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Abstract

Antisocial personality disorder (ASPD) is closely connected to criminal behavior. A better understanding of functional
connectivity in the brains of ASPD patients will help to explain abnormal behavioral syndromes and to perform objective
diagnoses of ASPD. In this study we designed an exploratory data-driven classifier based on machine learning to investigate
changes in functional connectivity in the brains of patients with ASPD using resting state functional magnetic resonance
imaging (fMRI) data in 32 subjects with ASPD and 35 controls. The results showed that the classifier achieved satisfactory
performance (86.57% accuracy, 77.14% sensitivity and 96.88% specificity) and could extract stabile information regarding
functional connectivity that could be used to discriminate ASPD individuals from normal controls. More importantly, we
found that the greatest change in the ASPD subjects was uncoupling between the default mode network and the attention
network. Moreover, the precuneus, superior parietal gyrus and cerebellum exhibited high discriminative power in
classification. A voxel-based morphometry analysis was performed and showed that the gray matter volumes in the parietal
lobule and white matter volumes in the precuneus were abnormal in ASPD compared to controls. To our knowledge, this
study was the first to use resting-state fMRI to identify abnormal functional connectivity in ASPD patients. These results not
only demonstrated good performance of the proposed classifier, which can be used to improve the diagnosis of ASPD, but
also elucidate the pathological mechanism of ASPD from a resting-state functional integration viewpoint.
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Introduction

It is increasingly acknowledged that there is a very close link

between ASPD and criminal behavior, and the study of functional

brain connections in ASPD has important implications in a legal

context. Recently, resting-state functional magnetic resonance

imaging (rs-fMRI) has attracted increasing attention as a method

for mapping large-scale neural network function and dysfunction.

Based on rs-fMRI, a growing body of studies has focused on the

quantitative analysis of the brains of patients with neurological and

psychiatric disorders, including depression [1–3], Alzheimer’s

disease and dementia [4,5], schizophrenia [6–9]. However, to our

knowledge, there have been no such imaging studies of people

with ASPD. The functional pathological mechanisms of this

complex mental disorder remain unclear.

In recent years, many advances have been made using

univariable and group-level statistical methods with functional

magnetic resonance imaging (fMRI) data. However, these

methods are less helpful in the diagnosis of psychiatric disorders

[6]. Therefore, increasing attention is being paid to the application

of multivariate pattern recognition methods for brain image

analysis. Many sophisticated multivariate pattern methods, such as

LLE, PCA, SVM, and C-means clustering, have been proposed.

Recently, many studies have considered the classification features

of resting-state brain functional data, and have successfully

discriminated subjects with brain disorders from normal controls.

Zen et al. identified subjects with major depression using a SVM

classifier [1], Shen et al. developed a LLE+ C-means classifier to

discriminate schizophrenics from health subjects [6], and Nico

et al. also used a SVM classifier to predict individual brain

maturity [10]. These studies consistently showed that a machine

learning-based classifier could be used to capture significant

neuroimaging-based biomarkers and label new samples [11].

Therefore, it is proposed that such techniques can be used in

clinical diagnosis. However, ASPD cohorts belong to a special

group of patients. Compared to individuals with other brain

disorders, e.g., AD, MCI and schizophrenia, ASPD individuals

show fewer structural abnormalities. Accordingly, it may be more

difficult to identify ASPD individual than individuals with other

brain disorders. Moreover, due to the high dimensionality of fMRI

data, noisy measurements and the small number of available

training samples, it remains a challenge to abstract sufficient

information to classify ASPD from fMRI scans.

Therefore, one purpose of this study was to design an

exploratory data-driven classifier that can be used to identify

ASPD individuals from controls using rs-fMRI data. Another

purpose of the study, building on the first, was to illuminate the

abnormal resting-state functional connectivity patterns of ASPD.
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Materials and Methods

1. Ethics Statement
All of the subjects in this study were of legal age to give consent

(age .18 years old) to participate in the experiment, but they were

under the legal age when they entered into the School for Youth

Offenders of Hunan Province. Written informed consent was

obtained from all the subjects after they were given a detailed

description of the study. See Text S1 for details. We confirmed

that all potential participants who declined to participate were not

disadvantaged in any way by not participating in the study. The

participants were paid a base rate of ¥100 for their participation,

plus an additional ¥50 bonus according to their performance. This

study was approved by the Ethical Committee of the Third

Xiangya Hospital of Central South University and the School for

Youth Offenders of Hunan Province.

2. Participants
Four hundred and eighty volunteers were recruited from the

School for Youth Offenders of Hunan Province. All of the

volunteers received reformatory education at this school in

response to misdemeanor crimes. All of the young offenders have

regular school hours every day and ‘‘enclosed-style’’ management

is implemented. All of the subjects were of legal age to give consent

(age .18 years old) to participate in the experiment, but they were

under the legal age when they entered the school. The volunteers

were tested in groups at the school using the Personality

Diagnostic Questionaire-4+ (PDQ-4+) by a professional with

experience in psychological testing. Of these, 122 subjects had

ASPD scores, equal to or above 4 score, and were retained for the

experiment. The 122 subjects continued to be tested using the

Personality Disorder Interview(PDI-IV) [12] by two senior

psychiatrists, and 32 subjects were diagnosed with ASPD. The

inter-rater reliability for the PDI-IV ranged from a low of 0.57

(narcissistic) to a high of 0.92 (dependent) with a median of 0.83

[13].

Finally, our subjects were 32 ASPD individuals who met the

ASPD criteria of the PDQ-4+ and DSM–IV [14] and 35 controls

without ASPD who were matched to the ASPD subjects in age and

education (Table 1). All the subjects had been sentenced to

reformatory education at this school for three years, and their

misdemeanors included 42 thefts, 20 cased of swindling, and 6

robberies. There were no political offenses. The subjects were

right-handed native male Chinese speakers and had no access to

alcohol or illicit drugs for at least 6 months prior to the study.

None of the subjects had major head trauma, or a history or

current diagnosis of serious mental disorders, e.g., depression,

anxiety neurosis or schizophrenia. Each of the subjects was

companied by three teachers when they underwent the fMRI

scans.

3. Data Acquisition and Preprocessing
During the experiments, the subjects were instructed to keep

their eyes closed, relax, remain awake and refrain from performing

specific cognitive exercises. The functional MRI images were

acquired on a 1.5 T scanner (Avanto system, Siemens). Each

functional resting-state session lasted 5 min, and 150 volumes were

obtained. The structural data were acquired by T1-weighted brain

MRI scans using a standard sagittal 3D MP-RAGE sequence

(TR = 2400 ms, TE = 3.61 ms, FA = 8u, FOV = 2406240 mm,

slice thickness = 1.2 mm, slices = 160, voxel size = 16161 mm).

The rs-fMRI images were pre-processed using SPM8 (www.fil.

ion.ucl.ac.uk/spm). For each subject, the first five volumes of the

scanned data were discarded due to magnetic saturation. The

remaining volumes were corrected via registering and re-slicing to

control for head motion. All subjects in this study had less than

1 mm translation in the x, y, or z-axes and less than 1 degree of

rotation in each axis. Next, the volumes were normalized to a

standard echo planar imaging template in the Montreal

Neurological Institute (MNI) space. Then, smoothing and filtering

were performed using a Gaussian filter of 8 mm full-width half-

maximum kernel and a Chebyshev band-pass filter (0.01–0.08 Hz)

respectively. The processed images were divided into 116 regions

according to the automated anatomical labeling (AAL) atlas [15].

Regional mean time series were obtained for each subject by

averaging the fMRI time series over all the voxels in each of the

116 regions [16]. Considering several potential sources of

physiological noise in the functional connectivity analysis, nuisance

covariates including head motion parameters, global mean signals,

white matter signals and cerebrospinal fluid signals were regressed

out from the image [17–19]. Pearson’s correlation coefficients

were used to evaluate functional connectivity between each pair of

regions and we obtained a resting-state functional network that

was expressed as a 1166116 symmetrical matrix for each subject.

By removing the 116 diagonal elements, the 6670 upper triangular

elements of the functional connectivity matrix were normalized

using Fisher’s z-transform, and were then used as the features in

the subsequent multivariate pattern analyses.

4. Development of Multivariate Pattern Classifier
To discriminate ASPD subjects from matched controls, we

developed a data-driven classifier that incorporated four steps:

feature selection, LLE-based dimensionality reduction, support

vector classification and performance evaluation (Figure 1).

4.1 Feature selection. Feature selection can accelerate

computation and diminish noise [6,10]. It has been verified that

through the relevance of a feature to classification, the identifiable

power of the feature can be quantitatively measured [20]. In this

study, we used the Kendall tau rank correlation coefficient [1,21]

to select a feature subset. The Kendall tau rank correlation

coefficient t provides a distribution-free test of independence

between two variables and measures the relevance of each feature

of classification [6]. See Text S2 for details of Kendall tau rank.

In our study, a positive correlation coefficient ti represents a

decrease in the ith functional connectivity in the ASPD group

compared to the control group, and vice versa (+1 for controls and

21 for ASPD). Moreover, this difference increases substantially

when the absolute value of the Kendall correlation coefficient t is

larger. The absolute value of t symbolizes discriminative power.

We ranked every Kendall correlation coefficient ti according to its

discriminative powers and selected those over a certain threshold

as the final feature set for classification.

4.2 LLE-based dimensionality reduction. In this study, we

used LLE-based dimensionality reduction. As an unsupervised

nonlinear dimensionality reduction algorithm, LLE can effectively

Table 1. Characteristics of the participants in this study.

ASPD Controls

(Mean±SD) (Mean±SD)

Age 20.561.37 21.6762.54

Years of education 8.1561.54 9.7360.82

IQ 106.66612.90 106.84616.6

ASPD: offenders with antisocial personality disorder.
doi:10.1371/journal.pone.0060652.t001

Identifying ASPD Individuals Using rs-fMRI
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identify the low dimensional manifold structure that underlies the

measured dataset [22]. The LLE algorithm has three basic steps:

Step 1. Compute pairwise distances and find the neighbors of

each data point Xi. We defined Xj as one of the neighbors of X i

based on the k-NN algorithm.

Step 2. Compute the weights Wij that best reconstruct each data

point Xi from its neighbors, minimizing the cost by constrained

linear fits. We measured reconstruction errors using the cost

function

e(W )~
X

i

DXi{
X

jWijXj D
2 ð1Þ

which summed the squared distances between all the data points

and their reconstructions. Additionally, the rows of the weight

matrix sum to one:

X

j

Wij~1 ð2Þ

Step 3. Compute the output vectors Yi best reconstructed by

weight Wij, minimizing the embedding cost function by its lowest d

nonzero eigenvectors.

W(Y )~
X

i

DYi{
X

jWijYj D
2 ð3Þ

4.3 Support vector classification. A Support Vector

Machine (SVM) classifier aims to find a hyperplane that

maximizes the margin between positive and negative samples

while simultaneously minimizing misclassification errors in the

training set. Decision boundaries can be made non-linear using the

so-called ‘‘kernel trick’’ [23]. This method involves mapping the

data points onto a higher-dimensional vector space. In this study,

we used a radial basis kernel function:

k(xi,xj)~ exp (
{ xi{xj

�� ��2

2s2
) ð4Þ

4.4 Evaluating the performance of the classifiers. The

performance of a classifier can be quantified using the general-

ization rate (GR), sensitivity (SS) and specificity (SC). SS represents

the proportion of ASPD correctly predicted ASPD cases, while SC

represents the proportion of correctly predicted control cases. The

overall proportion of samples correctly predicted is evaluated using

the GR. Due to our limited number of samples, we used a leave-

one-out cross-validation strategy to estimate the generalization

ability of our classifier [24], and all the parameters of the proposed

method were optimized based on LOOCV.

To assess the statistical significance of the LOOCV results, we

used permutation tests [10,11,25,26]. For permutation testing, the

classification labels of the training data were randomly permuted

10,000 times. Cross-validation was then performed on every

permuted training set. GR0 was defined as the generalization rate

obtained by the classifier trained on the real class labels. When

GR0 exceeded the 95% (P,0.05) confidence interval of the

classifier trained on randomly re-labeled class labels, it was

assumed that the classifier had reliably learned the relationship

between the data and the labels. For any value of the estimated

GR0, the P-value represented the probability of observing a

classification prediction rate of no less than GR0.

Figure 1. Flow chart of the LDA+SVM classifier.
doi:10.1371/journal.pone.0060652.g001
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Results

1. Classification Results
To estimate the effect of the selected parameters on perfor-

mance of the classifier, we repeated the cross-validation calculation

using different parameters [1,6,10,27]. The classifier’s best

performance (GR: 86.57%, SS: 77.14%, SC: 96.88%) was found

at the 22 most discriminating functional connections in the current

work (C = 2, neighborhood size: 8, dimensionality: 10) (Figure 2a).

Permutation tests revealed that the proposed classifier learned the

relationship between the data and the labels with a risk of being

wrong of lower than 0.0001 (P,0.0001, Figure 2b).

2. Altered Resting-state Functional Connectivity and
Networks in ASPD

Because the performance of the classifier was tested using a

LOOCV strategy, the functional connectivity feature set selected

in each loop was slightly different. Altogether, 48 features were

represented during LOOCV when using the 22 most discrimi-

nating functional connections to classify ASPD and control

subjects. The discriminative power of each feature was computed

by multiplying the mean Kendall tau correlation coefficient by the

occurrence rate across all iterations of the cross-validation, and 20

features that appeared in no fewer than 51 iterations were found to

have high discriminative power (Figure 3). These highly discrim-

inating functional connections represented abnormal resting-state

functional connectivity patterns in ASPD. These functional

connectivity features with high discriminative power all had

positive Kendall tau correlation coefficients, indicating that they

decreased in ASPD compared to controls (Table 2). In our study

(+1 for controls and 21 for ASPD), a positive correlation

coefficient ti represents a decrease in the ith functional connec-

tivity in the ASPD group compared to the control group, and a

negative tiindicates an increase in the ith functional connectivity in

the ASPD group.

The 20 functional connectivities with high discriminative power

connected 23 brain regions. According to a canonical template of

resting-state networks [2], we partitioned the 23 brain regions into

seven networks: default mode, attention, visual recognition,

auditory, sensory-motor, subcortical and cerebellar. The 20

functional connections were all located between two networks;

therefore, half of the feature weight was assigned to each network.

Separately summing the feature weights for each network

(Figure 4a) revealed that the default mode network and the

attention network had much greater sum totals of feature weights,

meaning that they had the best relative discriminative powers. The

cerebellar network also made a sizeable contribution to discrim-

inating ASPD from control subjects. Moreover, uncoupling of the

abnormal functional connections primarily occurred between the

default mode network and the attention network (Figure 4b). The

cerebellar network also had many uncoupling functional connec-

tions with the default mode network and the attention network.

In addition, using two-sample t-tests, we observed significant

differences (P,0.05) in 2285 functional connections between

ASPD individuals and controls. Some of the connections of them

increased and some decreased. When corrected using FDR, 1254

functional connectivities remained that showed significant differ-

ences between the two groups, including the 20 abnormal

connectivities described in the current paper (P,,0.001).

Obviously, the proposed MVPA method reliably found the

connectivities with high discriminative power.

3. Brain Regions with High Discriminative Power
Region weights were computed by equally dividing the weight

of each functional connection between its two constituent regions

and then summing all the weights for each of the 23 brain regions

(Table 3). For visual representation, the diameter of a sphere,

representative of a region, was scaled by the corresponding region

weight (Figure 3). The regions with the greatest relative

discriminative powers were the precuneus, the superior parietal

gyrus and the cerebellum (Crus 1, Crus 2).

In addition, to investigate whether there were structural

abnormalities in subjects with ASPD and whether the functional

abnormalities were related to structural abnormalities, a voxel-

based morphometry analysis was performed on the T1-weight

images. Compared to the controls, the experimental subjects with

ASPD had significantly higher gray matter volumes in the parietal

lobule, and white matter volumes in the precuneus. See Text S3,

Figure S1, Table S1 for structural analysis. Obviously, there are

overlapping regions (mainly in the parietal lobule) between the

functional and structural brain abnormalities in ASPD.

4. Performance Comparison with other Multivariate
Pattern Recognition Methods

To better understand the performance of the LLE+SVM

classifier, we applied other multivariate pattern recognition

methods used in recent studies to identify ASPD individual. We

Figure 2. Performance evaluation of the LDA+SVM classifier. (a) The curve of the generalization rate to the number of features. (b)
Permutation distribution of the estimate (repetition times: 10,000). GR0 is the generation rate obtained by the classifier trained on the real class
labels. With the generalization rate statistic, this figure reveals that the classifier learned the relationship between the data and the labels with a
probability of being wrong of ,0.0001.
doi:10.1371/journal.pone.0060652.g002

Identifying ASPD Individuals Using rs-fMRI
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performed 8 additional multivariate pattern classifiers by combin-

ing sophisticated dimensionality reduction methods with machine-

learning algorithms. In the dimensionality reduction step, we used

two approaches, i.e. locally linear embedding (LLE) and principal

component analysis (PCA), to reveal the spatiotemporal patterns

associated with ASPD. For machine learning, we adopted three

sophisticated algorithms, i.e. C-means clustering, SVM with a

radial basis kernel function and LDA classification.

To estimate the effects of the selected parameters on the

performance of a classifier, we repeated the cross-validation

calculation using different parameters [28]. When the optimal

parameters of each classifier were selected, optimal performance

results of SS, SC and GR were obtained (Table 4). The best result,

86.57% accuracy, was obtained using the LLE+SVM method

(77.14% for ASPD and 96.88% for healthy controls).

Discussion

1. Altered Resting-state Functional Connectivity in ASPD
Individuals

The main contribution of this study was the use of resting–state

functional connectivities as classification features to discriminate

ASPD individuals from normal controls. The results not only give

insight into the pathological mechanisms of this complex mental

disorder from a resting-state functional integration viewpoint, but

also provided evidence of functional disconnection. ASPD was

associated with the altered functional connections with high

discriminative power, which were mostly located between the

default mode network and attention network, or between those

networks and the cerebellar network. In particular, the precuneus,

superior parietal gyrus and cerebellum exhibited high discrimina-

tive power in our classification. A voxel-based morphometry

analysis of the T1-weight images revealed that gray matter

volumes in the parietal lobule and white matter volumes in the

precuneus were abnormal in ASPD subjects compared to controls.

Clearly, there are overlapping regions between functional and

structural brain abnormalities in ASPD. The functional abnor-

malities may be related to the structural abnormalities.

1.1 Default mode network. In our study, the regions that

were correlated with the uncoupled connections in the default

mode network included the precuneus, posterior cingulate cortex,

superior frontal gyrus, middle temporal gyrus, and rectus gyrus.

The default mode network is hypothesized to perform functions,

such as emotional regulation, related to planning for the future

using past experiences, and self-inspection [29–32]. Decreased

functioning of the default mode network may manifest as

difficulties in adaptively regulating emotions, future planning or

self-inspection. Individuals with ASPD demonstrated decreased

functional connectivity between regions of the default mode and

attention networks, and this could be interpreted as inefficient

transmission between the default mode network, which detects

conflict, and the attention network, which implements increased

cognitive control to resolve conflict in future trials. There was also

decreased functional connectivity between regions of the default

mode network and regions of the cerebellar network.

In the default mode network, the precuneus was found to have

the highest discriminative power, followed by the posterior

cingulated gyrus, the superior frontal gyrus and the middle

temporal gyrus. The functional abnormalities in the precuneus

were consistent with our structural finding that the precuneus was

abnormal in ASPD in T1-weighted images. It has been suggested

that together with the posterior cingulate, the precuneus is ‘‘pivotal

for conscious information processing’’ [33,34] and is the ‘‘core

node’’ or ‘‘hub’’ of the default mode network [33,35]. The

precuneus is involved in the processes of self-consciousness, such as

reflective self-awareness [36,37]. Previous neuroimaging studies

have concluded that the precuneus/posterior cingulate is involved

in a range of cognitive tasks that touches upon various aspects of

self-processing [38,39], and is essential for conscious awareness

[40]. Goldberg et al. have found evidence that the superior frontal

gyrus is involved in self-awareness, in coordination with the

sensory system [41,42]. The superior frontal gyrus is the primary

brain locus that implements the set of functional operations

subtended in task-set reconfiguration operations [43,44]. Jastorff

et al. found that the main cognitive component underlying middle

temporal gyrus activation in their study was the evaluation of

Table 2. Altered resting-state functional connectivity and networks in individuals with antisocial personality disorder.

Uncoupled connections t value Uncoupled connections t value

Between default mode and attention Between cerebellar and default mode

Frontal Sup Medial (L)/Parietal Sup (L) 0.7411 Precuneus (R)/Cerebelum Crus1 (R) 0.7018

Temporal Mid (L)/Parietal Inf (L) 0.6821 Precuneus (L)/Cerebelum Crus1 (L) 0.6946

Temporal Mid (R)/Parietal Inf (L) 0.6804 Precuneus (L)/Cerebelum Crus2 (L) 0.6696

Frontal Sup Medial (R)/Parietal Sup (L) 0.6750 Frontal Sup (R)/Cerebelum 6 (R) 0.6445

Precuneus (R)/Frontal Mid (L) 0.6598

Precuneus (R)/Frontal Inf Orb (L) 0.6714 Between cerebellar and attention

Precuneus (R)Frontal Mid (L) 0.6732 Parietal Sup (R)/Cerebelum Crus1 (R) 0.7161

Cingulum Post (R)/Parietal Sup (L) 0.6429 Parietal Sup (L)/Cerebelum Crus1 (L) 0.7125

Cingulum Post (R)/Parietal Sup (R) 0.6330 Parietal Sup (R)/Cerebelum Crus1 (L) 0.5038

Rectus (L)/Frontal Inf Orb (R) 0.5924

Other uncoupled connections

Temporal Inf (R)/Cerebelum Crus2 (R) 0.7018

Occipital Inf (R)/Precuneus (L) 0.6714

Frontal Inf Orb (R)/Temporal Inf (L) 0.5227

doi:10.1371/journal.pone.0060652.t002

Identifying ASPD Individuals Using rs-fMRI
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action rationality [45]. The temporal lobes take part in sensory,

affective, and higher cognitive processing [46].

Taken together, these converging lines of evidence suggest that

if those areas of the default mode network do not function

properly, a person may act impulsively and inappropriately,

producing antisocial emotion. The associated inability to act in a

‘‘civilized’’ manner often results in criminality.

1.2 Attention network. The regions that were correlated

with uncoupled connections in ASPD in the attention network

were the superior and inferior parietal cortices, the inferior frontal

gyrus (opercula), and the middle frontal gyrus. The attention

network is involved in directing attention to new stimuli [47–50],

and may be responsible for implementing cognitive control

[47,49,51–53]. Recently, researchers proposed that the attention

network is also related to self-regulation [54–57]. Decreased

functioning between the attention network and the fault mode

network or cerebellar network may result in deficits of transmission

in the implementation of cognitive control and self-regulation.

High levels of effortful control and the ability to resolve conflict are

related to fewer antisocial behaviors in adolescents [58].

In the attention network, the superior parietal gyrus was found

to have the highest discriminative power, followed by the inferior

parietal gyrus, and the inferior and middle frontal gyri. We also

found the structural abnormalities in the inferior parietal lobule in

ASPD in T1-weighted images. The superior parietal cortex is

critically important for the manipulation of information in working

memory [59] and for rule-based visual-motor transformations

[60]. The superior parietal lobe is also critical for sensorimotor

integration, via maintenance of an internal representation of the

body’s state [61]. The inferior parietal lobule has been involved in

the perception of emotions in facial stimuli [62] and plays a key

role in various cognitive functions, including attention, language,

and action processing [63]. The right inferior frontal gyrus is

critically important for response inhibition [64–67]. Disruption of

activity in this area using transcranial magnetic stimulation or

direct current stimulation leads to changes in risk attitudes, as

behaviorally demonstrated by choices of risky outcomes [68,69].

The left inferior frontal gyrus is extremely important for language

production and verb comprehension. The origin of the human

motor readiness fields is linked to the left middle frontal gyrus [70].

Figure 3. Altered resting-state functional connectivity in ASPD. (a) t value distribution of all 48 features represented in the LOOCV. The
horizontal axis represents each functional connection and the vertical axis represents the weighted Kendall tau correlation coefficient. (b) Region
weights and the distribution of the 20 high discriminative power functional connections. Regions are color-coded by category, red sphere
represented default mode network, green sphere represented attentional network, brown sphere represented cerebellum.
doi:10.1371/journal.pone.0060652.g003

Identifying ASPD Individuals Using rs-fMRI

PLOS ONE | www.plosone.org 6 April 2013 | Volume 8 | Issue 4 | e60652



The functional abnormalities in the inferior parietal lobule were

consistent with our structural finding that the precuneus was

abnormal in ASPD in T1-weighted images. The left middle frontal

gyrus was also involved in phonological and semantic tasks [71].

The functions of the above regions are important for the

selection and control of socially relevant behavior. When these

functions are impaired, the other cognitive systems may be

affected. Injury to these lobes may cause violent and aggressive

behavior or the development of cold-bloodedness, which are major

characteristics of ASPD.

1.3 Cerebellum. In the current study, altered connections

were also observed between the cerebellum and the regions in the

default mode network and attention network. The first function of

the cerebellum is to organize complex information received by the

brain. It coordinates basic memory and learning processes and is

involved in emotional and cognitive processes, such as attention,

fear regulation and pleasure responses [72–76]. Within the

cerebellum, crus1 and crus2 were found to have the highest

discriminative power. Crus1 and crus2 were involved in higher-

level tasks [77] and contributed to complex cognitive operations

[78–81]. Executive tasks activated regions of crus1 that are

proposed to be involved in prefrontal-cerebellar loops [77] and

working memory [82]. Cerebro-cerebellar circuits may underlie

the involvement of the cerebellum in executive functions [83]. We

speculate that the aberrant cerebellar connectivity with the default

mode and attention networks may be partially involved in the

emotional and cognitive symptoms of ASPD.

In this study, all of the examined brain regions are related to

symptoms of depersonalization. The functional and structural

deficits may underlie the low arousal, high impulsivity, lack of

conscience, cold-bloodedness and decision-making deficits of seen

in ASPD. ASPD may be characterized by uncoupling of functional

connectivity patterns at the network level. Many behavioral

changes in ASPD may be associated with individual networks, and

ASPD may arise as an interaction between these behaviors. Our

observations extend the current understanding of the neuroana-

tomical features of ASPD.

Figure 4. Brain networks weights. (a): Summarized weights for each of the seven communities. (b):The sums of the functional connection
weights between the networks. RSN1: default mode network, RSN2: attention network, RSN3, visual recognition network, RSN4: auditory network,
RSN5: sensory-motor areas, RSN6: subcortical network, RSN7: cerebellum network.
doi:10.1371/journal.pone.0060652.g004

Table 3. Brain regions with high discriminative power.

Brain region t weight Brain region t weight

Precuneus (L) 1.6834 Cerebellum Crus2 (R) 0.3509

Parietal Sup (L) 1.3876 Temporal Mid (L) 0.3411

Cerebellum Crus1 (L) 0.9554 Temporal Mid (R) 0.3402

Parietal Sup (R) 0.9264 Frontal Sup Medial (R) 0.3375

Cerebellum Crus1 (R) 0.7090 Occipital Inf(R) 0.3357

Precuneus (R) 0.6875 Frontal Inf Orb (L) 0.3357

Parietal Inf (L) 0.6813 Cerebellum Crus2 (L) 0.3348

Frontal Mid (L) 0.6665 Frontal Sup Doral(R) 0.3222

Cingulum Post (R) 0.6380 Cerebellum 6 (R) 0.3222

Frontal Inf Orb (R) 0.5576 Rectus (L) 0.2962

Frontal Sup Medial (L) 0.3706 Temporal Inf (L) 0.2614

Temporal Inf (R) 0.3509

doi:10.1371/journal.pone.0060652.t003

Table 4. Comparison of the classification performance of
different multivariate pattern classifiers.

Classifier Feather Performance result

number SS(%) SC(%) GR(%)

LLE+SVM 22 77.14 96.88 86.57

PCA+SVM 24 71.43 62.5 67.16

SVM 22 80 81.25 80.6

LLE+LDA 21 71.43 93.75 82.09

PCA+LDA 21 80 53.13 67.16

LDA 9 88.57 56.25 73.13

LLE+C-means 61 74.29 84.38 79.1

PCA+C-means 83 15.63 100 59.7

C-means 20 78.13 85.71 82.09

LLE, locally linear embedding; LDA, linear discriminant analysis; PCA, principal
component analysis; SVM, Support Vector Machine; GR, generalization rate; SS,
sensitivity; SC specificity.
doi:10.1371/journal.pone.0060652.t004
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2. Reliability of the Proposed Classifier
In the present study, a LLE+SVM classifier was designed to

classify the resting-state functional connectivity of ASPD and

exhibited a satisfactory correct classification rate. We used the

Kendall tau rank correlation coefficient [1,21], which can

quantitatively measure a feature’s relevance to classification, to

produces a subset of the original features. Then, an LLE-based

dimensionality reduction was performed to find a low-dimensional

representation of the abnormal resting-state functional connectiv-

ity patterns in ASPD patients in contrast to controls. A SVM

classifier was used to finding a hyperplane, and LOOCV was

adopted to estimate performance and optimize the parameters.

The LLE+SVM classifier significantly outperformed the other

tested classifiers (Table 4). LLE dimensionality reduction signifi-

cantly outperformed the PCA linear dimensionality reduction.

This might be ascribed to the essentially nonlinear neural

dynamics underlying resting-state brain activities. The similar

conclusion was also obtained in the discrimination of schizophre-

nia [6]. LLE transforms data space and results in an intrinsically

low-dimensional structure. When the GR of the LLE+SVM

classifier and the other four classifiers with GRs greater than 80%

(Table 4) arrived the peak point, the number of features ranged

from 20–23. This clearly showed the abnormal information

abstracted by the proposed classifier was consistent with that

abstracted by the other classifiers. Importantly, even when the

number of features was not optimized or in a wide range (20–300),

the poorest result of the proposed classifier was approximately

80% (Figure 2). This showed that the proposed classifier had high

stability under noisy conditions. The results of permutation test

also revealed that the proposed classifier reliably learned the

relationship between the data and the labels.

This study not only demonstrated high classification accuracy of

the LLE+SVM classifier, but also elucidated the pathological

mechanisms of ASPD from a resting-state functional integration

viewpoint. In future work, we will test the method on a larger

independent dataset to confirm our findings.

Supporting Information

Figure S1 Results of a Voxel-based Morphometry
Analysis. (A) Statistic parametric map in three orthogonal

projections shows voxels where a higher regional gray-matter

density emerged in ASPD vs. control images. The voxel of

maximal gray matter density was at [x, y, z] = (41, 240, 48). (B)

Statistic parametric map in three orthogonal projections shows

voxels where a higher regional white-matter density emerged in

ASPD vs. control images. The voxel of maximal gray matter

density was at [x, y, z] = (24, 258, 40). ASPD: antisocial

personality disorder.

(TIF)

Table S1 The Abnormal Brain Regions in ASPD vs.
Controls by a Voxel-based Morphometry Analysis. These

results were produced with an uncorrected voxel level height

threshold of P#0.001 and a cluster threshold .70.

(DOC)

Text S1 The Details of the Informed Consent Proce-
dures.
(DOC)

Text S2 Kendall Tau Rank Correlation Coefficient.
(DOC)

Text S3 A Voxel-based Morphometry Analysis and
Results.
(DOC)
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