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Abstract

Robustness is an essential feature of biological systems, and any mathematical model that describes such a system should
reflect this feature. Especially, persistence of oscillatory behavior is an important issue. A benchmark model for this
phenomenon is the Laub-Loomis model, a nonlinear model for cAMP oscillations in Dictyostelium discoideum. This model
captures the most important features of biomolecular networks oscillating at constant frequencies. Nevertheless, the
robustness of its oscillatory behavior is not yet fully understood. Given a system that exhibits oscillating behavior for some
set of parameters, the central question of robustness is how far the parameters may be changed, such that the qualitative
behavior does not change. The determination of such a ‘‘robustness region’’ in parameter space is an intricate task. If the
number of parameters is high, it may be also time consuming. In the literature, several methods are proposed that partially
tackle this problem. For example, some methods only detect particular bifurcations, or only find a relatively small box-
shaped estimate for an irregularly shaped robustness region. Here, we present an approach that is much more general, and
is especially designed to be efficient for systems with a large number of parameters. As an illustration, we apply the method
first to a well understood low-dimensional system, the Rosenzweig-MacArthur model. This is a predator-prey model
featuring satiation of the predator. It has only two parameters and its bifurcation diagram is available in the literature. We
find a good agreement with the existing knowledge about this model. When we apply the new method to the high
dimensional Laub-Loomis model, we obtain a much larger robustness region than reported earlier in the literature. This
clearly demonstrates the power of our method. From the results, we conclude that the biological system underlying is much
more robust than was realized until now.
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Introduction

It is remarkable but well-known that many biological systems

are robust under vastly different conditions [1,2]. Although these

systems might experience strong internal or external perturbations,

e.g., through environmental changes or noise, they still operate

reliably. This is, for example, observed in chemotactic behavior

and patterning development [2]. Robustness is an essential feature

of biological systems [3,4], and any mathematical model

describing their behavior should also have this property [5]. This

implies the need for an efficient tool to analyze the robustness of

these models.

Here we focus on the parametric robustness of biological models

that show oscillatory behavior. Oscillations are ubiquitous in

biology. It is found, for example, in the pulse of the heart, the

circadian rythm, and the signal transduction that involves adenosine

39,59-cyclic monophospate (cAMP) in the chemotactic of Dictyoste-

lium discoideum [6]. The robustness of a model is determined by

answering the question how far the parameters of the model could

be perturbed so that the qualitative behavior of the system does not

change. An example of such a change is, e.g., the transition from

oscillatory behavior to a steady state equilibrium. Such a drastic

transition is called a Hopf bifurcation. There are many types of

bifurcations possible in dynamical biological models.

Given a so-called nominal point in parameter space for which a

system has a stable periodic solution, in general a region around this

point exists within which the system oscillates. We call such a region

a ‘‘robustness region’’ if no bifurcation of any kind occurs in its

interior and if in each point of its boundary the system undergoes

some bifurcation. The type of the latter bifurcations may be of any

kind. An important consequence of this definition is that the period

of the oscillations varies smoothly over the robustness region. If

somewhere a period doubling bifurcation (also referred to as flip

bifurcation) occurs, such a dramatic change in qualitative behavior

indicates that the system is no longer robust. According to our

definition we meet in such a point the boundary of the robustness

region. (Note that in this paper, the words flip bifurcation and

period doubling bifurcation are used interchangeably.)

In the literature, some methods have been proposed to analyze

robustness of models with oscillatory behavior. Robustness with

respect to perturbations of a single or at most two parameters

simultaneously can be investigated using a bifurcation analysis

package such as AUTO [7]. With this package, the boundary of

the robustness region can be obtained. In most cases, however,
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more parameters are involved and AUTO is no longer applicable.

In [8], the Structured Singular Value method (SSV) from control

theory [9] was used to quantify the robustness of the Laub-Loomis

model [6]. This model has an oscillatory solution for a specific set of

parameter values, the so-called nominal values. It was investigated

how much the nominal values might be changed before a

bifurcation would occur. The authors initially claimed that the

allowed maximum parameter variation is 8:3%. The work was then

improved by applying a hybrid optimization method which yielded

a much smaller variation of 0:6% [10]. Ghaemi et al. utilized a

Routh-Hurwitz stability criterion that resulted in 0:51% variation

for the Laub-Loomis model [11]. The percentage values of

parameter variations that are presented in these papers suggest

that all parameters have the same sensitivity. However, the model

might be more sensitive to some parameters than to others [12].

Furthermore, the authors studied only the Hopf bifurcation that

occurs when the stable periodic behavior turns into an equilibrium.

Here we present an alternative method to analyze the parametric

robustness of biological models with stable oscillatory behavior (also

referred to as ‘‘periodic solution’’ or ‘‘limit cycle’’). The method

aims at finding an approximation for the whole robustness region,

taking into account that the sensitivity of the system might be highly

parameter dependent. The consequence is that in our approach it is

not useful to report the resulting estimate in terms of a percentage of

the nominal value. On the contrary, the robustness region often

turns out to be far from symmetric around the nominal point.

Furthermore, the present approach allows for the detection of any

kind of bifurcations, and is not limited to Hopf bifurcations. Another

aspect refers to dimensionality. In high-dimensional systems, an

important feature of any numerical method is efficiency. Many

methods suffer from the so-called ‘‘dimensional curse’’, i.e. the

computing time scales exponentially with dimension. For example,

if we would use a Monte-Carlo approach for estimating the shape of

robustness regions, we would certainly be confronted with this

limiting factor. However, the method presented here has the

computational advantage that it scales linearly with the number of

parameters. That is the reason that it is highly efficient for systems

with a high-dimensional parameter space.

The present method is based on Floquet theory and

continuation of the periodic solution. Starting from the nominal

parameter set, we construct an estimate for the robustness region

by scanning the parameter space in orthogonal directions. If

necessary, the obtained estimate is refined by shifting the nominal

point to a carefully chosen new position. We do not only focus on

Hopf bifurcations, but take into account all types of bifurcation

that might occur to periodic solutions, including period doubling

and Neimark-Sacker bifurcations. So, also bifurcations that lead to

chaotic behavior may be detected. In addition, the presented

method yields extra information such as the period and the

amplitude of the solution for free.

To demonstrate the ideas and power of the proposed method, we

apply it to ecological and biological network models that admit

stable periodic solutions: the Rosenzweig-MacArthur (RMA) model

and the Laub-Loomis (LL) model. The RMA model is chosen for

illustrational purposes. It is well known for its rich bifurcation

pattern and serves as a test case here. It is a low dimensional system

for which our method is not especially designed, but it serves as a

useful check of performance. It consists of three state variables with

six parameters where two of them are taken free. The LL model is a

high dimensional system that consists of seven state variables with

fourteen parameters. Its robustness has been already investigated in

[8,10,11]. As an extra check on low dimensional systems we analyze

the LL model with twelve fixed and only two parameters perturbed.

Our results for two dimensional systems fully agree with those

obtained with existing approaches. The results for the high

dimensional LL model clearly demonstrate that the present method

is a real extension of the existing approaches.

Results

The stability of a periodic solution can be verified using Floquet

theory (see [13] and [14]). In this theory, the Floquet multipliers,

which are the eigenvalues of the so-called monodromy-matrix, are

used to indicate stability. One of the Floquet multipliers is always

real and equal to 1. A necessary and sufficient condition for a

periodic solution to be stable is that the modulus of the other

Floquet multipliers is less than 1, i.e., they lie inside the unit circle

in the complex plane. If the parameters are perturbed and one of

the multipliers crosses the unit circle, the solution looses its stability

and a bifurcation happens. This bifurcation can be of several types

as discussed in the Material and Method section.

This suggests that in order to analyze the robustness of oscillatory

behavior of a model, we only need to observe its Floquet multipliers

as functions of the parameters. In the Material and Method section,

we describe the details to find in an efficient way an estimate for the

robustness region. Starting in a so-called nominal point in

parameter space for which a stable periodic solution exists, the

parameter space is scanned along orthogonal directions to detect

where along these lines bifurcations occur. This yields an initial

estimate of the robustness region, that is gradually improved by

shifting the nominal point and varying the directions.

In the next sections, we apply our method to two biological

models: the low-dimensional RMA model and the high-dimen-

sional LL model.

Application to the Rosenzweig-MacArthur Model
The Rosenzweig-MacArthur (RMA) model is an ecological

model that describes the time evolution of a predator-prey system

[15]. In dimensionless form, this 3-dimensional model reads as

_xx1~x1(1{x1){f1(x1)x2

_xx2~f1(x1)x2{k1x2{f2(x2)x3

_xx3~f2(x2)x3{k2x3,

ð1Þ

where

f1(x1)~
a1x1

1zb1x1

f2(x2)~
a2x2

1zb2x2

:
ð2Þ

Here, x1,x2,x3 denote the prey, predator, and top predator

populations, respectively, a1,a2,b1,b2 are the parameters in the

Michaelis-Menten functions f1 and f2, and k1,k2 are death rate

parameters.

The dynamical behavior of this model for the fixed coefficient

values

a1~5,a2~0:1,b1~3,b2~2, ð3Þ

has been extensively investigated in [16–18] as a function of k1

and k2. The resulting bifurcation diagram is depicted in Figure 1A.

From this figure, we see that the limit cycle behavior of the model

may experience a Hopf bifurcation, a transcritical bifurcation, or

may transform into a flip bifurcation. Since there are infinitely

many flip bifurcations in this bifurcation diagram, it is not possible

to indicate all their positions in Figure 1A. Therefore, as a

Robustness of Periodic Systems
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warning, we shade some areas in Figure 1C to indicate that flip

bifurcations may occur somewhere in these areas. Due to infinitely

many flip bifurcations, we restrict ourselves to the positions of the

first period doubling bifurcations, which lie on the red curved line.

We apply our method to show how an estimate is obtained for the

region in Figure 1A where a stable limit cycle exists. As nominal

starting point we take k0~(k1~0:6,k2~0:008). In k0, the solution

converges to a periodic solution with period T~120:04 as shown in

Figure 2A. The corresponding Floquet multipliers are

m~fm1,m2,m3g~f0:9991,{4:5654e-016,{0:2319g:

We notice that the largest multiplier m1 is indeed equal to 1

within the numerical accuracy. m2 and m3 lie inside the unit circle,

so the limit cycle in k0 is stable. Following the method described

underneath and summarized in equations (23)–(27), we construct

two orthogonal directions, v1 and v2, and perturb the nominal

parameter set k0 in these directions. The direction v1 is chosen

such that the Floquet multipliers will change mostly when moving

along v1 in the (k1,k2) plane and v2 is orthogonal to v1.

Continuation is applied along perturbation direction v1 until

points B, denoted by a green star, and F, denoted by a red star, in

Figure 1B are reached. Continuation is stopped at point B because

the multipliers at that point are

m~f1:0000,0:9991,{1:1102e-016g:

So, m2~0:9991&1 and this indicates that the method has

successfully found a fold bifurcation. Using only Floquet

multipliers, one cannot discriminate between a tangent, for which

the cycle collides with a saddle limit cycle, and a Hopf bifurcation,

for which the limit cycle disappears into an equilibrium. However,

since in both cases the boundary of the robustness region is

reached, this is not a problem at all. Just for curiosity we used

AUTO to confirm that it is the latter option. Continuation is

Figure 1. Bifurcation diagram and successive approximations of the robustness region of the RMA model. (A) Bifurcation diagram as a
function of the death rate parameters k1 and k2 [17]. (B) Initial approximation. (C) Second approximation. (D) Estimated level lines of the period of the
periodic solution. Note that the scale for k1 and k2 is not the same, which is the reason the orthogonality of the lines AD and BF is not directly clear
from the picture. The shaded areas in (C) and (D) indicate regions where an infinitely number of period doubling bifurcations are located.
doi:10.1371/journal.pone.0009865.g001
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stopped at point F. It does not make sense to continue beyond this

point, since the value of parameter k2 is so small there, that it is

already hardly acceptable from a biological point of view. This

also manifests itself in a very long period and a highly irregular

shape of the limit cycle, that gives rise to a very long computational

time. An example is given in Figure 2B, where we show the time

behavior of the components at point F.

When the continuation procedure is applied along direction v2,

the method hits two bifurcation points, A and D. At point A, the

mutlipliers are

m~f1:0006,{1:2583e-015,{1:0003g:

We notice that m3~{1:0003&{1, and we conclude that the

method has successfully found a flip bifurcation, which is denoted

by a blue-star. Since a flip indicates a possible route to chaos and it

means the end of the limit cycle, as meant in the definition of

robustness, this is also a boundary of robustness. On the other

hand, we detect point D as a Hopf bifurcation. Thus, we obtain

region ABDF as our first, crude approximation of the robustness

region of the model. Note that the orthogonality of v1 and v2 that

leads to the axes AD and BF is not directly clear from Figure 1B,

because the axes have different scales.

Next, an improvement on this initial approximation is obtained

by shifting the nominal point k0 to the midpoint of the longest

axis, in this case the midpoint of AD which is denoted by k�0 in

Figure 1C. Applying the continuation procedure to the shifted

nominal point k�0 along the direction v1, we obtain a new axis CE.

Here, point C is a Hopf bifurcation point. Just as for point F, we

stop continuation in E since the value of k2 becomes too small.

Together with the previous findings, we now obtain the bigger

estimating region ABCDEF, as shown in Figure 1C.

During the calculations, we simultaneously obtain a lot of

information on the period and the shape of the limit cycle. In fact,

this information is available along all the lines through k0 and k�0.

In Figure 1D, this info is used to draw level lines for the period. It

provides a nice indication how the period behaves as a function of

the parameters. Since the RMA model only serves as a low-

dimensional illustration of the ideas behind the proposal

estimation algorithm, we will not refine the approximation further,

but rather turn to a high-dimensional example.

Application to the Laub-Loomis Model
The Laub-Loomis (LL) model [6] describes the dynamical behavior

of the molecular network underlying cAMP (adenosine 39,59-cyclic

monophospate) oscillation observed in population of Dyctiostelium

discoideum cells. The molecular network is depicted in Figure 3.

Here, after the binding of extracellular cAMP to the surface

receptor CAR1, adenylate cyclase (ACA) activates internal cAMP.

When internal cAMP is accumulated, it activates protein kinase

PKA. In addition, ligand-bound CAR1 also activates the MAP

kinase ERK2, which is then inactivated by PKA. Therefore,

ERK2 no longer inhibits the cAMP phosphodiesterase REG A. A

protein phosphatase activates REG A such that REG A can

hydrolyze internal cAMP, hence the concentration of internal

cAMP is reduced. When the internal cAMP is hydrolyzed by REG

Figure 2. Behavior of the limit cycle solution of the RMA model. (A) In nominal point k0 . (B) In point F.
doi:10.1371/journal.pone.0009865.g002

Figure 3. The network underlying the Laub-Loomis model.
doi:10.1371/journal.pone.0009865.g003
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A, PKA activity is inhibited by its regulatory subunit, so that both

ACA and ERK2 activities go up.

Based on the network above, the spontaneous oscillation in

cAMP is a solution of the following model

_xx~

k1x7{k2x1x2

k3x5{k4x2

k5x7{k6x2x3

k7{k8x3x4

k9x1{k10x4x5

k11x1{k12x6

k13x6{k14x7

2
666666666664

3
777777777775

: ð4Þ

Here, the state variable x~(x1,x2, . . . ,x7) represents the concen-

trations of seven proteins: x1 = [ACA], x2 = [PKA], x3 = [ERK2],

x4 = [REG A], x5 = [Internal cAMP], x6 = [External cAMP], and

x7 = [CAR1]. The model has 14 parameters, incorporated in the

parameter vector k~(k1,k2, . . . ,k14).
At the nominal parameter set in Table 1, which is denoted by

k0, this system has a stable periodic solution. Thus, if we choose

the initial concentrations within the basin of attraction, the

solution will converge to this periodic solution, as shown in

Figure 4.

We found that the periodic solution at the nominal parameters

k0 has period T~7:3782 and the multipliers are given by

m~f1:0006,0:9391,6:6590e-006,4:0012e-018+9:9791e-018i,

{1:5203e-005+5:3021e-006ig:

We notice that the largest multiplier, m1~1:0006, is equal to 1

within the numerical accuracy. Since the second largest multiplier

m2 is also quite close to 1, we expect that the nominal point k0 is

close to a bifurcation point.
Restriction to a 2-dimensional cross-section of parameter

space. For illustrational purposes, we first fix 12 parameters

setting them at the values in Table 1 and only vary k2 and k14. In

this way we deal with a two dimensional cross-section in the high-

dimensional parameter space. The advantage is that the results

can be compared to results obtained with AUTO and in [11].

AUTO yields the robustness region given in Figure 5A. This

region perfectly agrees with the region reported in [11].

However, it should be noted that the method in [11] yields a

very good estimate only in the two-dimensional case. For higher

dimensions, their approach leads to a much more restricted

estimated region. If we would apply the more-than-two-

dimensions approach in [11] or in [8,10] to the present two-

dimensional case, we would only find the small square shaped

estimate indicated in Figure 6.

Applying the algorithm in (23)–(27), we obtain two directions:

v1, which is the most sensitive direction; and v2, which is

orthogonal to v1. Along these directions, we perform the

continuation procedure. This leads to our first approximation of

the robustness region ABDF as shown in Figure 5B.

Table 1. Nominal values for k0 the Laub-Loomis model (from
[8,10,11]).

Parameter Units
Nominal
value

k1 min{1 2.0

k2 mM{1 .min{1 0.9

k3 min{1 2.5

k4 min{1 1.5

k5 min{1 0.6

k6 mM{1 .min{1 0.8

k7 mM.min{1 1.0

k8 mM{1 .min{1 1.3

k9 mM{1 .min{1 0.3

k10 mM{1 .min{1 0.8

k11 min{1 0.7

k12 min{1 4.9

k13 min{1 23

k14 min{1 4.5

doi:10.1371/journal.pone.0009865.t001

Figure 4. Periodic solution of the Laub-Loomis model (4) at the nominal parameter values in Table 1.
doi:10.1371/journal.pone.0009865.g004
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As denoted in the figure, our method successfully detected the

four fold bifurcation points, A, B, D, and F which are indicated

with green stars. According to the results obtained by AUTO,

these points are Hopf bifurcations points where the second largest

modulus of multipliers is very close to 1. For instance, at point A

m~f0:9996,0:9990,4:1520e-005,{1:7673e-018,{1:6024e-016,

{4:7223e-006+1:9026e-006ig:

We notice that the initial approximation is much smaller than the

real robustness region found by AUTO. We improve our

approximation by shifting the nominal parameter k0 to k�0, the

midpoint of AD. When the continuation procedure is applied to

the new nominal parameter k�0 along direction v2, we find the

Hopf bifurcation points C and E. Together with the first

approximation, we now have obtained the larger approximation

region ABCDEF, as shown in Figure 5C. As extra information, we

get for free the level lines for the period as indicated in Figure 5D.

The approximation could be further improved by taking more

perturbation directions, but this is hardly necessary to get a very

good impression of the robustness region.

Application in full-dimensional parameter space. Let us

now investigate the robustness region of the Laub-Loomis model in

the 14-dimensional parameter space. It will be clear that in this high-

dimensional case the results are hard to present visually. According to

algorithm (23)–(27), we find 14 orthogonal directions fv1,v2, . . . ,v14g
which, for convenience, are normalized to have unit length.

By applying continuation and observing the multipliers during

the continuation, we easily obtain an estimate of the 14-dimensional

robustness region. This estimate is shown in Figure 7A in a

dedicated form. In this figure, the range of perturbations that is

allowed to maintain the stability of the limit cycle is shown by

horizontal lines for each perturbation direction. There are three

possibilities that we stop the continuation: one of the perturbed

parameters becomes close to 0 (in the LL model, all parameters

should be positive), a bifurcation is detected, or the limit cycle gets

an extremely long period. In the latter case, we need too much

computational time to approximate the limit cycle. If one of the

parameters becomes close to 0, we denote in Figure 7 the point by

Figure 5. Cross-section of the robustness region of the Laub-Loomis model in the (k2,k14) plane. (A) Result by AUTO. (B) First
approximation based on 4 boundary points. (C) Second approximation based on 6 boundary points. (D) Level lines of the period of the periodic
solution.
doi:10.1371/journal.pone.0009865.g005
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(‘D’); if a bifurcation is detected, we do not put any marker on the

point; and if the continuation is stopped because of computing time,

we denote the point by (*). For example, in the v12 direction the

nominal parameter k0 can be perturbed in the range

k~k0zcv12, c [ ½{1:332,12:6�: ð5Þ

The continuation is stopped at c~{1:332 because then a fold

bifurcation is detected, which follows from the Floquet multipliers

m~f1:0002,0:9991,{1:3091e-005+1:3186e-006i,2:7715e-006,

2:2113e-016+5:501e-016ig:

At c~12:6, the system still admits a stable limit cycle behavior as

shown in Figure 8, but we stop the continuation because one of the

perturbed parameters becomes very close to 0, see Table 2.

In the v7 direction, the nominal parameter can be perturbed in

the range

k~k0zcv7, c [ ½{1:0228,4:22�: ð6Þ

Continuation is stopped at c~{1:0228 because the period of the

limit cycle becomes extremely long and requires too much

computational time. The behavior of the period along this direction

is shown in Figure 9. At c~4:22, the continuation is stopped

because one of the perturbed parameters becomes very close to 0.

To get still a better impression of the robustness region, we shift

the nominal parameter. From the result in Figure 7A, we find that

the system can be mostly perturbed in the direction of v12.

Therefore, we shift the nominal point k0 to the midpoint of this

axis, and we denote the new nominal point by k�0~k0z5:634v12.

When the method is applied to k�0, we obtain the results shown in

Figure 7B.

Combining the information in Figures 7A and 7B, we obtain a

good impression of the robustness region of the system. Contrary

to the findings in [8,10,11], we conclude that the LL model has a

large robustness region with a quite irregular shape.

Discussion

An important question in the modeling of biological systems is

for which parameter values the model has a stable limit cycle, since

this is often the parameter range in which the model describes

Figure 6. Robustness region of the Laub-Loomis model in
parameter space. Black-line from AUTO, the red box indicates the
estimate that would be obtained if the methods published earlier and
developed for high-dimensional system [8,10,11] would be applied to
the two dimensional case, in which only k2 and k14 are varied.
doi:10.1371/journal.pone.0009865.g006

Figure 7. Representation of the ‘‘width’’ of the robustness region of the LL model. This region is measured along the 14 orthogonal
directions v1,v2, . . . ,v14 used to scan the parameter space. In (A), these directions start in nominal point k0 (see Table 1). In (B), the directions start in
k�0~k0z5:634v12. If an end point is marked with ‘‘D’’, one of the parameters has become close to zero. If an end point marked with ‘‘*’’, the period of
the limit cycle becomes extremely long. If an end point does not have mark, a fold bifurcation is detected. The lengths of the horizontal lines indicate
how far this direction can be followed in negative and positive directions so that a stable limit cycle is found. All directions are normalized to have
unit length. A step of, e.g., length 6 in v13 direction in (A) means that the unit vector in this direction can be made 6 times longer before a bifurcation
is detected.
doi:10.1371/journal.pone.0009865.g007
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reality. In the literature [8,10,11], one mostly studies this topic by

analyzing the eigenvalues of the Jacobian matrix of the equilibrium

points of the model. For example, if some of these eigenvalues

become purely imaginary, a so-called Hopf bifurcation takes place

and a limit cycle comes into existence. However, analysis of

eigenvalues of a Jacobian matrix is not the most appropriate way to

study this problem, since these eigenvalues yield only local

information. In the present paper we have presented a method to

construct an estimate for the so-called robustness region in

parameter space. The approach that we follow has a global, rather

than a local character. Within a robustness region the system

possesses a stable limit cycle and on its boundaries the system

undergoes a bifurcation. A bifurcation is a dramatic change in the

system dynamics indicating that the system is no longer robust if the

parameters are perturbed further. For the present method, these

bifurcations may be of any type and different parts of the boundary

may be connected to different bifurcations.

The present method has especially been designed to scan

robustness regions of systems with a high-dimensional parameter

space. Its power stems from the fact that it scales linearly with the

number of parameters. This implies that it is highly efficient from a

numerical point of view. The present approach is based on

observing the behavior of the Floquet multipliers of the periodic

solution if the systems parameters are changed. In this way, one

easily detects all bifurcations that may occur to the periodic solution,

such as Hopf, fold, flip, and Neimark-Sacker bifurcations, which

lead to disappearance or period doubling of the periodic solution.

The method has first been tested for low-dimensional systems. It

is shown that for a 2-dimensional parameter space, the results are

in full agreement with those obtained by the package AUTO.

Thereafter the method has been applied to a high-dimensional

system, the Laub-Loomis model which has 14 parameters. In this

case, the method appears to be highly efficient, indeed. Contrary

to the results reported in the literature [8,10,11], the method yields

an estimate that is very big and irregularly shaped. The latter

means that the Laub-Loomis model is much more robust with

respect to changes in one parameter than in another. The present

approach yields this information and is as such an extension of the

methods available in literature. In the present method, a first

direction is chosen such that the Floquet multipliers will change

mostly if the continuation is applied along this direction. The

approach finds axes that together span the estimated region.

Since all information about the limit cycle along the used axes

becomes available, it requires no extra work to present, e.g., level

line plots of the period of the limit cycle. Together with the general

types of bifurcation that are detected, this provides a reliable and

insightful impression of the dynamical behavior of a model in a

wide range of values around a nominal point.

Materials and Methods

Floquet Theory and Periodic Solution
Consider an ordinary differential equation system

dx

dt
~F(x,k), x [ Rn,k [ Rm, ð7Þ

Figure 8. Limit cycle behavior of the Laub-Loomis model for parameter vector k0zzz12:6v12. These parameter values are given in Table 2.
doi:10.1371/journal.pone.0009865.g008

Table 2. Perturbed parameter k0z12:6v12.

Parameter Units
Perturbed
value

k1 min{1 2.6982

k2 mM{1 .min{1 0.9330

k3 min{1 2.4641

k4 min{1 1.3871

k5 min{1 0.7495

k6 mM{1 .min{1 0.6507

k7 mM.min{1 0.9006

k8 mM{1 .min{1 1.3690

k9 mM{1 .min{1 0.0009

k10 mM{1 .min{1 0.6758

k11 min{1 1.1100

k12 min{1 17.4668

k13 min{1 23.0125

k14 min{1 4.4666

doi:10.1371/journal.pone.0009865.t002
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where x denotes the vector of state variables and k the vector of

parameters. Suppose that this system has a stable periodic solution

at k~k0 with periodic solution x~x� and period T .

In order to investigate the stability of the solution, we linearize

around the periodic orbit x� and obtain

dd

dt
~J(x�,k)d(t), ð8Þ

where J is the Jacobian matrix of (7) with respect to its state

variables x. Since x� is T{periodic, the Jacobian matrix J is also

T{periodic. According to Floquet theory (see [13] and [14]), the

fundamental solution of (8), which is a matrix that is composed of n
independent solutions of (8), can be written as

W(t)~P(t)eBt, ð9Þ

with P(t) T{periodic and B a constant n|n matrix. Thus,

W(tzT)~W(t)eBT : ð10Þ

Here, C~eBT is called the monodromy matrix of the system

and the eigenvalues of C are called the Floquet multipliers of the

system. One of them is always real and equal to 1. A necessary and

sufficient condition for the periodic solution of (8) to be stable is

that the other n{1 multipliers have modulus less than 1, i.e. they

lie inside the unit circle. The calculation of W is explained

underneath.

Three cases may be discerned [19–21], as illustrated in

Figure 10:

1. A multiplier leaves the unit circle at (1,0). In this case, the

model experiences a fold bifurcation.

2. A multiplier leaves the unit circle at ({1,0). In this case, a flip

bifurcation takes place and period doubling occurs.

3. Two conjugate multipliers cross the unit circle. In this case, a

Neimark-Sacker bifurcation occurs.

Calculation of Periodic Solutions
There are many methods discussed in the literature to

approximate a periodic solution. To mention some of them: finite

difference method, shooting method, and Poincare map method

[21]. In this paper, we use the finite difference method because of

its simplicity, and a short outline of the method is given below.

Consider again the ODE system (7). With the scaling

t~
t

T
ð11Þ

with T the period, the system reads as

dx

dt
~TF (x,k), x [ Rn,k [ Rm: ð12Þ

Now, (12) has to be solved in the time interval t [ (0,1). This time

interval is discretized into Nz1 points with a uniform time step h:

t1~0,t2~h, . . . ,tNz1~Nh~1:

The solution of (12) at time steps t~ti and t~tiz1 are related by

x(tiz1)~x(ti)zT

ðtiz1

ti

F x(�tt),kð Þ:d�tt ð13Þ

Using the trapezoidal rule to represent the integral, we obtain

xiz1{xi~
1

2
hT F(xiz1,k)zF(xi,k)
� �

, ð14Þ

where xi~x(ti). Since the system is periodic, x(tNz1)~x(t1), or

xNz1~x1: ð15Þ

Therefore, we have nN algebraic equations from (14) with nNz1

unknowns:

x1,x2, . . . ,xN ,T

Finally, since the system that we consider is autonomous, the

system is invariant to a linear shift in the time origin. To remove

the arbitrariness of the phase, we specify the value of one

component at t~0, for example

x1
1(0)~g, ð16Þ

where the value g should be within the periodic solution of x1(t).

Figure 9. Behavior of the limit cycle period in the LL model
along the v7 direction. Note that the period dramatically increases in
the vicinity of c~{1.
doi:10.1371/journal.pone.0009865.g009

Figure 10. Limit cycle bifurcations according to the position of
Floquet multipliers in the complex plane [19–21].
doi:10.1371/journal.pone.0009865.g010
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Thus, at time t~t1 we have x1~(g,~xx1) with ~xx1 [ Rn{1. By

imposing this condition, we have nN unknowns

~xx1,x2, . . . ,xN ,T ð17Þ
and nN algebraic equations. Its solution can be found using, e.g.,

Newton’s scheme, provided (16) is in the orbit of x1(t). The details

of this method can be found in [21].

So, we obtain the periodic solution in N discretized points and

the value of the period T becomes known. The full periodic

solution x�(t) can then be obtained by integrating

dx

dt
~F(x,k)

x(0) ~
g

~xx1

� � ð18Þ

numerically from time t~0 to t~T .

Computing Floquet Multipliers. Let us consider the

principal fundamental problem, i.e. problem (8) with now d(t)
taken to be a matrix

_dd~J(x�,k)d(t) ð19Þ

with initial values

d(0)~In ð20Þ

where In is the n|n identity matrix. The Floquet multipliers of the

system can then be obtained by integrating the above equation for

one period, that is from t~0 to t~T . Then, the Floquet

multipliers, denoted by mi, i~1,2, . . . ,n, are the eigenvalues of the

matrix d(T).

Note that if we employ the same numerical technique to

integrate (18) and (19), both systems can be solved simultaneously.

Figure 11. Flow chart of the method to approximate the robustness region around a nominal point k0. The approximated region is
obtained by scanning the parameter space along orthogonal directions starting at k0.
doi:10.1371/journal.pone.0009865.g011
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We denote the i{th column of the matrix d by di and solve

_xx~F(x,k,T)

_dd1~J(x,k,T)d1(t)

..

.

_ddn~J(x,k,T)dn(t)

8>>>><
>>>>:

ð21Þ

with initial conditions

x(0)~ g,~xx1
� �T

d1(0)~(1,0, . . . ,0)T

..

.

dn(0)~(0,0, . . . ,1)T

8>>>>><
>>>>>:

ð22Þ

Since one of the multipliers should be real and equal to 1, the

approximation of the periodic solution and the Floquet multipliers

are carried out iteratively. If no multipliers are close to 1, we

increase the number N and solve again (14) and (21) until one of

the multipliers is close to 1 within a prespecified accuracy.

Continuation Method
We start at a nominal point k0 in parameter space, where the

model has a stable limit cycle, so that the Floquet multipliers lie

within the unit circle (except for one). The approach outlined here

is also applicable if k0 lies on the boundary of the robustness

region. The first direction v1, the construction of which is

described below, will then point into the robustness region. It

suffices to follow that direction until the boundary at the other side

is met in a point k1, say, and to choose as new nominal point the

midpoint of k0 and k1. The next step is to perturb the nominal

point k0 along n orthogonal directions v1,v2, . . . ,vm.

To construct v1, we introduce the function

g(k)~g(k1,k2, . . . ,km)~ max
i~2,...,n

EmiEv1 ð23Þ

which is nothing else but the largest modulus multiplier in k that is

less than 1. The gradient

+g~
Lg

Lk1

, . . . ,
Lg

Lkm

� �
ð24Þ

is calculated numerically by

Lg

Lkj

&
g(k1, . . . ,kjze, . . . ,km){g(k1, . . . ,km)

e
, j~1, . . . ,m, ð25Þ

taking e smaller and smaller until convergence is reached.

For the first direction v1, we now take v1~+g(k0). For the other

perturbation directions we choose vectors that are orthogonal to v1

and to each other. They are calculated by the Gram-Schmidt

method. The set of perturbation directions is thus

v1~+g(k0),v2, . . . ,vmf g ð26Þ

Note that the choice of v1 is unique, but the choice of v2, . . . ,vm is

not. However, the resulting approximate for the robustness region

does not much depend on this choice, unless this region is highly

irregularly shaped. To check the outcome it is recommendable to

apply the method with a number of different nominal points and

compare the outcomes. This will give a very good impression of

the situation in parameter space.

The idea is now to perturb the nominal parameters k0 along

these directions, so for direction vi, we walk along the line

k0zcvj , ð27Þ

with c both positive and negative and check for which c we

approach a bifurcation. This yields the principal axes of the

estimated robustness region.

An improvement of this concept is obtained by repeating this

procedure but with k0 replaced by, e.g., the center of the longest

axis. This leads to a refined approximation of the full robustness

region. This idea is shown in Figure 1, where the initial nominal

point k0 is shifted to k?0 and the direction given by the line CE has

been added. By another shift or by taking extra directions, this

estimate can easily be improved.

Algorithm
In Figure 11 the flow chart of the algorithm is given. In this

diagram we point out in a concise way that the algorithm contains

the following steps:

1) Calculate the perturbation directions vj at the nominal

parameter k0. For v1, take v1~+g(k0) using (25) and

construct the other perturbation directions using the Gram-

Schmidt method.

2) Calculate the periodic solution and its multipliers along the

lines (27) starting from k0. If one or more multipliers pass the

unit circle, a bifurcation has been detected.

3) If refinement is required, move the nominal point to the

center of the longest axis and repeat the procedure. Also,

extra directions could be chosen.
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