 8.2

FEF25–75 [L/sec] 3.2 1.3 – 7.5 3.6 1.2 – 6.8

FEF25–75 decl. [L/sec] 20.7 22.5 – 2.1 20.8 23.7 – 0.6

pack years d. follow-up n.a. n.a.

Former n 98 102

Smoker female sex [%] 40.8 52.9

age at follow-up [years] 54.1 32.7 – 72.0 54.4 30.8 – 71.9

FEV1 [L] 3.8 2.2 – 5.4 3.6 2.3 – 5.6

FEV1 decline [L] 20.4 21.2 – 0.3 20.4 21.4 – 0.6

FEV1/FVC [%] 78.8 60.0 – 97.3 80.6 66.4 – 95.2

FEV1/FVC decline [%] 23.2 216.1 – 12.4 24.7 220.7 – 13.7

FEF25–75 [L/sec] 3.6 1.4 – 7.7 3.6 1.5 – 7.2

FEF25–75 decl. [L/sec] 20.8 22.8 – 1.7 20.8 23.6 – 1.6

pack years d. follow-up 0.0 0.0 – 25.0 0.0 0.0 – 35.0

Current n 75 78

Smoker female sex [%] 37.3 46.2

age at follow-up [years] 52.8 29.8 – 70.8 49.7 30.3 – 70.6

FEV1 [L] 3.6 2.4 – 5.7 3.7 1.8 – 6.8

FEV1 decline [L] 20.5 21.5 – 0.1 20.4 21.3 – 0.3

FEV1/FVC [%] 77.6 59.3 – 94.5 79.0 49.0 – 97.1

FEV1/FVC decline [%] 26.3 220.5 – 3.9 24.9 221.5 – 7.9

FEF25–75 [L/sec] 3.3 1.4 – 7.4 3.5 0.7 – 7.3

FEF25–75 decl. [L/sec] 21.0 23.0 – 0.4 20.8 22.4 – 0.7

pack years d. follow-up 10.9 0.0 – 27.3 9.0 0.0 – 24.0

1restricted to sample with complete data on all three lung function parameters. Regarding FEV1, sample size with complete covariate data would be n = 669.
2means for age and lung function values, medians for pack years exposures.
doi:10.1371/journal.pone.0040175.t002
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ancestry, and study area. No adjustment for ageing during follow-

up was made, since follow-up time was 11 years for all

participants. Complete data including covariates and environ-

mental exposures was available on 669 participants for FEV1

decline, and on 650 for FEV1/FVC and FEF25–75 decline.

We used a slightly modified version of the Adaptive Rank

Truncation Product (ARTP) method described by Yu and

colleagues [52] to calculate gene- and pathway level p-values.

Briefly, according to the method, SNPs are sorted in ascending

order of interaction strength, and SNP-interaction p-values are

multiplied up to several pre-specified truncation points which

depend on the number of SNPs in the gene. The statistical

significance of these products is derived using the empirical

distribution of products observed in the original and permutated

datasets. For each gene, the strongest product p-value across all

truncation points is readjusted using again its empirical distribu-

tion, to result in the gene-level p-value. Using the gene-level p-

values in observed and permutated datasets, the same procedure

can be applied to calculate pathway-level p-values. Details on the

ARTP method, the applied modifications and truncation point

definitions are presented in Figure S2 and Methods S1.

SNP-level analyses were run 10000 times, always after having

newly permuted gene-specific SNP-allele-dosages across partici-

pants. SNP-level interaction p-values of the observed and

permutated datasets were used for calculating gene- and

pathway-level p-values. According to Yu et al. [52], results from

simulation studies suggest the ARTP-method yields type I error

rates close to 5%. We thus additionally corrected for 152 tests at

the gene and 14 tests at the pathway level in a first look. In a

second line of investigation, a non-stringent nominal threshold of

a= 0.05 was chosen for further exploring gene- and pathway-level

interaction signals due to our restricted sample size.

Comparing the impact of PM10 versus tobacco

smoking. Emerging patterns of interaction were compared

between exposures at the pathway- and gene-level. In pathways

with nominally significant interactions, gene-level p-values were

plotted against each other to identify the relative contributions to

the pathway signal.

For the SNP with the strongest interaction signal in each

nominally significant gene regression analyses were repeated with

exposure centered to the median. Effect estimates were scaled to

represent an exposure contrast of one interquartile range (IQR),

and interaction effect sizes were compared between PM10 and

tobacco smoke exposure. For SNP rs2035268 in gene SNCA,

which was one of the top interaction signals in FEV1/FVC

decline, genotype specific estimates for PM10 and packyears

exposure were calculated to exemplify the effect modification by

genotype. To this purpose, imputed allele dosages were coded as

genotypes as follows: dosage ,0.5 genotype TT, 0.5# dosage

,1.5 genotype GT, and dosage $1.5 genotype GG. Reparame-

trization of exposure variables into genotype specific ones was

employed to avoid model-overspecification and instable estimation

in small genotype strata (rs2035268: MAF 5%).

Statistical power. Power calculations were done using

QUANTO software [53] version 1.2 specifying a gene-environ-

ment study on independent individuals. Details of the power

calculation are given in Methods S1. The most important aspect of

the calculation was that a two-sided significance threshold of 5%

was used (i.e. no multiple testing correction was included), since all

12679 SNP-estimates were further processed for deriving gene-

and pathway level p-values without filtering by association

strength. In our first analysis with 650 subjects, we have at least

75% power to detect a SNP*environment interaction that

accounts for 1% of the total variance and that power increases

to 99% when the SNP*environment interaction accounts for 5%

of the total variance. In the replication analysis with n = 3320,

estimated power is 99% in both cases. Statistical power is expected

to be higher for the gene and pathway level analysis, but that

increase in power could not be quantified since p-values for

interaction at the gene (or pathway) level are obtained from

individual p-values for interactions with SNPs belonging to the

gene (or pathway), and the effect of interaction may vary among

SNPs.

Results

Characteristics of Study Population
Regarding the distribution of sex, age and lung function

according to categories of smoking and PM10 exposure, our study

sample on average presented decreasing lung function values and

accelerated lung function decline with increased smoking

(Table 2). The percentage of females decreased with smoking

exposure. Compared to participants assessed only at baseline, our

study sample had slightly better lung function values, substantially

less current smokers, was slightly less exposed to PM10 and

tobacco smoke, and was older and leaner (see Table S2).

SNP-level Analysis
A SNP-level analysis correcting for 12679 tests (a= 0.05/

12679 = 3.961026) detected an interaction between SNP

rs2035268 in gene synuclein alpha (SNCA) on chromosome

4 q21 and PM10 on FEV1/FVC decline (pinteraction = 2.561026).

Compared to the baseline TT genotype, each G-allele was

associated with a 3.8% (95% confidence interval (95%-CI) 2.2 to

5.4%) higher decline per 83.4 mg/m3*year PM10 exposure (IQR)

over 11 years. Further, rs12190800 located in gene Parkinson

disease protein 2 (PARK2) on chromosome 6 q25.2 interacted with

PM10 on FEV1 decline. Compared to the TT-genotype each C-

allele entailed an attenuation of 95.1 ml (95%-CI 60.1 ml to

130.1 ml) in FEV1 decline per IQR of PM10 (pinterac-

tion = 9.861028). Exposure and outcome specific regression

estimates for all 12679 SNPs are given in Data S1.

Gene-level Analysis
In the gene-level analysis, nominally interacting genes differed

between PM10 and packyears exposure across the parameters of

lung function decline (Table 3). Genes interacting with PM10

exposure partially overlapped for FEV1/FVC and FEF25–75

decline (genes CRISP2, ERCC1, LPO, MPO, and SNCA). After

correcting for performing 152 gene-level tests (aBonferroni = 0.05/

152 = 3.29*1024), the interaction between gene cysteine-rich
secretory protein 2 (CRISP2) located on chromosome 6p12.3

and interval PM10 exposure on FEV1/FVC decline remained

significant (pinteraction = 3.061024). A marginally significant inter-

action was seen for gene SNCA on chromosome 4q21 with the

same outcome and exposure (pinteraction = 4.061024). Interactions

observed for packyears exposure did not withstand multiple testing

corrections.

P-values of interaction for all tested genes are given in Table
S3.

Pathway-level Analysis
Pathways ‘‘mitochondrial dysfunction’’ and ‘‘methane

metabolism’’ interacted nominally (a= 0.05) with PM10 on

FEV1/FVC decline (p = 0.017) and FEF25–75 decline (p = 0.029),

respectively. A further interaction signal was observed for pathway

‘‘apoptosis’’ and packyears exposure on FEV1-decline

(p = 0.051). Inspecting the interaction p-values of pathway-specific

PM10 and Tobacco Differently Affect Lung Function
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genes revealed that the pathway signals mostly arose from single

genes (SNCA in pathway ‘‘mitochondrial dysfunction’’) or single

genomic loci (overlapping gene regions of genes eosinophil peroxidase,

EPX, lactoperoxidase, LPO, and myeloperoxidase, MPO in pathway

‘‘methane metabolism’’) (Figure 1, parts A–C). P-values of

interaction for all tested pathways are given in Table S3.

Comparison of Interactions with PM10 Versus Packyears
Exposure

The comparison of interaction effect sizes for PM10 and

packyears exposure was based on regression estimates for the

strongest interacting SNP only within each nominally significant

gene. Table 4 presents estimates for FEV1/FVC decline, where

significant and marginally significant gene-level interactions have

been detected for genes CRISP2 and SNCA, respectively. Estimates

for decline in FEV1 and FEF25–75 are presented in Table S4 and
Table S5.

The C-allele of SNP rs360563 in gene CRISP2 accelerated

FEV1/FVC decline by 1.1% per IQR change in PM10 exposure

over 11 years (Table 4). Similarly, the G-allele of SNP rs2035268

in SNCA was associated with an accelerated decline by 3,8% per

allele and IQR change in exposure. Genotype specific exposure

estimates were calculated for rs2035268. Within genotypes GT

and GG of SNP rs2035268, a change in IQR of PM10 was

associated with a signficant acceleration of FEV1/FVC decline by

3.9%, opposed to a small and non-signficiant acceleration by 0.2%

in baseline genotype TT (Table 5). In contrast, a change in IQR

of packyears smoked was associated with a significant acceleration

by 1.1% in the baseline TT genotype stratum, but not in the GT/

GG strata.

For FEV1- and FEF25–75 decline, interaction effect sizes for the

strongest interacting SNPs in nominally significant genes tended to

be considerably larger with packyears compared to PM10

exposure. Further, packyears exposure frequently presented

significant main effects besides the interaction with SNPs (Table
S4 and Table S5).

In models including only main effects but no interaction

between SNPs and exposure, an IQR of 9.8 packyears was

significantly associated with accelerated decline in FEV1/FVC by

1%, and in FEV1 by 50 ml (data not shown). Respective estimates

for PM10 were non-significant. SNP main effects remained non-

significant and their beta estimates largely unaffected by the

exclusion of interaction terms.

Replication of Significant Associations
Replication genotyping was done for CRISP2 SNP rs360563

(MAF of 49.8%) and rs12190800 in PARK2 (MAF 16%), but their

interaction with PM10 exposure on FEV1/FVC and FEV1 decline

could not be confirmed in the remainder of the SAPALDIA

population (pinteraction = 0.63 and 0.50 respectively, n = 3320 for

both). Thereby, MAFs in the replication sample corresponded to

those in the discovery sample, and both SNPs were in Hardy-

Weinberg equilibrium.

Discussion

To the best of our knowledge, this is the first study assessing

gene-environment interactions on lung function decline using

analysis methods that accumulate interaction effects along a

broadly defined set of candidate genes and pathways. Our results

suggest that different oxidative stress genes could be involved in

mediating the adverse effects of ambient air pollution and tobacco

smoke exposure on lung function decline.

We can currently only hypothesize about the reason for

observing different patterns of interaction between the two

environmental exposures. A possible explanation would be that

ambient particulate matter pollution and tobacco smoke, although

sharing many constituents, also differ in their composition, which

possibly affects the overall and relative relevance of the different

pathways. A probably more important explanation is that levels of

oxidative stress imposed by ambient PM10 exposure are much

lower than those induced by active tobacco smoking. Experimen-

tal studies have shown that different levels of oxidative stress

trigger dose-dependent, specific activations of pathways on the

cellular level in response to the oxidant burden [54]. Li and

colleagues delineated a stratified oxidative stress model
while studying the biological effects of particulate matter exposure

on human and mouse cell lines exposed to solutions of Diesel

exhaust particles (DEP) and concentrated ambient air particles

(CAP) sampled in a highly polluted area [55,56]. According to

their observations, at the lower end of exposure pivotal ROS-

scavenging enzymes like heme oxygenase-1 are induced, repre-

senting the activation of protective cell-mechanisms. Intermediate

Table 3. Nominally significant gene-environment interactions by outcome and exposure.

Outcome decline FEV1 (n = 669) decline FEV1/FVC (n = 650) decline FEF25–75 (n = 650)

Exposure interval PM10 packyears interval PM10 packyears interval PM10 packyears

Gene (pinteraction) CP (0.005) BCL2 (0.003) CRISP2 (0.0003)a PSMB5 (0.003) LPO (0.008) TGFBR2 (0.006)

PRDX3 (0.010) PTK2B (0.017) SNCA (0.0004)b SOD2 (0.015) ERCC1 (0.014) PTK2B (0.033)

ERCC1 (0.014) PSEN1 (0.023) ERCC1 (0.007) MAP2K1 (0.019) MPO (0.018) TP53 (0.033)

RAC1 (0.027) NOXO1 (0.034) ALOX12 (0.012) NFKB1 (0.022) SLC23A2 (0.022) CASP6 (0.039)

CYP1A2 (0.028) AOX1 (0.044) LPO (0.018) HMOX2 (0.048) CRISP2 (0.023) OXR1 (0.045)

PSMB5 (0.038) MAP2K1 (0.046) CHUK (0.035) SNCA (0.025) TXNRD2 (0.047)

GLRX (0.046) GPX5 (0.039) GPX5 (0.026)

GLRX2 (0.048) MPO (0.039) COL1A1 (0.049)

EPX (0.040)

Genes are sorted in ascending order of interaction p-value within outcome-exposure strata.
asignificant after Bonferroni-correction for testing 152 genes (a= .00033).
bmarginally significant after Bonferroni-correction for testing 152 genes (a= .00033).
doi:10.1371/journal.pone.0040175.t003
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Figure 1. Distribution of interaction p-values across genes mapping to pathways with weak interaction signals. P-values of interaction
on the gene-level are given on a minus log10 scale (y-axis), i.e. higher bars represent smaller interaction p-values. (A) Genes of the mitochondrial
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exposure levels trigger inflammatory pathways via signal trans-

duction cascades (increased expression of interleukin-8 and Jun

kinase), while high exposure levels impact on mitochondrial

permeability, and result in cytotoxicity and apoptosis. Thereby

CAP were mostly representing the lower to mid-level of exposure,

inducing oxidative-stress enzymes and inflammation, but not

apoptosis (as observed with DEP). In contrast, tobacco smoke

exposure is known to induce the whole spectrum of cellular

reactions, from oxidative stress response and inflammation [57,58]

up to DNA-damage [58], apoptosis [59,60,61,62] as well as

cellular necrosis [61]. Although in the light of limited sample size,

we cannot provide statistical evidence of exposure-specific

interaction patterns with genes and pathways in our current

study, it is interesting to see that many of the top-ranking genes

interacting with packyears exposure are involved in signal

transduction or apoptosis (Table 3 BCL2, CASP6, MAP2K1,

NFkB1, TGFBR2, TP53). Only two such genes showed interaction

signals with PM10 exposure (CHUK, RAC1), and many of the

others related to scavenging or production of ROS (CRISP2,

CYP1A2, EPX, GLRX, GLRX2, GPX5, LPO, MPO, PRDX3). These

observations are consistent with the stratified oxidative stress

model. The observation of larger interaction effect sizes at the level

of SNPs for FEV1 and FEF25–75 decline, as well as the frequent

presence of significant main effects further support higher

oxidative stress levels induced by tobacco smoke than PM10

exposure.

Another important observation was that the effect of genetic

variation related to oxidative stress appeared to be mediated

predominantly by the interactions with environmental exposures,

as hardly any SNP main-effects were observed. This is in line with

the findings of genome-wide studies on lung function performed to

date [17,18,21], where oxidative-stress related candidate genes did

not produce strong signals. But their design was cross-sectional

and importantly, these analyses focused on SNP-main effects.

Exposure specific gene-effects might thus be missed as they can

cancel out when averaged over the whole population (which

happens in a gene main effect analysis). Disregarding gene-

environment interaction might also explain part of the missing

heritability in complex disease genetics.

Our studyhadseveral limitations.First, the limited numberofnon-

asthmatic adults with available genome-wide data restricted our

power to detect associations at the gene and pathway levels. In this

context, we faced the problem of finding studies with genome-wide

genotyping and comparable data on both phenotypes and environ-

mental exposures. This issue is particularly imminent regarding

ambient air pollution exposure. As a consequence, small sample size

did not allow us to identify further strong interaction signals to follow-

up, while the observed ones could not be replicated in the remainder

of thestudypopulation.Ourgeneandpathway level resultsare thusof

moreexploratorynature.Limitedpower isalsoknownto inflateeffect

estimates when the strongest association signals are selected for

further follow-up (so-called ‘‘winner’s curse’’ [63]), thus our

interaction effect estimates on the SNP-level are likely overestimated

for both exposures. But the relative difference in effect size between

exposures is probably less affected by this phenomenon. In case of

differential overestimation, the true difference would likely be larger,

as observed PM10 effects were smaller and therefore would be more

affected than packyears effects. Further, follow-up participants were

healthier than those completing only baseline examination. Our

results are thus applicable to an adult general population sample of

good health. Environmental exposure and genetic susceptibility

mightpossiblyhaveaffectedhealthandthusparticipationofourstudy

dysfunction pathway interacting with PM10 and packyears exposure between surveys on FEV1/FVC decline. (B) Genes of the methane metabolism
pathway interacting with PM10 and packyears exposure between surveys on FEF25–75 decline. (C) Genes of the apoptosis signaling pathway
interacting with PM10 and packyears exposure between surveys on FEV1 decline.
doi:10.1371/journal.pone.0040175.g001

Table 4. Effect estimates of the strongest interacting SNP from each nominally significant gene on FEV1/FVC decline (n = 650).

Exposure Chrom Position Gene SNP type All1 All2 Freq All1 Betainteraction (SE), P BetaSNP (SE), P Betaexposure (SE), P

PM10 4 90975104 SNCA rs2035268 imp G T 0.05 23.8 (0.8), 2.54E-06* 20.7 (0.6), 0.254 20.2 (0.7), 0.786

(IQR. 83.4 6 49766228 CRISP2 rs360563 imp C T 0.50 21.1 (0.3), 3.78E-05 0.0 (0.3), 0.975 0.6 (0.7), 0.375

ug/m3 * y) 17 6840800 ALOX12 rs2073438 gen A G 0.26 1.0 (0.3), 2.38E-04 0.4 (0.3), 0.181 21.0 (0.7), 0.144

17 53675156 LPO rs8178290 imp A C 0.18 1.1 (0.3), 9.61E-04 20.2 (0.3), 0.582 21.0 (0.7), 0.153

17 53629132 EPX rs3785496 gen A G 0.80 21.1 (0.3), 0.001 20.1 (0.3), 0.773 1.1 (0.8), 0.140

17 53699864 MPO rs8178409 imp A G 0.18 1.1 (0.3), 0.001 20.2 (0.3), 0.523 21.0 (0.7), 0.158

19 50600888 ERCC1 rs1005165 imp C T 0.83 21.3 (0.4), 0.002 0.1 (0.4), 0.765 1.5 (0.9), 0.084

6 28629296 GPX5 rs393414 gen C T 0.79 20.9 (0.3), 0.003 0.3 (0.3), 0.385 1.0 (0.8), 0.219

10 101996416 CHUK rs4919438 imp C T 0.50 20.8 (0.3), 0.003 20.1 (0.2), 0.669 0.2 (0.7), 0.813

packyears 14 22552780 PSMB5 rs12590429 imp A G 0.09 23.8 (0.9), 1.06E-05 0.3 (0.5), 0.540 20.5 (0.5), 0.265

(IQR: 9.8 6 160020288 SOD2 rs7855 imp A G 0.94 2.7 (0.7), 2.17E-04 20.4 (0.8), 0.620 26.1 (1.4), 1.64E-05

PY) 15 64583032 MAP2K1 rs8043062 imp A G 0.15 1.9 (0.6), 0.001 20.1 (0.3), 0.741 21.6 (0.5), 0.003

4 103676616 NFKB1 rs230528 gen G T 0.38 21.7 (0.6), 0.003 0.1 (0.3), 0.775 0.2 (0.6), 0.693

16 4466293 HMOX2 rs2270363 imp A G 0.25 1.1 (0.4), 0.013 0.0 (0.3), 0.935 21.8 (0.6), 0.002

SNP-estimates are based on an additive model. Beta-estimates represent percentages of decline in FEV1/FVC over 11 years per effect allele and/or for an exposure
contrast of one interquartile range (IQR). All estimates are taken from the same interaction model. Positive values mean an attenuation, and negative ones an
acceleration of FEV1/FVC decline. Rows are sorted according to ascending interaction p-values.
*significant after Bonferroni correction for testing 12679 SNPs (a= 3.9610E-6).
gen: genotyped SNP; imp: imputed SNP; All1: allele 1 (effect allele); All2: allele 2 (baseline allele); FreqAll1: frequency of allele 1.
doi:10.1371/journal.pone.0040175.t004
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subjects.But inthiscase, trueeffectswould likelybeunderestimated in

our present study [64]. Finally, SNP-coverage was low for certain

genes (see Table S1), and the well-known gene-deletions in

glutathione S-transferases are difficult to tag by SNP-genotyping as

they represent copy number variations. This makes it difficult to

interpret respective results. On the other side, a comparison of

imputed SNP data for rs360563 (gene CRISP2) with genotypes

measured during replication in the initial study sample showed a high

concordance indicatinghigh imputationquality (seeTableS6).The

absence of strong interactions on the pathway level is likely due to our

primary focus on function while selecting candidate genes, which

limitedpathwaycoverage.Butgenes inapathwaymayalsodifferently

interact with exposure, or compensate for each other. Further,

regulatory genomic regions could be located farer away than the

chosen flanking segments of 20 kilobases. Detecting interactions in

pathways is thus more challenging.

Strengths of our study were the population based design

comprising non-asthmatic adults of a wide age-spectrum, the

detailed data on individual tobacco smoke and particularly PM10

exposure, and the high quality of longitudinal lung function data.

Finally, the application of analysis methods which exploit

interaction signals below the significance threshold of a pure

SNP-level analysis provided new insight into a possible differential

involvement of genes according to exposure specific oxidative

stress levels.

Conclusions
Applying a gene- and pathway-level analysis, we observed that

PM10 and packyears exposure potentially interact with different

genes on lung function decline, consistent with a stratified response to

different oxidative stress levels. Our study thus points to the

importance of considering interactions with environmental factors

inthesearchformolecularpathwaysunderlying lungfunctiondecline

in response toexogenous inhalants.But it is alsoa goodexample of the

challenges faced by gene-environment interaction studies today:

While studies with partial genome-wide data, and hence often small

sample size, can beneficially use the remainder of the study

population as highly comparable replication sample, their potential

to identify sufficient variants to follow-up is limited. In contrast, large

studies or study consortia are more powerful in the discovery stage,

but suffer from data heterogeneity as finding suitable replication

studies with comparable phenotypic, genetic and environmental

exposure data is difficult. This results in a challenging trade-off

between sample size and data homogeneity.

Supporting Information

Figure S1 Follow-up of participants and selection of
study population.

(TIF)

Figure S2 Scheme of analysis steps in the ARTP-
method. The ARTP method developed by Yu and colleagues

[52] assumes that an analysis at the SNP-level has been performed

on the originally observed data, followed by a reanalysis on

permutated datasets, i.e. p-values of association for original and

permutated datasets are available for each SNP. The ARTP

procedure then entails the following 4 steps: 1. Order p-values

from single SNP analysis in ascending order, 2. Calculate

products of ranked p-values at different truncation points

depending on gene length (light and dark green arrows in the

graph), 3. Adjust product p-values using permutation distribution

(1st and 2nd yellow arrow from the right), 4. Select the minimum
of the adjusted products (red arrow) and readjust (1st yellow arrow

from the left). The readjusted product minimum represents

the gene-level p-value. For each permutated dataset, an

adjusted product minimum can be calculated as well. The

procedure can then be repeated using the resulting, original and

permutation gene-level p-values to yield p-values of the pathway.

(TIF)

Table S1 Characteristics of selected oxidative-stress related

genes and mapping to candidate pathways.

(XLS)

Table S2 Comparison of study sample to non-asthmatic

participants lost to follow-up, and those followed-up w/o

genome-wide data. PA-C p-value for comparisons of characteristics

between baseline and analysis sample; PB-C p-value for compar-

isons of characteristics between follow-up and analysis sample; a

Chi-squared tests for proportions, two sample T-tests for means,

and ranksum-test for medians, b n = 650 with complete baseline

and follow-up data, c in ever-smokers only.

(XLS)

Table S3 Interaction P-values by lung function decline param-

eter and exposure for a) all tested pathways and b) genes.

(XLS)

Table S4 Effect estimates of the strongest interacting SNP from

each nominally significant gene on FEV1-decline (n = 669). The

table shows the effect estimates of the strongest interacting SNP in

each nominally significant gene (i.e. with a gene p-value for

interaction ,0.05). SNP-estimates are based on an additive model.

Beta-estimates are in units of milliliters for FEV1, and represent

Table 5. rs2035268 genotype specific estimates of the effect of interval PM10 and pack years exposure on percentage decline in
FEV1/FVC ratio during 11 years of follow-up.

exposure rs2035268 genotype effect estimatea (95%-confidence interval) p-value pinteraction
b

interval PM10 wild-type (TT) 20.2 (21.7 to 1.4) 0.827 7.35E-07

(IQR 83.4ug/m3* y) mutant (GT/GG) 23.9 (25.9 to 21.8) 2.25E-04

packyears wild-type (TT) 21.1 (22.0 to 20.1) 0.024 0.909

(IQR 9,8 PY) mutant (GT/GG) 20.7 (22.3 to 1.0) 0.434

aEnvironmental effect estimates are based on a multiple linear model with sample size n = 650 adjusting for sex, age and height at follow-up, packyears smoked up to
baseline, population ancestry, and study area. PM10 and packyears exposure was reparametrized into genotype specific exposure variables to avoid model
overspecification with instable estimates in the genotypic risk stratum (rs2035268 has minor allele frequency of 0.05). Estimates are in units of percentage decline in
FEV1/FVC.
bp-value of interaction between environmental exposure and genotypes of rs2035268 (TT vs GT/GG).
doi:10.1371/journal.pone.0040175.t005
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declines per effect allele and/or for an exposure contrast of one

interquartile range (IQR) over 11 years. All estimates are taken

from the same interaction model. Positive values mean that the

respective decline is attenuated, opposed to acceleration with

negative values. Rows are sorted according to ascending

interaction p-values. gen: genotyped SNP; imp: imputed SNP;

All1: allele 1 (effect allele), All2: allele 2 (baseline allele); FreqAll1:

frequency of allele 1.

(DOC)

Table S5 Effect estimates of the strongest interacting SNP from

each nominally significant gene on FEF25–75-decline (n = 650).

The table shows the effect estimates of the strongest interacting

SNP in each nominally significant gene (i.e. with a gene p-value for

interaction ,0.05). SNP-estimates are based on an additive model.

Beta-estimates are in units of milliliters per second, and represent

declines per effect allele and/or for an exposure contrast of one

interquartile range (IQR) over 11 years. Positive values mean that

the respective decline is attenuated, opposed to an acceleration

with negative values. gen: genotyped SNP; imp: imputed SNP;

All1: allele 1 (effect allele), All2: allele 2 (baseline allele); FreqAll1:

frequency of allele 1.

(DOC)

Table S6 Comparison of genotyped and imputed data for SNP

rs360563 in gene CRISP2. *imputed allele dosages have been rounded

to corresponding integer values of mutant alleles as follows:

dosage ,0.50 0

. = 0.5 and ,1.5 1

. = 1.5 2

N = 665 corresponds to the current analysis sample with available

genotyping data.

(DOC)

Methods S1 Details on the ARTP method specifications and

power calculations.

(DOC)

Text S1 Overview of the SAPALDIA study team as of July 2011.

(DOC)

Data S1 Outcome and exposure specific regression results of all

12679 SNPs. Effect estimates are derived from multiple linear

regression models specifying SNP main effects, interval PM10 and

packyears exposure (centered to the median) and an interaction

between SNP and either PM10 or packyears exposure. An additive

genetic model was assumed. Adjustments were made for sex, age

and height at follow-up, packyears smoked up to baseline,

population ancestry, and study area. Beta-estimates are in units

of milliliters for FEV1, percentages for FEV1/FVC, and milliliters

per second for FEF25–75, Betas represent declines per effect allele

and/or for an exposure contrast of one interquartile range (IQR)

over 11 years. All estimates are taken from the same interaction

model. Positive values mean that the respective decline is

attenuated, opposed to acceleration with negative values. Rows

are sorted according to chromosome and position. All1: allele 1

(effect allele), All2: allele 2 (baseline allele); FreqAll1: frequency of

allele 1, MAF: minor allele frequency. n: number of observations

in the model. Beta_int/se_int/p_int: beta estimate/standard

error/p-value of the SNP*environment interaction term.

(XLS)
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