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Abstract

Background: Linear motifs are short modules of protein sequences that play a crucial role in mediating and regulating
many protein–protein interactions. The function of linear motifs strongly depends on the context, e.g. functional instances
mainly occur inside flexible regions that are accessible for interaction. Sometimes linear motifs appear as isolated islands of
conservation in multiple sequence alignments. However, they also occur in larger blocks of sequence conservation,
suggesting an active role for the neighbouring amino acids.

Results: The evolution of regions flanking 116 functional linear motif instances was studied. The conservation of the amino
acid sequence and order/disorder tendency of those regions was related to presence/absence of the instance. For the
majority of the analysed instances, the pairs of sequences conserving the linear motif were also observed to maintain a
similar local structural tendency and/or to have higher local sequence conservation when compared to pairs of sequences
where one is missing the linear motif. Furthermore, those instances have a higher chance to co–evolve with the
neighbouring residues in comparison to the distant ones. Those findings are supported by examples where the regulation
of the linear motif–mediated interaction has been shown to depend on the modifications (e.g. phosphorylation) at
neighbouring positions or is thought to benefit from the binding versatility of disordered regions.

Conclusion: The results suggest that flanking regions are relevant for linear motif–mediated interactions, both at the
structural and sequence level. More interestingly, they indicate that the prediction of linear motif instances can be enriched
with contextual information by performing a sequence analysis similar to the one presented here. This can facilitate the
understanding of the role of these predicted instances in determining the protein function inside the broader context of the
cellular network where they arise.
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Introduction

Linear motifs (LMs) are short stretches of amino acids that

populate protein sequences and play fundamental roles in protein

interaction networks [1]. Their lengths are typically between three

and ten amino acids [2,3]. LMs frequently show wide variation in

residue conservation: some positions accept only one or few amino

acids while others do not have any preference and function as

spacers [4]. These sequence features give to LMs an evolutionary

plasticity and an important role in the evolution of cellular

networks by the addition of new functionality to proteins [1].

LMs are mainly found in intrinsically unstructured regions of

proteins [5]. Disordered regions allow a thermodynamical control

of the affinity and specificity of protein interactions. They favour

transient, that is to say low affinity, and conditional interactions,

often depending on a previous modification like a phosphorylation

[6]. Hence the localisation of LMs in disordered regions suits

dynamic regulation of protein networks, where a rapid but

deterministic response is needed [7]. Indeed, LM–mediated

interactions allow the emergence of several regulatory modes

(i.e. sequential, mutually exclusive and cooperative) frequently

observed in signalling, vesicular trafficking and transcription

pathways [8].

Function of LMs strongly depends on the context. An instance

of the KDEL motif, which is an endoplasmic reticulum retrieving

signal, is likely to be functional only if present in protein sequences

known to localise to the ER or Golgi apparatus. On one hand, the

context defines the natural constraints that act on LMs and

therefore provides ‘‘rules’’ that can be applied to evaluate the

reliability of a newly predicted pattern or instance. For example

the domain masking strategy, which is used to discard instances

occurring in protein regions inaccessible for interaction like

globular domains or coiled coils [3,9,10,11].

On the other hand, the context can also give detailed

information about the mode of action of LMs. The role of the

local amino acid composition in determining specificity of LM

interactions has been experimentally studied at the interactome

level [12,13,14]. At the structural level, unstructured regions

flanking LMs have been observed to undergo disorder to order

transition upon binding [15], forming either a -helices [16] or

additional b strands that join a b sheet of the partner [17]. This

coincides with the observation that two thirds of LMs bind to their
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partners by mutual fit, meaning that they acquire a fixed structure

upon binding to a well structured template [1]. Furthermore, a

recent survey of 3D structures of protein–peptide complexes has

estimated that neighbouring residues account for 20% of the

global binding energy of peptide–mediated interactions. They are

thought to improve the interaction affinity with the native partner

or to impede non–native interactions [18].

The evolutionary context of LMs has also been studied and used

in predictive methods. Convergent evolution of LMs is at the basis

of discovery algorithms like SLiMFinder [19] and DILIMOT [20],

which search for over–represented motifs in unrelated proteins

with a common functional attribute. Additionally, conservation of

LMs in closely and distantly related proteins has been used to

improve the identification of functional instances of known LM

patterns [11,21,22,23]. Methods for de novo discovery, have also

benefited from the evolutionary signal provided by analysing

patterns of conservation. SLiMFinder uses global or local sequence

conservation to improve confidence in motif predictions [9,24];

DILIMOT takes into account conservation of the motif in

orthologs as part of the scoring scheme [10].

It is clear that LM predictions from the current generation of

predictors require experimental validation to be considered

genuine. The methods are often working at the limits of signal

to noise and are dependent on the information content of the

bioinformatics databases being used for LM prediction [3,25,26].

Nevertheless, LM prediction methods could be valuable tools for

the study of high dimensional systems like the protein signalling

networks. Therefore it is necessary to move from the identification

of a LM in a protein towards the prediction of the role of that

instance inside the functional framework of the protein, e.g. its

network of interactors.

This work addresses the study of LM context from an

evolutionary point of view. Conservation patterns of regions

flanking 116 LM functional instances were examined in relation to

the presence/absence of the LM inside protein families. Both

sequence identity and structural tendency of the LM context was

analysed. Notwithstanding the difficulty of assessing the generality

of the results, due to the fragmentary knowledge about the

complete set of cellular LMs, distinct evolutionary patterns were

identified. For the majority of the studied instances, conservation

of the local amino acid sequence and/or the local structural

tendency was found to be differentially distributed between

sequence pairs with and without the motif. These findings are

supported by examples where the regulation of the LM mediated

interaction has been shown to depend on the modifications at

neighbouring positions or is thought to benefit from the binding

versatility of disordered regions. Taken together, the results of the

present study suggest that it is possible to enrich the identification

of a LM instance with regulatory information by analysing the

conservation pattern of its flanking regions.

Methods

Dataset
The analysis was done using the MAFFT [27] alignments of 75

protein families containing 85 protein sequences that have 116

non–redundant LM instances linked to experimental evidence in

the ELM database [3]. Protein families were taken from the

TreeFam4.0 database [28]. The 40% of the families in the dataset

include proteins of metazoans (vertebrates and invertebrates) and

plants (A. thaliana) or yeast (S. cerevisiae and S. pombe); 42% contain

vertebrate and invertebrate sequences; the remaining 18% have

only vertebrate proteins.

The presence/absence of each instance was determined in the

sequences belonging to the protein family by looking for the

regular expression of the corresponding LM, as defined in the

ELM resource [3]. Sequence pairs in the protein family were

assigned to one of the following sets: the presence set (PLM ), when

both sequences have a match to the regular expression in the same

position of the annotated ELM instance; the absence set (ALM ),

when the instance is missing in one of the sequences. Only protein

sequences having a sub–sequence aligned to the region corre-

sponding to the ELM instance were considered. This classification

assumes that a LM instance is functional if it appears in a position

that, according to the alignment, corresponds to that of the

annotated ELM instance. Moreover, it depends on the adequacy

of the ELM regular expression and might overestimate the size of

the ALM set. Sequence pairs where the instance is absent in both

sequences were not considered, since any interpretation about

their differences would imply making assumptions about the gain

or loss of the instances during the evolution of the protein family.

To perform comparisons between LMs located in similar

structural contexts, each instance was assigned to a structural class.

The structural class was defined in terms of disorder/order at two

levels: protein family and module, where module is defined as an

independent unit within the protein sequence with globular or

disorder tendency. This classification was done in a semi–

automated way, using the IUPred disorder predictor [29] and

the SMART module research tool [30] and averaging the results

over all the homologous sequences. Proteins were classified as

disordered, when more than 70% of their residues are disordered

(conservative IUPred threshold of 0.4); globular, when more than

70% of the residues belong to one or more SMART globular

modules; mixed, for the proteins that could not be clearly allocated

to any of the previous classes. Modules were similarly defined as

disordered or globular. The final dataset has instances in all of the

6 structural classes resulting from the combination of protein and

module class (see Text S1 for the complete dataset).

Local structure and sequence conservation metrics
Differences between sequences were studied in terms of

conservation of the local structural tendency and the amino acid

sequence at both local and global level. The conservation of the

local structure was calculated for each sequence pair (A,B) as:

IUPdiff (A,B)~
IUPloc(A){IUPloc(B)k k{stdev(IUPloc(phylo))

stdev(IUPloc(phylo))

where Xk k indicates the absolute value of X ; IUPloc(seq) is the

IUPred value averaged over the amino acids located 15 positions

to the left and right of the LM in sequence seq;

stdev(IUPloc(phylo)) is the standard deviation of IUPloc(seq) for

all the sequences in the protein family. Therefore, IUPdiff

indicates whether the difference of the local tendency to

disorder/order between A and B is higher or lower than the

variability inside the whole protein family. Normalisation by

standard deviation permits the comparison among instances

belonging to different protein families, which have different

IUPred variabilities. The IUPdiff varies between 21 and infinity,

with negative or small positive values indicating conservation of

the local structural tendency around the LM instance.

The protein sequence conservation between each pair (A,B)
was calculated as the full-length sequence identity according to the

multiple sequence alignment (globCons) and as the sequence

identity of the amino acids in the 15 positions flanking the LM

instance both sides (locCons).

Regions Flanking Linear Motifs
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The definition of IUPdiff and locCons depends on the

alignment quality of the flanking regions. Acknowledging the

poor performance of multiple alignment programs in disordered

regions [31], those values were calculated only when the 15

residue windows surrounding the instance contained at least 75%

of non–gap positions; in other words, when there was enough

information to estimate average conservation values.

Frequency profiles and correlation between PLM ALM

sets
The distribution of the IUPdiff values as a function of the

locCons or globCons was represented as frequency profiles. Those

profiles are no more than two-dimensional histograms which

represent the number of pairs falling in a given range of the

IUPdiff and a given range of locCons or globCons. Counts were

normalised to avoid biases due to the different sizes of the protein

families. Frequency profiles were calculated for the PLM and ALM

sets of each instance. Almost half of the instances (53 out of the

116) have a sufficient number of sequence pairs to allow this

statistical representation.

In order to compare the similarity between the PLM and ALM

profiles, their correlation was estimated using the Spearman

coefficient. The Spearman coefficient ranges between 1, high

correlation, and 21 complete anticorrelation. In the context of the

present study, a correlation of 1 would indicate that the PLM and

ALM sets cover the same IUPdiff and locCons/globCons ranges.

A correlation of 21 would imply that those ranges are completely

disjoint and diametrically opposed (e.g. high IUPdiff and low

locCons for ALM while low IUPdiff and high locCons for PLM ).

Small positive or negative values indicate that the IUPdiff and

locCons/globCons ranges of the PLM and ALM sets tend to be

disjoint but not opposite.

Statistical coupling analysis
Positional coupling [32] between each non–wildcard position of

the LM instance and each one of the residues of the module

(globular or disordered) was calculated. The method could be

applied for the instances located in modules whose multiple

sequence alignment is diverse, such that the frequencies of amino

acids at some positions are near to their mean values in all

proteins, i.e. those positions are poorly conserved. Only positions

in the module with coupling values that emerge from noise were

considered. Noise threshold was set to two standard deviations

above the mean coupling value of all the residues in the module.

Coupled positions were classified as neighbouring, when located

within 15 positions both sides of the LM instance, and as distant

for all the others. For the instances located towards the limits of the

module, the partial window (i.e. less than 15 residues) was

considered. In other words, the module boundaries were taken

into account when defining neighbouring residues.

Assuming that the probability of coupling is equal for any

residue in the protein sequence, the number of coupled positions

was weighted by the total number of potentially coupled positions:

30 for the neighbouring residues and the length of the module

minus the length of the instance region (15+ motif length +15) for

the distant ones. This weighted value is defined as the frequency of

coupling.

Results

LM presence and the conservation of the local structural
tendency

This section explores the relationship between LM presence and

the conservation of the structural tendency in the regions flanking

the motif. Figure 1 shows the IUPdiff distribution for the pairs of

the PLM and the ALM sets averaged over all the instances. Even if

there is a non–negligible overlap between the two distributions,

negative IUPdiff values, that indicate conservation of the local

structural tendency, are significantly more frequent in PLM than in

ALM sequence pairs (Kolmogorov-Smirnov test: differ-

ence = 0.423, p-valuev0.00001). This difference is lost for higher

IUPdiff values.

When the analysis is repeated comparing the IUPdiff distribu-

tions of PLM and ALM sets of each instance, inside each protein

family, analogous results are obtained. For all the structural classes

the mean IUPdiff for the PLM set is lower than that of the ALM

set, as shown in Table 1. Additionally, comparison of the two

IUPdiff distributions gives statistically significant differences for 57

out of 116 instances (Kolmogorov-Smirnov test: differences

between 0.303 and 0.791, p-valuesv0.05, see complete results

in Table S1). This means that, for almost 50% of the instances the

PLM and ALM sets have different local structural tendencies that

can be quantified and used to statistically differentiate between

those sequence pair sets.

For the remaining instances the PLM and ALM sets have the

same IUPdiff ranges. These instances suggest that, sometimes, the

local structure is conserved even if the LM is lost. This is not

surprising if considering that the LM is a module evolving inside a

higher order unit (e.g. the protein sequence) composed of several

other functional modules. Disambiguation of the selective pressure

imposed by the LM, based exclusively in its local structure

conservation, will be difficult in these cases. Consequently it is

worth analysing the conservation of the local structural tendency

in relation to the evolution of the rest of the protein modules.

LM evolution and the relationship between local
structural tendency and sequence conservation

In order to explore how the conservation of the local structure,

in terms of disorder/order, is related to the evolution of the protein

sequence, the distribution of IUPdiff was analysed as a function of

the global and local sequence conservation. Frequency profiles of

the combined distribution of IUPdiff versus the local and global

sequence conservation (locCons and globCons) were calculated for

both the PLM and ALM sets of each instance.

Figure 2 presents the frequency profile of IUPdiff versus

locCons and globCons. Since they represent the distribution of the

above variables for the PLM and ALM sets averaged over all the

instances, those profiles do not allow a comparative analysis

between PLM and ALM sets or sequence conservation variables.

Differences among protein families due to dissimilar evolutionary

rates are not averaged out. The structural composition of proteins

belonging to different structural classes (disordered, globular,

mixed) might add further disparity, since sequences with long

disordered regions tend to have heterogeneous evolutionary rates

[33].

Nevertheless those profiles provide an idea about the general

trends of the relationship between IUPdiff and sequence

conservation. As expected, the ALM sets cover mainly low

sequence conservation values (Figure 2B and D). Indeed, even if

low sequence similarity does not necessarily imply the loss of the

LM, closely related protein sequences are more likely to have

similar LM instances than distantly related or paralogous

sequences [1,4]. Instead, the frequency profiles of the PLM sets

exhibit an additional feature: low IUPdiff values are frequent in

both high and low sequence conservation values (Figure 2A and

C). In other words, conservation of the amino acid sequence is not

required for the maintenance of the disorder tendency around the

LM.

Regions Flanking Linear Motifs
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The above result suggests that structural and sequence

conservation, intended as sequence identity, are not redundant

and both might provide information about the LM evolution.

Indeed the IUPred method predicts disordered/ordered regions

by estimating the total pair wise interresidue interaction energy

[29] and therefore there is no a priori reason why the conservation

of the local structural tendency should imply the conservation of

the exact amino acid sequence. To further explore this, the

frequency profiles of the PLM and ALM sets of each instance were

obtained and their Spearman correlation coefficient calculated

separately. The analysis per instance has the additional advantage

of discarding artificial differences between PLM and ALM caused

by dissimilar evolutionary rates among the protein families.

All the structural classes have low mean correlation coefficients

indicating that, on average, the PLM and ALM frequency profiles

of each instance can be discriminated; correlation values range

from 0.11 to 0.34 for locCons and from 0.02 to 0.22 for globCons

depending on the structural class (see Table S2). The low number

of instances per structural class, makes any comparative statistical

analysis unreliable, e.g. between structural classes or conservation

variables. Nevertheless, having a closer look at the results per

instance (Table 2), three groups with distinct behaviour can be

identified. Examples of instances belonging to each one of those

groups are presented in Figure 3. Those trends do not change

when the PLM set is enlarged by considering subsequences that

partially match the ELM regular expression as LM instances (see

Table S3 for further details).

The first group consists of those instances whose PLM and ALM

frequency profiles of IUPdiff versus locCons are less correlated

than the corresponding IUPdiff versus globCons profiles

(Figure 3A). This indicates that variations in the local protein

sequence are more connected to the LM presence/absence than

the modifications happening in the rest of the protein. The 37% of

the instances in Table 2 have this kind of behaviour, especially

those ones located in disordered modules of disordered proteins (8

out of 13).

Figure 1. Frequency distribution of IU Pdiff for the PLM and ALM sets. Frequency is calculated per instance as the proportion of sequence pairs
falling in a given IU Pdiff range. Error bars indicate the standard deviation of the frequency when averaging over all the instances in that range.
Significant difference (p-value,0.00001) between PLM and ALM distributions is marked by the asterisk.
doi:10.1371/journal.pone.0006052.g001

Table 1. IU Pdiff ranges and mean IU Pdiff for the PLM and ALM

sets per structural class.

protein
class

module
class numbera min max mean

Plm Alm Plm Alm Plm Alm

DIS DIS GLOB 41 20.9 20.8 3.4 4.9 0.6 1.2

4 21.0 21.0 1.8 3.5 0.0 0.6

GLOB DIS GLOB 16 20.9 20.9 3.9 6.9 0.6 1.6

14 21.0 20.8 2.1 5.2 0.1 1.2

MIXED DIS GLOB 32 20.9 20.9 3.2 6.0 0.5 1.8

9 21.0 20.9 2.1 4.6 0.2 1.3

IU Pdiff values are averaged over all the instances belonging to the same
structural class.
anumber of instances per structural class.
doi:10.1371/journal.pone.0006052.t001

Regions Flanking Linear Motifs
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The second group is formed of instances where the contrary is

true, meaning that the LM presence/absence is better distin-

guished by the global conservation (Figure 3B). In those cases, the

main selective pressure on the LM presence might be coming from

the protein sequence as a whole unit. Not surprisingly all of the 8

instances located in globular proteins (both in disordered and

globular modules) belong to this group.

A third group of instances appears when merging the results of

the previous section, that is to say, considering those instances

whose PLM and ALM sets have significantly different IUPdiff

distributions (in bold in Table 2, Figure 3C and D). In these cases,

the presence or absence of the LM is correlated with changes in

both the local structural tendency and the sequence conservation.

Those instances reach, on average, lower correlation values

independently from the conservation variable (0.18 for the

locCons and 0.15 for the globCons) than the instances with no

significant IUPdiff distinction between PLM and ALM (0.30 for

locCons and 0.26 for globCons). This last group of instances is the

best evidence in favour of the hypothesis proposed above, about

the additive value of the structural and sequence conservation

information in the analysis of LM evolution.

Co-evolution of the LM and their flanking regions
To get additional evidence about the co–evolution between

LMs and their flanking regions, the statistical coupling [32] was

used as an independent method. This method has been used to

identify clusters of positions that statistically co–vary with one

another and therefore are likely to co–evolve and to be

functionally related [34]. In this case only pair coupling between

the non–wildcard positions of the LM instance and all the other

residues in the corresponding module was considered. The

frequency of coupling with neighbouring and distant residues

was calculated and compared in terms of the sequence

conservation that best describes the LM evolution, that is to say

the variable that gives the lowest correlation in Table 2.

For the instances that have lower locCons correlation (e.g.

Figure 3A), the frequency of neighbouring coupling is significantly

higher (Kolmogorov-Smirnov test: difference = 0.576, p-

valuev0.005) than the frequency of distant coupling (Figure 4A).

In other words, the instances whose evolution is better described

by the local sequence conservation combined with the IUPdiff

have a higher chance of correlated amino acid changes with

neighbouring rather than with distant residues in the module.

Figure 2. Frequency profiles for the PLM and ALM sets. Distribution of IU Pdiff as a function of sequence conservation: locCons (A,B) and globCons
(C,D). Colour represents the frequency of sequence pairs whose local structure and sequence conservation values fall in a given range of IU Pdiff and
locCons/globCons, averaged over all the instances.
doi:10.1371/journal.pone.0006052.g002

Regions Flanking Linear Motifs
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Table 2. Spearman correlation coefficient between the PLM and ALM frequency profiles.

structural classa TreeFam id UniProt id ELM id Start locCons corr globCons corr

TF106427 P29374 LIG_RB 957 20.14 0.12

TF106496 P25054 TRG_NES_CRM1_1 163 20.09 20.05

TF316358 P10636 LIG_SH3_1 565 20.05 0.42

TF300785 P51531 LIG_RB 1294 20.01 0.12

TF314303 O15147 LIG_SH3_5 389 20.01 0.16

TF325994 P35568 LIG_14-3-3_3 267 0.12 0.29

TF331759 O60315 LIG_CtBP 785 0.16 0.20

TF323952 P17535 LIG_COP1 241 0.16 0.33

DIS DIS TF325994 P35568 LIG_14-3-3_3 371 0.29 0.42

TF318445 O35973 TRG_NES_CRM1_1 488 0.32 0.50

TF325994 P35570 LIG_SH2_GRB2 896 0.45 0.52

TF101166 P05205 LIG_RB 61 0.53 0.10

TF320471 P35712 LIG_CtBP 424 0.36 0.15

TF313876 Q91VZ6 LIG_Clathr_ClatBox_l 192 0.31 0.16

TF325994 P35570 LIG_SH2_PTP2 1179 0.23 0.21

TF331759 O60315 LIG_CtBP 859 0.34 0.31

TF323952 P05412 MOD_PIKK_l 246 0.55 0.52

TF105306 Q00987 MOD_PIKK_l 392 20.02 0.02

DIS GLOB TF323952 P05412 LIG_MAPK_1 32 0.55 0.27

TF314861 Q05140 LIG_PIP2_ANTH_1 28 0.51 0.36

TF325994 P35570 MOD_CK2_1 96 0.48 0.39

TF335892 P04235 TRG_LysEnd_APsAcLL_l 138 0.18 0.28

TF300460 Q04656 TRG_LysEnd_APsAcLL_l 1483 0.38 0.00

TF105137 Q02750 LIG_MAPK_1 3 0.34 0.11

TF300618 P27797 TRG_ER_KDEL_l 414 0.53 0.22

GLOB DIS TF105135 P45985 LIG_MAPK_1 40 0.36 0.28

TF105115 Q99683 LIG_14-3-3_1 963 0.33 0.31

TF300540 P04040 TRG_PTS1 523 0.38 0.36

TF105044 P36604 TRG_ER_KDEL_1 660 0.45 0.42

TF106381 P09103 TRG_ER_KDEL_l 506 0.52 0.48

TF105042 P17156 LIG_TPR 630 0.65 0.52

TF335892 P19377 MOD_TYR_ITAM 146 20.05 20.08

TF101211 Q8AY27 MOD_PIKK_l 2 0.03 0.00

TF101004 P24385 LIG_RB 5 0.22 0.10

GLOB GLOB TF105115 Q99683 LIG_RB 916 0.19 0.17

TF105122 P28562 LIG_MAPK_2 339 0.44 0.25

TF315491 P27918 MOD_CMANNOS 318 0.37 0.27

TF105331 Q96GD4 LIG_APCC_Dbox_l 314 0.65 0.53

TF316520 O00268 LIG_HP1_1 762 20.07 0.01

TF101065 Q12834 LIG_APCC_KENbox_2 96 20.01 0.04

TF313542 P49418 LIG_AP2alpha_l 324 0.03 0.15

TF300772 P49736 MOD_PIKK_1 105 0.09 0.16

MIXED DIS TF105351 P35465 LIG_SH3_2 13 0.11 20.06

TF332149 O75074 TRG_LysEnd_GGAAcLL_l 764 0.35 0.01

TF106101 P04637 TRG_NES_CRM1_1 339 0.04 0.01

TF318574 Q9UJY5 TRG_LysEnd_GGAAcLL_2 355 0.34 0.03

TF101089 P53350 LIG_APCC_Dbox_l 336 0.33 0.14

TF105722 P35251 LIG_RB 662 20.11 20.06

TF300901 P23396 LIG_MAPK_2 77 0.24 0.41

MIXED GLOB TF333209 P54274 MOD_PIKK_1 216 20.08 20.10

Regions Flanking Linear Motifs
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Conversely, for the instances where the global sequence

conservation is the better descriptor (e.g. Figure 3B), the coupling

between non–wildcard positions and neighbouring or distant

positions is equally frequent (Figure 4B).

Discussion

This study presents evidence for the concerted evolution of LMs

and their flanking regions. Although the current knowledge of the

complete set of cellular LMs is fragmentary and it is not possible to

assess the representativity of the analysed dataset, there are clear

trends that are worth considering. LMs are known to be

evolutionarily labile modules, which can be easily lost by point

mutation [4]. Nonetheless, the results of the present study show

that LMs, in some cases, determine the conservation of the

structural tendency and/or the sequence of the neighbouring

amino acids. Here those findings are discussed in the light of the

protein interactions mediated by LMs.

In the first section of the Results it was shown that, for some

instances, the conservation of the LM is associated with the

maintenance of the structural tendency of the surrounding

residues. What is the meaning of this conservation? As mentioned

in the Introduction, two thirds of the LM–mediated interactions

lead to the formation of secondary structure elements (a–helices or

b–strands) [1]. If the LM functionality is to be maintained, the

structural properties of the neighbouring amino acids that allow

such disorder/order transition are likely to be conserved. This

local propensity would be reflected by the corresponding IUPred

values and hence the low IUPdiff observed in the PLM sets would

indicate the conservation of such propensity.

However, the conservation of the local structural tendency could

also indicate the maintenance of the local disorder. Several studies on

protein–protein interactions have drawn attention to the importance

of intrinsic disorder in the formation of protein complexes

[6,35,36,37]. If the local disorder provides the flexibility required to

bind different patterns, it is not surprising to observe the conservation

of this structural tendency in the regions involved in such interactions.

Previous work by [38] has connected the conservation of predicted

disordered regions in eukaryotic proteins with DNA/RNA binding

domains. The conservation of disorder around LMs would extend

this result to a broader set of biological processes.

The instances of the molecular hub p53 exemplify the double

meaning of the structural conservation measured by the IU Pdiff.

For three out of four of the p53 instances in the dataset

(TRG_NES_CRM1_1, 339–352; MOD_SUMO, 385–388;

MOD_PIKK_1, 12–18), the presence of the instance coincides

with the conservation of the local structural tendency. They belong

to the group of instances that have a significantly different

distribution of the IUPdiff between PLM and ALM sets (p-

valuev0.05). Those instances are located in the C and N terminal

regions of P53, which are disordered modules known to bind

different partners by acquiring different conformations [39].

Additionally, the MOD_SUMO and the MOD_PIKK_1 (but

not the TRG_NES_CRM1_1) occur in predicted a–MoREs,

disordered regions having propensities to form a–helix upon

molecular recognition [16].

A more detailed study of the structural conservation as function

of the different types of mutual fit interaction (i.e. a–helix

formation, b augmentation or irregular topology) may be

interesting. It would shade light on the specific requirements of

each conformation. This would require the definition of a more

elaborated metric for the local structure conservation than the

IUPdiff . However, independently from its specific meaning, the

structural tendency conservation around the LM suggests the

occurrence of overlapping interaction surfaces. Those clustered

overlaps are likely to entail different regulatory mechanisms for the

spatial or temporal isolation of the mutually exclusive interactions.

In the second and third part of the Results it was shown that the

presence of some LM instances is accompanied by the conserva-

tion of the amino acids flanking the motif. This is the case for 42%

of the instances in Table 2 that have locCons correlation values

lower that 0.20 between the PLM and ALM sets. The local

sequence conservation could be explained in some cases by the

conservation of the local structural tendency (instances in bold in

Table 2, Figure 3C and D). Still, as shown in the Results (Figure 2),

sequence identity does not seem to be a requirement for the

maintenance of the local order/disorder tendency. Indeed, it has

been recently demonstrated by nuclear magnetic resonance

spectroscopy that intrinsically disordered regions can maintain

their dynamic behaviour despite low sequence similarity [40]. Yet

there must be a functional meaning for the local sequence

conservation associated with these instances, especially considering

that it allows to discriminate sequences with and without the motif

(PLM and ALM sets), even when local structural tendencies

between those sequences are not significantly different (e.g.

Figure 3A and B). Furthermore, these instances have higher

chance of co–evolving with the neighbouring residues in

comparison to the distant ones (Figure 4A).

It is likely that the flanking regions of those instances are related

with the regulation of the LM or with the regulation of another

interaction, which is functionally connected to the one mediated

by the motif. This is the case of the LIG_AP2alpha_1 in positions

324–328 of amphiphysin (P49418, locCons correlation 0.03),

which is involved in clathrin coated vesicle formation. Phosphor-

ylation of amphiphysin by Cdk5 in S276, S285 and T310 has been

shown to directly regulate the intramolecular interaction in

structural classa TreeFam id UniProt id ELM id Start locCons corr globCons corr

TF318283 P46061 MOD_SUMO 525 0.10 20.07

TF101066 Q8UWJ8 LIG_CYCLIN_l 445 0.31 0.19

TF330851 P10912 LIG_SH2_STATB 566 0.30 0.21

Spearman correlation coefficient calculated between the PLM and ALM frequency profiles of each instance. Correlation of the frequency profiles of IU Pdiff versus locCons
and IU Pdiff versus globCons are indicated as locCons corr and globCons corr respectively. Correlation of 1 would indicate that the PLM and ALM sets cover the same IU Pdiff

and locCons/globCons ranges. A correlation of 21 would imply that those ranges are completely disjoint and diametrically opposed (e.g. high IU Pdiff and low locCons for
ALM while low IU Pdiff and high locCons for PLM). Small positive or negative values indicate that the ranges tend to be disjoint but not opposite. Instances in bold have PLM

and ALM sets with significantly different IU Pdiff distributions (p-values,0.05).
aprotein and module structural classes.
doi:10.1371/journal.pone.0006052.t002
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Figure 3. Examples of evolutionary patterns of the regions flanking LM. IU Pdiff versus locCons and globCons for the sequence pairs in PLM

(black dots) and ALM (blue asterisks) sets per instance. Three groups with distinct evolutionary behaviour can be identified: instances whose PLM and
ALM frequency profiles of IU Pdiff versus locCons are less correlated than the corresponding IU Pdiff versus globCons profiles (A); instances where the
contrary is true (B); instances that, additionally, have a significantly different IU Pdiff distribution (C,D).
doi:10.1371/journal.pone.0006052.g003
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amphiphysin, which in turn regulates dynamin-dependent endo-

cytosis [41,42]. Likewise, other instances with locCons correlation

between 20.05 and 0.16 (LIG_SH3_1 P10636 565–572, LIG_

COP1 P17535 241–248) have experimentally verified phosphor-

ylation sites in their flanking regions: T561 for P17535 and S251,

S255 and S259 for P17535 [25]. Those phosphorylation site are

likely to regulate the local protein conformation and activity, as

recently shown in a phosphoproteomic analysis of the mouse brain

cytosol [43].

Finally, it is opportune to consider how current LM prediction

methods can benefit from these results. A simple sequence analysis,

similar to the one described here, would allow the identification of

flanking regions with relevant conservation patterns, adding

contextual information to already predicted LM instances. This

can lead to a more detailed understanding of the role of LMs in

determining the protein function. Indeed we consider that the LM

field is ready – and has the potential – to go one step further from

the timeless binary interactions towards the construction of more

dynamic and realistic protein networks.

Supporting Information

Text S1 Dataset of functional instances. List of the 116 instances,

classified per structural class with phylogeny, sequence and motif

identifiers.

Found at: doi:10.1371/journal.pone.0006052.s001 (0.00 MB

TXT)

Table S1 Comparison of the IUPdiff distribution between the

PLM and ALM sets. Kolmogorov-Smirnov test comparing the IUPdiff

distribution of the PLM and ALM sets of each instance. The

difference is the Kolmogorov-Smirnov statistic calculated from the

cumulative distributions of the compared samples.

Found at: doi:10.1371/journal.pone.0006052.s002 (0.03 MB

PDF)

Table S2 Mean and standard deviation of the correlation

between PLM and ALM frequency profiles. Spearman correlation

coefficient calculated between the PLM and ALM frequency profiles

of each instance. Correlation of the frequency profiles of IUPdiff

versus locCons and IUPdiff versus globCons are indicated as locCons

corr and globCons corr respectively.

Found at: doi:10.1371/journal.pone.0006052.s003 (0.02 MB

PDF)

Table S3 Effect of the stringency of the regular expression

matching on the correlation between the PLM and ALM frequency

profiles. Spearman correlation coefficient calculated between the

PLM and ALM frequency profiles of each instance. Correlation of

the frequency profiles of IUPdiff versus locCons and IUPdiff versus

globCons are indicated as locCons corr and globCons corr respectively.

Percentages indicate the stringency used to define a match to the

ELM regular expression: 100% stringency supposes that a LM is

present only if there is a perfect match to the ELM regular

expression in the same position of the annotated instance; lower

percentages consider that a LM is present also in case of partial

match to the regular expression. Correlation values in bold show

the biggest difference (more than 0.05) with the corresponding

100% stringency correlation value. Missing values can not be

calculated due insufficient number of sequence pairs in the ALM

set.

Found at: doi:10.1371/journal.pone.0006052.s004 (0.05 MB

PDF)
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