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Abstract

Background: Heart failure patients with reduced ejection fraction (HFREF) are heterogenous, and our ability to identify
patients likely to respond to therapy is limited. We present a method of identifying disease subtypes using high-
dimensional clinical phenotyping and latent class analysis that may be useful in personalizing prognosis and treatment in
HFREF.

Methods: A total of 1121 patients with nonischemic HFREF from the b-blocker Evaluation of Survival Trial were categorized
according to 27 clinical features. Latent class analysis was used to generate two latent class models, LCM A and B, to identify
HFREF subtypes. LCM A consisted of features associated with HF pathogenesis, whereas LCM B consisted of markers of HF
progression and severity. The Seattle Heart Failure Model (SHFM) Score was also calculated for all patients. Mortality,
improvement in left ventricular ejection fraction (LVEF) defined as an increase in LVEF $5% and a final LVEF of 35% after 12
months, and effect of bucindolol on both outcomes were compared across HFREF subtypes. Performance of models that
included a combination of LCM subtypes and SHFM scores towards predicting mortality and LVEF response was estimated
and subsequently validated using leave-one-out cross-validation and data from the Multicenter Oral Carvedilol Heart Failure
Assessment Trial.

Results: A total of 6 subtypes were identified using LCM A and 5 subtypes using LCM B. Several subtypes resembled familiar
clinical phenotypes. Prognosis, improvement in LVEF, and the effect of bucindolol treatment differed significantly between
subtypes. Prediction improved with addition of both latent class models to SHFM for both 1-year mortality and LVEF
response outcomes.

Conclusions: The combination of high-dimensional phenotyping and latent class analysis identifies subtypes of HFREF with
implications for prognosis and response to specific therapies that may provide insight into mechanisms of disease. These
subtypes may facilitate development of personalized treatment plans.
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Introduction

Heart failure with reduced left ventricular ejection fraction

(HFREF) develops from complex interactions between genetic

factors and accumulated cardiac insults. [1] Like all heart failure

patients, HFREF patients are heterogenous with respect to

etiology, prognosis, and response to therapy, and our ability to

identify patients likely to respond to medical therapy remains

limited. In some cases, HFREF etiology directs therapy that

increases the likelihood of clinical improvement. Forms of HFREF

considered ‘reversible’ are often characterized by a single

identifiable etiology amenable to targeted intervention. [2] There

is currently no reliable way of predicting treatment response in

HFREF patients who are nonischemic where a reversible etiology

cannot be identified. However, normalization of LVEF in some

patients with nonischemic HFREF on medical therapy in the

absence of an obvious reversible etiology suggests that there may

be uncharacterized reversible phenotypes.

We hypothesize that subtypes of nonischemic HFREF exist that

may be differentiated by constellations of clinical features that
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reflect underlying pathophysiology. These subtypes may have

variable clinical courses and responses to treatment, and

identification of these subtypes may provide insight into mecha-

nisms of HFREF and facilitate personalized prediction of

outcomes and treatment response. Traditional outcomes-driven

analyses are limited in the number of clinical features that can be

evaluated due to the number of potential interactions between

features contributing to the development and progression of

HFREF. Latent class analysis is one statistical method of

identifying groups of individuals within a population that share

similar patterns of categorical variables such as symptoms or

comorbid conditions, and it has been used in a number of medical

disciplines including heart failure for exploration, characterization,

and validation of diseases subtypes as well as for risk stratification

and prediction of treatment response. [3–9] Latent class analysis

has also been used to establish diagnostic standards for complex

disease syndromes, and use of latent class analysis has been

proposed as a method of dealing with large numbers of complex

interactions and multiple comparisons in determining likelihood of

response to interventions. [10–12] Briefly, latent class analysis

hypothesizes the existence of unobserved classes within a

population that explain patterns of association between variables

and uses maximum-likelihood estimation to divide the population

into subgroups by calculating a probability of subgroup member-

ship for each symptom or comorbidity. An individual’s subgroup

membership may therefore depend on the presence or absence of

many different characteristics in a given model. When the

population in question has a shared disease, the results are data-

driven definitions of disease subtypes where each subtype is

characterized by a distinct combination of clinical features. Many

clinical variables can thereby be incorporated into an analytic

model while preserving statistical power for outcomes analysis by

identifying the most prevalent combinations of variables upon

which to focus. We propose using complex phenotype descriptions

of patients in combination with latent class analysis to identify

subtypes of nonischemic HFREF that may have different

prognoses and likelihoods of treatment response.

This is a retrospective analysis of data from the b-blocker

Evaluation of Survival Trial (BEST) that generated high-dimen-

sional phenotype descriptions of subjects using clinical data

available at the time of randomization. Latent class analysis was

then used to identify prevalent subtypes of HFREF, and the effect

of bucindolol treatment on mortality and LVEF response was

determined for each subtype. We compared the performance of

our models with the Seattle Heart Failure Model (SHFM) in

predicting patient mortality and LVEF improvement with

bucindolol and estimated the incremental value of combining

models. Models were validated by estimating unbiased area-

under-the-curve c-indices within the BEST population and by

applying latent class and SHFM models to an independent set of

patients enrolled in the Multicenter Oral Carvedilol Heart Failure

Assessment (MOCHA) Trial. [13].

Methods

Trial Design
The design of BEST has been described previously. [14,15] A

list of all recruitment sites is found in the Appendix S1. All patients

had New York Heart Association (NYHA) class III or IV HFREF

(LVEF #35%) and were randomized in a double-blind fashion to

either bucindolol or placebo. Patients were considered ischemic if

they had $70% obstruction in a major epicardial coronary artery

by angiography or evidence of prior myocardial infarction and

excluded from this analysis. [16] The primary endpoint was

cumulative all-cause mortality. Secondary endpoints were all-

cause mortality at one year and LVEF response defined as

improvement in LVEF $5% with a final LVEF of $35% as

measured using multi-gated acquisition scan (MUGA). The design

of MOCHA has also been described previously. [13] All patients

had an LVEF #35%, were mostly NYHA class II or III and had

stable HF symptoms for 1 month prior to enrollment. They were

randomized to placebo, low (6.25 mg bid), medium (12.5 mg bid),

or high-dose (25 mg bid) carvedilol. Death and LVEF improve-

ment as measured by MUGA were secondary endpoints in the

original MOCHA analysis. Mortality data was only available up to

one year of follow-up in MOCHA.

Identification and Definition of Latent Classes
Patients were scored according to 27 clinical features (Tables 1

and 2). Criteria were encoded and applied in a MySQL server

environment (Oracle Corporation, Redwood Shores, CA). [17]

Patient clinical profiles were analyzed collectively using latent class

analysis [18] applied to two sets of clinical variables we designated

as Latent Class Models (LCM) A and B (Tables 1 and 2). LCM A

and B differed only in the clinical variables included in each

model. LCM A included variables that describe a patient’s non-

cardiac characteristics that can contribute to the pathogenesis of

HFREF including age, gender, race, body mass index, and

presence of comorbidities such as diabetes, atrial fibrillation, or

valvular disease. [19–23] LCM B included variables that describe

cardiac function, progression, and severity of HFREF including

right- and left-ventricular function, hemodynamic parameters such

as heart rate and blood pressure, end-organ function such as

estimated creatinine clearance, and signs of venous congestion

such as jugular venous distension and alanine aminotransferase

levels. [24–33] In total, 3 variables were included in both models:

body mass index, creatinine clearance, and hematocrit. All 3

variables have been implicated in the pathogenesis of HFREF and

can also be markers of severity of HFREF. [34,35] They were

included in both models to illustrate that the variable implications

of clinical features in different contexts may be represented using

this approach. [34,36–40] Two sets of related variables were also

included: age of HF onset (LCM A) vs. chronologic age (LCM B)

and presence of hypertension (LCM A) vs. presence of hypotension

(LCM B). Age of HF onset, a static value, may be relevant to the

HFREF etiology, while chronologic age may be related to HF

progression. Similarly, presence of hypertension (LCM A) may be

related to HF etiology while hypotension (LCM B) may be a

marker of advanced HF.

Latent class analysis was performed using the poLCA function in

the R statistical package. [[NO STYLE for: Linzer 2010],[NO

STYLE for: Team 2010]] The optimal clinical profiles according

to the variables in each latent class model were derived in the form

of subtype-conditional probabilities for each variable for a range of

2–10 subtypes. Error statistics were calculated for each model

iteratively to determine the optimum number of latent classes. The

number of latent classes corresponding to the first local x2

minimum following the first minimum of the Bayesian information

criterion was selected, and the corresponding model was used for

all subsequent analyses. [[NO STYLE for: Linzer 2010]] The

most likely LCM A and LCM B subtype were determined for each

patient in a Bayesian fashion (See Appendix S1), and descriptive

statistics were compiled. SHFM Score and corresponding

predicted mortality at one year were calculated for all patients

both with and without the SHFM b-blocker coefficient. [43] The

SHFM Score including the b-blocker coefficient was used to assess

overall performance of SHFM Score in the BEST population, and

the SHFM Score excluding the b-blocker coefficient was used for
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Table 1. Features of HFREF Latent Class Model A subtypes.

A1 A2 A3 A4 A5 A6 All

18.6% (208) 14.4% (161) 16.6% (186) 14.5% (162) 7.8% (87) 28.3% (317) n = 1121

Age of HF onset, years

,30 0.0% 3.7% 0.0% 35.8% 1.1% 1.6% 6.2%

30–45 13.9% 25.5% 17.7% 56.2% 11.5% 29.7% 26.6%

45–60 38.9% 38.5% 52.2% 8.0% 37.9% 50.2% 39.7%

.60 47.1% 32.3% 30.1% 0.0% 49.4% 18.6% 27.5%

Male 83.7% 39.1% 30.1% 47.5% 79.3% 100.0% 67.4%

Race

White, non-Hispanic 36.1% 42.2% 96.2% 34.0% 87.4% 68.8% 59.9%

Black, non-Hispanic 54.8% 47.2% 1.1% 55.6% 5.7% 23.0% 32.1%

Hispanic 7.7% 8.7% 2.7% 10.5% 2.3% 5.4% 6.3%

Asian/Pacific Islander 1.4% 0.6% 0.0% 0.0% 2.3% 1.3% 0.9%

American Indian 0.0% 1.2% 0.0% 0.0% 0.0% 1.3% 0.5%

Other 0.0% 0.0% 0.0% 0.0% 2.3% 0.3% 0.3%

Body Mass Index, kg/m2

,18.5 7.7% 0.0% 2.7% 0.0% 2.3% 0.0% 2.1%

18.5–25 63.9% 17.4% 33.3% 27.2% 50.6% 10.7% 30.7%

25–30 19.2% 31.7% 31.2% 23.5% 37.9% 36.9% 30.1%

.30 9.1% 50.9% 32.8% 49.4% 8.0% 52.4% 37.0%

Diabetes Mellitus

None 73.1% 25.5% 88.2% 92.6% 94.3% 67.2% 71.5%

Present 21.6% 51.6% 7.0% 6.8% 3.4% 23.7% 20.5%

Present + end-organ damage 5.3% 23.0% 4.8% 0.6% 2.3% 9.1% 7.9%

Blood pressure, mm Hg

,120/80 15.9% 0.0% 14.0% 19.1% 31.0% 0.6% 10.6%

120–140/80–90 10.1% 5.0% 44.6% 22.2% 34.5% 18.0% 21.0%

140–160/90–100 65.4% 57.8% 39.8% 41.4% 27.6% 59.0% 51.8%

.160/100 8.7% 37.3% 1.6% 17.3% 6.9% 22.4% 16.6%

Total cholesterol, mg/dL

,200 65.4% 6.2% 9.7% 61.7% 42.5% 24.6% 33.8%

200–240 18.8% 15.5% 28.5% 26.5% 29.9% 22.4% 22.9%

.240 15.9% 78.3% 61.8% 11.7% 27.6% 53.0% 43.3%

Triglycerides, mg/dL

,150 91.7% 8.9% 10.9% 48.4% 40.2% 2.3% 30.2%

150–250 8.3% 20.9% 33.7% 37.1% 32.9% 39.5% 28.4%

.250 0.0% 70.3% 55.4% 14.5% 26.8% 58.2% 38.7%

Creat. Cl., ml/min*1.73 m2

.90 2.9% 3.7% 9.1% 34.0% 5.7% 14.2% 12.0%

60–90 37.0% 24.2% 41.9% 52.5% 25.3% 52.7% 41.7%

30–60 49.5% 53.4% 45.2% 13.6% 59.8% 30.6% 39.6%

15–30 9.6% 15.5% 3.8% 0.0% 9.2% 2.5% 6.1%

,15 1.0% 3.1% 0.0% 0.0% 0.0% 0.0% 0.6%

Hematocrit, %

.40 4.8% 0.0% 0.0% 0.0% 5.7% 11.4% 4.5%

30–40 57.2% 28.6% 45.7% 45.7% 58.6% 88.6% 58.5%

20–30 35.1% 69.6% 54.3% 52.5% 35.6% 0.0% 35.9%

,20 2.9% 1.9% 0.0% 1.9% 0.0% 0.0% 1.1%

Atrial fibrillation 24.5% 9.3% 8.1% 6.2% 86.2% 22.1% 21.1%

Left bundle branch block 23.1% 19.9% 67.7% 7.4% 10.3% 16.1% 24.8%

Pacemaker 6.7% 0.0% 0.5% 4.3% 42.5% 3.5% 6.2%
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all analyses investigating the treatment effect of bucindolol. All

multivariate predictors in the SHFM were available in the BEST

trial with the exception of percent lymphocytes, and a value of

25% was imputed for all patients based on the validation sets for

SHFM. [43].

Association between Latent Class Models and Outcomes
Cox proportional-hazards models and the log-rank test were

used to examine the associations between latent classes and

cumulative all-cause mortality according to the intention-to-treat

principle. These models were fit using the coxph and survfit

functions from the survival library in the R statistical package. [[NO

STYLE for: Therneau 2010]] Logistic regression models were

used for the one-year mortality and LVEF response outcomes.

Interactions between latent classes and the treatment groups were

used to estimate the response to treatment within each subtype.

For survival models, an interaction with time was included for

those variables that did not meet the proportional hazards

assumption.

Multivariate models comprised of all possible combinations of

LCM A, B, and SHFM Score were generated to identify those that

provide the best discrimination between outcome variables. Cox

proportional hazards models and the log-rank test were used to

study discrimination of all-cause mortality, whereas logistic

regression was used to study discrimination of one-year mortality

and LVEF response. All models included treatment group as a

covariate, and c-indices were calculated for model comparison.

[45,[NO STYLE for: Liu 2009]] Improvement in risk prediction

with the addition of LCM A and B to SHFM Score according to

logistic regression was assessed by comparing c-indices with the x2

test and by calculation of net reclassification improvement

measures (NRI). [47] Logistic regression, NRI, and ROC

calculations were performed using SAS version 9.2 software.

(SAS Institute Inc., Cary, NC, 2008).

Validation of Multivariate Models
Performance of the Cox and logistic regression models in

predicting all-cause mortality, one-year mortality and LVEF

response was further validated by estimating unbiased c-indices

for both outcomes using leave-one-out cross-validation in the

BEST dataset and by applying the estimates from the predictive

models calculated on the BEST population to nonischemic

HFREF patients from the independent MOCHA population.

[13].

Results

Patient Characteristics
In all, 1121/2708 patients enrolled in BEST were identified as

nonischemic and included in all subsequent analyses. A total of

6 LCM A and 5 LCM B subtypes were identified. Distributions of

clinical variables for all subjects according to subtype are shown in

Tables 1 and 2, respectively. The subtype-conditional probabilities

for each explanatory variable used to calculate an individual’s

LCM A and LCM B subtype are given in Tables S1 and S2 of the

Appendix S1 along with an illustration of how to calculate a

patient’s subtype.

Latent Class Model A (Table 1)
LCM A subtypes were characterized by distinct collections of

clinical features that frequently resembled known HFREF

syndromes. Subtype A1 was characterized by advanced age of

onset, non-Caucasian race, male gender, HTN, mild-moderate

renal insufficiency, and elevated rates of atrial fibrillation (24.5%).

Subtype A2 was characterized by middle age of onset, female

gender, moderate renal insufficiency, anemia, high body mass

index, and very high rates of diabetes mellitus (74.6%), hyperten-

sion (95.0%), hyperlipidemia (93.8%), and hypertriglyceridemia

(91.1%). Subtype A3 was characterized by middle age of onset,

female gender, Caucasian race, hyperlipidemia, hypertriglyceri-

demia, anemia, and the presence of left bundle branch block

(LBBB). Subtype A4 was characterized by young age of onset,

non-Caucasian race, obesity, anemia, and lower rates of

traditional cardiac risk factors such as hyperlipidemia, hypertri-

glyceridemia, and diabetes mellitus. Subtype A5 was characterized

by advanced age of onset, Caucasian race, atrial fibrillation

(86.2%), mitral valve disease (48.3%), aortic valve disease (21.8%),

history of pacemaker placement (42.5%), and a significantly higher

rate of prior sudden cardiac death (16.1%). This subtype had the

smallest number of subjects (7.8%), whereas subtype A6 was the

largest with 28.3% of subjects. Subtype A6 was characterized by

middle age of onset, Caucasian race, male gender (100%), high

body mass index, hypertension, hyperlipidemia, and hypertriglyc-

eridemia with less associated diabetes mellitus (32.8%) than was

seen in Subtype A2.

Latent Class Model B (Table 2)
Subjects were fairly evenly divided among LCM B subtypes

with subtypes B3 and B5 having slightly smaller percentages of

11.7% and 8.9%, respectively. Subtypes B1–B3 were character-

ized by preserved systolic blood pressure, pulse pressure, RVEF,

and renal function with few signs of volume overload such as

jugular venous distention and elevated serum alanine aminotrans-

ferase. Ventricular function declined first followed by worsening of

hemodynamic parameters and finally by signs of venous conges-

tion. In subtypes B4 and B5, right ventricular ejection fraction,

systolic and pulse pressure were lower, heart rate was higher, renal

function and hyponatremia were worse, and jugular venous

distension, blood urea nitrogen, and serum alanine aminotrans-

ferase were higher. Examination of features such as age and body

mass index suggest that while many of the clinical features are

markers of heart failure severity, LCM B subtypes may not

Table 1. Cont.

A1 A2 A3 A4 A5 A6 All

18.6% (208) 14.4% (161) 16.6% (186) 14.5% (162) 7.8% (87) 28.3% (317) n = 1121

Mitral valve disease 1.9% 0.0% 3.2% 1.2% 48.3% 2.2% 5.4%

Aortic valve disease 3.8% 0.0% 1.1% 0.0% 21.8% 1.3% 2.9%

History of sudden cardiac death 2.9% 4.3% 5.4% 2.5% 16.1% 2.5% 4.4%

doi:10.1371/journal.pone.0048184.t001
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Table 2. Features of HFREF Latent Class Model B subtypes.

B1 B2 B3 B4 B5 All subjects

22.6% (253) 33.8% (379) 23.0% (258) 11.7% (131) 8.9% (100) n = 1121

Age, years

,30 0.0% 3.2% 0.0% 22.1% 7.0% 4.3%

30–45 0.4% 29.8% 6.2% 53.4% 21.0% 19.7%

45–60 24.9% 49.9% 43.4% 23.7% 38.0% 38.6%

.60 74.7% 17.2% 50.4% 0.8% 34.0% 37.4%

LVEF, %

.55 0.4% 0.0% 0.0% 0.0% 0.0% 0.1%

45–55 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

35–45 0.8% 0.3% 0.0% 0.0% 0.0% 0.3%

25–35% 60.1% 48.3% 19.8% 35.1% 15.0% 39.9%

,25% 38.7% 51.5% 80.2% 64.9% 85.0% 59.8%

RVEF, %

.55% 21.9% 6.6% 6.3% 5.8% 0.0% 7.4%

45–55% 20.4% 19.0% 9.5% 11.7% 8.3% 12.3%

35–45% 28.1% 29.8% 18.0% 26.2% 22.6% 20.7%

25–35% 18.4% 26.9% 32.0% 22.3% 13.1% 19.9%

,25% 11.2% 17.7% 34.2% 34.0% 56.0% 20.9%

QRS, msec

,120 36.0% 77.3% 45.0% 76.3% 56.0% 58.5%

120–150 24.5% 5.5% 19.0% 8.4% 23.0% 14.8%

.150 39.5% 17.2% 36.0% 15.3% 21.0% 26.7%

Heart rate, bpm

,60 13.4% 5.3% 5.0% 4.6% 6.0% 7.0%

60–80 55.7% 35.6% 36.8% 22.1% 18.0% 37.3%

80–100 29.6% 42.2% 50.8% 46.6% 49.0% 42.5%

100–120 1.2% 15.6% 7.0% 19.8% 24.0% 11.6%

.120 0.0% 1.3% 0.4% 6.9% 3.0% 1.6%

Systolic blood pressure, mm Hg

.120 70.8% 63.6% 6.2% 0.0% 22.0% 41.7%

110–120 20.9% 28.2% 14.3% 2.3% 10.0% 18.7%

100–110 7.1% 5.3% 31.4% 44.3% 20.0% 17.6%

90–110 1.2% 0.3% 31.4% 42.7% 26.0% 14.9%

,90 0.0% 0.0% 16.7% 10.7% 22.0% 7.0%

Pulse pressure, mm HG

.40 87.0% 65.7% 7.8% 12.2% 26.0% 47.4%

25–40 6.3% 30.9% 79.5% 74.0% 49.0% 43.2%

,25 0.0% 1.1% 12.8% 13.7% 23.0% 7.0%

Jugular venous distension

Not present 60.1% 63.3% 51.2% 58.0% 26.0% 55.8%

Base of neck 27.7% 23.7% 31.0% 20.6% 22.0% 25.8%

Halfway up 8.7% 10.6% 14.0% 15.3% 35.0% 13.6%

Angle of mandible 3.2% 2.4% 3.9% 6.1% 17.0% 4.6%

Blood Urea Nitrogen, mg/dL

,10 1.6% 17.4% 2.3% 16.8% 0.0% 8.7%

10–25 67.2% 77.8% 67.4% 79.4% 3.0% 66.5%

25–40 19.8% 4.7% 25.6% 0.8% 38.0% 15.4%

40–55 7.5% 0.0% 4.7% 3.1% 23.0% 5.2%

.55 4.0% 0.0% 0.0% 0.0% 35.0% 4.0%

Alanine aminotransferase, U/L
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represent a continuous progression of illness shared among all

HFREF patients in this study.

Association with Outcomes
In LCM A, subtype A1 had the highest event rates with 43.8%

cumulative all-cause mortality, 18.3% one-year mortality, and an

LVEF response rate of only 14.4%, whereas subtypes A2 and A6

had some much lower event rates with cumulative all-cause

morality of 16.8% and 18.9%, respectively, and LVEF response

rates of 31.1% and 36.0%, respectively. A much larger range in

cumulative mortality rates were observed for the LCM B subtypes;

subtype B5 had the highest overall mortality rate at 54.0% (62.2%

for placebo -treated patients), while subtype B1 had the lowest at

15.3% (17.5% for placebo-treated patients). These ranks were

consistent across one-year mortality and lack of LVEF response.

The predicted one-year mortality for all patients using SHFM

was 11.0% compared with an observed one-year mortality of

9.6%. The hazard ratio (HR) and corresponding confidence

interval (CI) for cumulative all-cause mortality associated with

each unit increase in SHFM Score including the b-blocker

coefficient was 2.92 (95% CI 2.40–3.54, p,0.0001). The c-index

for SHFM Score including the b-blocker coefficient was 0.76 (95%

CI 0.66–0.85), which was comparable to all SHFM validation sets

(range 0.60–0.81). [43]. The likelihood of LVEF response

decreased significantly with each unit increase in SHFM Score

(OR 0.29, 95% CI 0.22–0.38), and SHFM performed well in

predicting LVEF response (c-index = 0. 68).

Differences in Treatment Effects Between Latent Classes
A total of 151/563 patients (26.8%) in the placebo group and

131/558 (23.5%) patients in the bucindolol group died (HR 0.82,

95% CI 0.65–1.04, p = 0.1). Response to treatment was evaluated

for all three outcomes within each subtype (Table 3). Response to

bucindolol as measured by cumulative survival varied significantly

in both LCM A and B models. Subtype A1 showed no reduction

in cumulative all-cause mortality associated with bucindolol,

whereas subtype A6 showed an absolute and relative risk reduction

of 10.2% and 42% respectively (Figure 1, p = 0.01). In LCM B,

only subtype B2 showed significant improvement in mortality

associated with bucindolol (Figure 2, p = 0.01). As these figures

indicate, there was a time-varying effect of treatment in LCM A2

and A4. Therefore, the HRs presented in Table 3 are average

HRs over the observed death times. To further assess the effect of

treatment within each LCM subtype at a single clinically

meaningful time-point, the model using one-year mortality was

also characterized fully.

The effect of bucindolol on one-year mortality trended towards

benefit for those in the A6 and B2 classes, but did not reach

statistical significance for either class. There was a marginally

significant difference for A3 at 12 months, but this difference

disappeared at subsequent follow-up (Figure 1). Bucindolol was

Table 2. Cont.

B1 B2 B3 B4 B5 All subjects

22.6% (253) 33.8% (379) 23.0% (258) 11.7% (131) 8.9% (100) n = 1121

,25 79.4% 45.1% 60.9% 37.4% 53.0% 56.0%

25–50 19.4% 44.9% 31.0% 53.4% 25.0% 35.1%

50–75 1.2% 7.4% 7.0% 8.4% 14.0% 6.6%

.75 0.0% 2.4% 0.8% 3.1% 8.0% 2.1%

Serum sodium, mEq/L

.140 38.9% 34.7% 29.6% 16.9% 9.1% 29.5%

130–140 59.8% 65.0% 69.6% 80.0% 83.8% 67.3%

,130 1.3% 0.3% 0.8% 3.1% 7.1% 1.5%

Body Mass Index, kg/m2

,18.5 3.6% 0.5% 4.3% 0.8% 0.0% 2.1%

18.5–25 41.1% 14.5% 43.8% 29.0% 35.0% 30.7%

25–30 39.5% 24.0% 32.9% 32.8% 18.0% 30.1%

.30 15.8% 60.9% 18.6% 37.4% 47.0% 37.0%

Creat. Clearance, ml/min*1.73 m2

.90 1.2% 20.8% 0.0% 39.7% 0.0% 12.0%

60–90 26.5% 61.5% 34.9% 56.5% 4.0% 41.7%

30–60 59.7% 17.2% 65.1% 3.1% 56.0% 39.6%

15–30 11.1% 0.5% 0.0% 0.0% 38.0% 6.1%

,15 1.6% 0.0% 0.0% 0.8% 2.0% 0.6%

Hematocrit, %

.40 1.2% 2.9% 6.6% 6.9% 11.0% 4.5%

30–40 43.1% 72.6% 63.6% 49.6% 43.0% 58.5%

20–30 54.5% 24.5% 29.5% 40.5% 42.0% 35.9%

,20 1.2% 0.0% 0.4% 3.1% 4.0% 1.1%

doi:10.1371/journal.pone.0048184.t002
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Figure 1. Kaplan-Meier survival curves according to Latent Class Model A subtype, bucindolol vs. placebo.
doi:10.1371/journal.pone.0048184.g001
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associated with a significant increase in likelihood of LVEF

response in subtypes A2, A3, A5, and A6 and ranged from no

effect in subtype A1 to a 156% relative and 24.3% absolute

increase in subtype A3. The likelihood of improvement in LVEF

increased comparably across all B subtypes both in relative and

absolute terms but only reached statistical significance in subtypes

B1 and B2.

Combined Models
Multivariate survival and logistic regression models were then

constructed to determine whether LCM A and B classification

added predictive information to each other and to the SHFM.

Multivariate Cox hazard ratios for cumulative mortality are shown

in Table 4. Consistent with the descriptive event rates presented

earlier, subtype A1 had the highest cumulative mortality even after

adjusting for LCM B and SHFM Score, and subtypes A2 and A6

had survival rates 50–70% better than those in A1. Significant

time interactions where observed for subtypes A2 and A4. The

HRs comparing the risk of subtype A2 with A1 increased over

time, with HR estimates from the full model at 1, 2, and 3 years of

0.32 (95% CI 0.19–0.52), 0.51 (95% CI 0.31–0.82) and 0.67 (95%

CI 0.34–1.14), respectively. In contrast, the HR comparing the

risk of subtype A4 decreased over time with a HR at 1, 2, and 3

years of 0.69 (95% CI 0.44–1.08), 0.55 (95% CI 0.33–0.94), and

0.49 (95% CI 0.27–0.89), respectively. When LCM B and SHFM

Score were combined, the risk for subjects in subtype B5 remained

a significantly different from subjects in B1 (HR 2.12, 95% CI

1.35–3.34). When combined with SHFM Score, all subtypes

except for A5 had a lower mortality compared to subtype A1. Both

LCM A and B remained significant predictors of mortality after

adjusting for risk associated with treatment and SHFM Score

(p,0.01).

Results of multivariate logistic regression are shown in Figure 3.

LCM A and B were highly significant for predicting both one-year

mortality and LVEF response for both models (p,0.01). LCM A

remained highly significant in predicting both mortality and LVEF

response when combined with SHFM Score. LCM B remained

significant in predicting LVEF response in combination with

SHFM Score, but did not remain significant in predicting

mortality. Membership in subtype B5 remained an independent

predictor of mortality with a hazard ratio of 2.23 (95% CI 1.02–

4.85) relative to subtype B1. When all three factors were included,

LCM A and SHFM Score and subtype B5 remained significant

predictors of one-year mortality. LCM A, B, and SHFM Score

were all multivariate predictors of LVEF response.

Model Comparisons
Comparisons of all 7 combinations of predictors displayed in

Table 4 were made for the three outcome measures (cumulative

mortality, one-year mortality and LVEF response) using c-indices

(Table 5). [43] The model which included LCM A alone appeared

to have the best predictive ability for cumulative mortality overall.

Models with LCM A, B and their combination performed at least

as well as SHFM in predicting cumulative mortality, but any

model that included the SHFM appeared to reduce performance

according to the proportional hazards model. In contrast, the

addition of LCM A and B to SHFM Score and bucindolol

treatment improved prediction of one-year mortality according to

logistic regression. The c-index for predicting one-year mortality

increased from 0.71 to 0.75 with the addition of LCM A (p = 0.02)

and to 0.76 with the addition of LCM A and B (p,0.01). The NRI

also showed a significant improvement in prediction of one-year

mortality with the addition of LCM A and LCM A + B to SHFM

and bucindolol treatment (p,0.01 for both). Adding both LCM A

and B significantly increased the c-index for predicting LVEF

Figure 2. Kaplan-Meier survival curves for all nonischemic patients and according to Latent Class Model B subtype, bucindolol vs.
placebo.
doi:10.1371/journal.pone.0048184.g002

Table 3. Outcomes according to subtype.

Total
Number Cumulative mortality, all-cause One year mortality, all-cause LVEF response

LCM A Plac. Buc.
Plac,
%

Buc,
%

Hazard ratio
(95% CI) p

Plac,
%

Buc,
%

Odds ratio
(95% CI) p

Plac,
%

Buc,
% OR (95% CI) p

A1 99 109 44.4 43.1 0.97 (0.64–1.46) 0.88 19.2 17.4 0.89 (0.44–1.80) 0.74 15.2 13.8 0.89 (0.41–1.95) 0.76

A2 74 87 13.5 19.5 1.45 (0.68–3.20) 0.35 2.7 2.3 0.85 (0.12–6.20) 0.87 23.0 37.9 2.05 (1.03–4.17) 0.04

A3 103 83 22.3 18.1 0.77 (0.40–1.48) 0.43 11.7 4.8 0.38(0.12–1.24) 0.11 15.5 39.8 3.59 (1.82–7.31) 0.0003

A4 89 73 23.6 24.7 0.99 (0.53–1.86) 0.99 15.7 12.3 0.75 (0.31–1.83) 0.54 15.7 27.4 2.02 (0.93–4.43) 0.07

A5 45 42 42.2 26.2 0.61 (0.29–1.28) 0.18 11.1 11.9 1.08 (0.28–4.04) 0.91 8.9 28.6 4.10 (1.29–15.82) 0.02

A6 153 164 24.2 14.0 0.52 (0.31–0.88) 0.01 7.2 3.7 0.49 (0.18–1.36) 0.17 25.5 45.7 2.46 (1.54–3.99) 0.0002

LCM B

B1 194 185 17.5 13.0 0.67 (0.40–1.13) 0.13 7.7 3.2 0.40 (0.14–1.01) 0.06 25.8 48.6 2.72 (1.79–4.22) ,0.0001

B2 133 120 30.1 16.7 0.55 (0.30–0.86) 0.01 8.3 5.0 0.58 (0.20–1.59) 0.30 18.0 38.3 2.82 (1.60–5.08) 0.0004

B3 68 63 19.1 25.4 1.42 (0.68–2.94) 0.37 10.3 9.5 0.92 (0.28–2.92) 0.88 16.2 30.2 2.24 (0.98–5.32) 0.06

B4 131 127 33.6 31.5 0.94 (0.61–1.44) 0.78 13.0 11.0 0.83 (0.39–1.76) 0.63 14.5 18.1 1.30 (0.67–2.55) 0.43

B5 37 63 62.2 49.2 0.69 (0.40–1.18) 0.12 35.1 20.6 0.58 (0.19–1.19) 0.11 2.7 15.9 6.79 (1.22–127.37) 0.07

All 563 558 26.8 23.5 0.82 (0.65–1.04) 0.10 11.2 8.1 0.70 (0.46–1.04) 0.08 18.7 33.7 2.22 (1.69–2.93) ,0.0001

Plac = placebo, Buc = bucindolol.
doi:10.1371/journal.pone.0048184.t003

A Personalized BEST

PLOS ONE | www.plosone.org 9 November 2012 | Volume 7 | Issue 11 | e48184



response to 0.71 (p,0.01). The NRI showed statistically significant

improvement with addition of LCM A and B individually as well

as together (p,0.01 for all). NRI transition matrices are found in

the Appendix S1 (Table S3).

Validation
Leave-one-out-cross-validation and external validation were

then performed to verify association between latent class

membership and outcomes as well as the added value of

combining latent class models with the SHFM. As expected, c-

indices for all models for all outcomes were slightly lower using

leave-one-out cross-validation (Table 5). The added value of LCM

A alone and the combination of LCM A and B to SHFM and

treatment group in predicting one-year mortality and LVEF

response were redemonstrated, as was the decrease in performance

of predicting cumulative all-cause mortality with combined LCM

and SHFM models. The LCM A and B subgroup definitions were

then used to classify the 166 nonischemic HFREF patients

enrolled in MOCHA. Demographics of MOCHA patients

according to the components of the latent class models can be

found in Tables S4 and S5 of the Appendix S1. One-year

mortality and LVEF response were similar in nonischemic patients

enrolled in MOCHA and BEST (Appendix S1, Table S6).

Survival models that included SHFM did not perform well in

MOCHA, though the low number of deaths (6) and a much

shorter follow-up time (median = 6 months) likely contributed to

the low predictive ability for cumulative mortality using the

proportional hazards model. In contrast, models that included

SHFM had somewhat better predictive ability for the one-year

mortality outcome. Finally, the c-index for predicting LVEF

response in the validation dataset increased using SHFM Score

and bucindolol alone (c = 0.67) with the addition of LCM A

(c = 0.71), B (c = 0.71), and both A and B (c = 0.73).

Discussion

Using the combination of high-dimensional clinical phenotyp-

ing and latent class analysis, we have identified a number of

HFREF subtypes with distinct clinical profiles that demonstrate

significant variation in prognosis as measured by all-cause

mortality and response to bucindolol as measured by reduction

in mortality and increased likelihood of LVEF response (Figure 4).

Several of the LCM A subtypes resemble previously described

nonischemic HFREF phenotypes, while LCM B subtypes model

HF progression and severity. The latent class models, particularly

LCM A, remained significantly associated with certain outcomes

after combining them with the SHFM, suggesting that the

information in the latent class models is different from the

information in the SHFM Score. Taken together, these results

suggest that our approach to HFREF subtype identification may

be useful for identifying patients with potentially ‘reversible’

HFREF as well as those more likely to benefit from bucindolol.

Insight into Mechanisms of Disease and Treatment
Response

Regression models often provide only limited insight into the

interactions between clinical processes in a given individual or the

importance of a specific process in different contexts. The features

of the subtypes identified in the present analysis suggest our

approach identifies cohorts of patients who may share underlying

pathophysiology and disease prognosis. Defining clinical features

of LCM A subtypes, corresponding outcomes, and treatment

response are summarized in Figure 4a. Subtypes A1 and A5, both

characterized by older age, are notable for high rates of

hypertension and valvular disease respectively, which have been

identified as two major risk factors for nonischemic HFREF in the

elderly. [19] The development of HFREF in the setting of these

risk factors has been speculated to be in part due to accumulated

DNA damage and telomere attrition, which affect cellular function

and apoptosis. [20] These two subtypes also had the highest event

rates in LCM A, as might be expected in cardiomyopathy of the

elderly. Subtypes A2 and A6 are distinguished by obesity,

hypertension, hyperlipidemia, hypertriglyceridemia and diabetes

mellitus, which are all characteristics of the metabolic syndrome,

[21] and these subtypes may therefore represent variants of

Table 4. Cox proportional hazards ratio, cumulative mortality for individual and combined models.

Cox Multivariate HR – Cumulative all-cause mortality

Bucindolol 0.82(0.65–1.04) 0.76(0.60–0.96) 0.77(0.61–0.97) 0.77(0.61–0.98) 0.78(0.62–0.99) 0.75(0.60–0.95) 0.76(0.60–0.96)

A1 Reference – – Reference Reference – Reference

A2* Time int 0.39(0.25–0.61)
1.92(1.04–3.51)

– – 0.34(0.22–0.52) 0.50(0.32–0.79)
2.00(1.07–3.74)

– 0.48(0.30–0.75)
1.98(1.06–3.68)

A3 0.34(0.23–0.50) – – 0.40(0.27–0.58) 0.48(0.33–0.71) – 0.49(0.33–0.72)

A4* Time int 0.35(0.22–0.56)
0.72(0.53–0.97)

– – 0.63(0.41–0.98) 0.48(0.30–0.76)
0.73(0.54–0.98)

– 0.57(0.34–0.95)
0.73(0.54–0.99)

A5 0.65(0.43–0.98) – – 0.64(0.42–0.97) 0.67(0.44–1.02) – 0.65(0.43–0.99)

A6 0.32(0.23–0.44) – – 0.41(0.29–0.59) 0.47(0.33–0.66) – 0.49(0.35–0.70)

B1 – Reference – Reference – Reference Reference

B2 – 0.63(0.44–0.90) – 0.69(0.47–1.02) – 0.75(0.52–1.08) 0.79(0.53–1.17)

B3 – 1.41(1.01–1.96) – 1.28(0.92–1.79) – 0.97(0.69–1.37) 0.92(0.65–1.31)

B4 – 0.93(0.60–1.45) – 0.94(0.57–1.54) – 0.76(0.49–1.19) 0.76(0.46–1.26)

B5 – 3.25(2.24–4.71) – 3.02(2.08–4.40) – 1.58(1.04–2.42) 1.64(1.07–2.51)

SHFM Score – – 3.06(2.50–3.73) – 2.70(2.17–3.35) 2.47(1.93–3.16) 2.26(1.74–2.93)

Wald x2 77.5(p,.0001) 83.3(p,.0001) 121.58(p,.0001) 138.7(p,.0001) 156.5(p,.0001) 141.0(p,.0001) 176.6(p,.0001)

*estimates represent the HR at the geometric mean of the survival times, approximately 1.8 years.
doi:10.1371/journal.pone.0048184.t004
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Figure 3. Logistic regression odds ratio for mortality and EF response according to Latent Class Models A and B subtype, SHFM
Score and bucindolol treatment.
doi:10.1371/journal.pone.0048184.g003
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insulin-resistant cardiomyopathy. [22] Of note, subtype A2 had

the lowest cumulative and one-year mortality and showed no

reduction in mortality with bucindolol, while subtype A6, the

largest LCM A subtype, was the only LCM A subtype to show a

decrease in all-cause mortality. Subtype A3 patients are charac-

terized primarily by the presence of LBBB, a known risk factor for

HFREF. LBBB may affect neurohormonal activation and promote

myocyte hypertrophy and LV dilation as consequences of

ventricular dysynchrony. [23] While some features of the LCM

A subtypes are familiar, novel associations were observed such as

the predominance of white women and the high prevalence of

dyslipidemia in subtype A3, which was characterized primarily by

LBBB. Such observations may provide new insight into the

mechanisms involved in the pathogenesis of HFREF and suggest

hypotheses for future study. In addition, subtypes such as A6 that

demonstrated a favorable response to bucindolol even when the

overall effect of bucindolol was not significant might be selected for

further study regarding the specific role of bucindolol in treatment

of HFREF in those patients as well as the mechanism of treatment

response.

Trends of key features of the LCM B subtypes are represented

in Figure 4b. Specifically, LCM B subtypes with worse prognoses

were associated with first with worsening LV and RV ejection

fraction followed by evidence of worsening cardiac output (higher

heart rate, lower systolic and pulse pressure, and hyponatremia)

and finally worsening evidence of volume overload (increasing

jugular venous distension, blood urea nitrogen, and alanine

aminotransferase). Each of these trends has been associated with

poor prognosis in HFREF previously [24–33], and even in the

analyses that have characterized several markers of severity

simultaneously, there has been little quantitative insight gained

into the patterns or order in which worsening prognostic signs may

appear. [43,48] In addition, treatment benefit with bucindolol for

both all-cause mortality and LVEF response was confined to LCM

B stages with lower baseline mortality, higher LV and RVEF,

more favorable hemodynamics, and few signs of volume overload.

Results of analyses with the SHFM, which uses similar variables

(i.e. gender, 100/serum cholesterol, 100/LVEF, systolic blood

pressure/10, age/10, 138-serum sodium, |16-serum hemoglo-

bin|), also suggested higher likelihood of LVEF response

associated with lower SHFM scores, but the LCM A and B

models provide concrete clinical profiles to associate with

treatment response.

Identification of HFREF Subtypes Using Latent Class
Analysis

This analysis demonstrates the potential utility of combining

high-dimensional clinical phenotyping and latent class analysis for

identifying relevant subtypes of HFREF. It is impossible to

determine multivariate odds ratios for all of the variables included

in the latent class models presented here using a traditional

regression model, as the number of possible interactions

(26,542,080 and 432,000,000 for LCM A and LCM B,

respectively) prevents calculation using realistic sample sizes.

Latent class analysis provides a quantitative mechanism of

reducing the number of comparisons by aggregating individuals

with similar clinical profiles. Our approach produces data-driven

definitions of HFREF subtypes that integrate a large number of

clinical features but are not dependent on any one feature for

classification. Consequently, a feature like age may not have the

same implications among all individuals. For example, subtype A4

is associated with worse outcomes than subtypes A2 or A6 despite

younger age and lower burden of comorbid diseases. Clinical

features may therefore be associated with a conditional probability

for different outcomes depending on their context, capturing

relevant interactions between comorbid conditions without direct

calculation of all possible interactions. The added value of LCM A

and B membership to SHFM for predicting survival despite

sharing several common variables suggests that LCM A and B

subtype may provide additional prognostic information to the

SHFM Score. Finally, the variability in clinical outcomes observed

between subtypes suggests that this approach could be useful in

identifying patients with higher likelihood of HFREF reversibility

in the absence of an obvious reversible etiology or conversely for

identifying high risk patients for accelerated advanced HFREF

therapy.

Implementation and Sharing
Latent class analysis produces a formal mechanism for

classifying any individual patient according to the subtypes

presented in this analysis. While manual calculation is possible

(Appendix S1), an electronic implementation is more convenient.

This could be accomplished using a stand-alone web-based

application or by incorporation into an electronic health record

system, which will be the subject of future work. Furthermore, it

may be possible to develop simplified criteria for identifying LCM

A and B types using methods such as classification and/or

regression trees to simplify clinical application and validation in

other data sets.

Table 5. C-indices for predicting outcomes, BEST and validation sets (BEST LOOCV, MOCHA).

Cumulative mortality 1-Year Mortality EF Response

Models BEST BEST LOOCV MOCHA BEST BEST LOOCV MOCHA BEST BEST LOOCV MOCHA

SHFM 0.762 0.749 0.500 0.713 0.703 0.819 0.689 0.684 0.674

LCM A 0.821 0.808 0.743 0.682 0.623 0.544 0.666 0.614 0.684

LCM B 0.804 0.792 0.655 0.669 0.613 0.642 0.679 0.620 0.747

A+B 0.755 0.739 0.703 0.735 0.691 0.596 0.701 0.677 0.761

SHFM+A 0.732 0.720 0.500 0.747 0.726 0.791 0.704 0.691 0.711

SHFM+B 0.753 0.741 0.500 0.720 0.696 0.810 0.700 0.689 0.714

All 0.723 0.713 0.529 0.756 0.725 0.766 0.713 0.695 0.733

doi:10.1371/journal.pone.0048184.t005
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Figure 4. Figure 4a: Key features of Latent Class Model A, mortality trends, and response to bucindolol. Figure 4b: Key features of
Latent Class Model B, mortality trends, and response to bucindolol.
doi:10.1371/journal.pone.0048184.g004
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Limitations
This is a retrospective analysis that may not reflect current

management of HFREF, and conclusions regarding the prognostic

implications of LCM A and B membership must be validated

further. We present two methods of validation that suggest that the

performance of this model is reproducible, but the number

nonischemic patients in MOCHA was relatively small with only

six deaths during the one year of follow-up, and a range of dosing

was used in the carvedilol treatment arms, which both likely

affected validation of mortality outcomes. Carvedilol is also known

to be a more effective b-blocker on a population level, which could

also affect performance estimates in the validation set. Specifically,

carvedilol has been shown to have a stronger mortality benefit

than bucindolol on a population level and is known to be

associated with marked improvement in LVEF. [13,49–53] These

differences compared with bucindolol may explain why the

performance of the LCM models in the MOCHA trial appeared

worse in predicting mortality and better in predicting LVEF

response, as they were calibrated using bucindolol. Furthermore,

LCM performance could be assessed in patients enrolled in

MOCHA collectively, but the numbers for each subtype in

MOCHA, particularly with respect to the placebo arm, were

insufficient to validate subtype-specific outcomes. Additional

validation with larger populations is therefore necessary before

membership in one of the subtypes presented here could be used

to tailor HFREF therapy.

There were marked discrepancies between the performance

assessments of the combinations of LCM A and B models and the

SHFM using the proportional hazards model and logistic

regression for predicting mortality. The SHFM did not perform

as well towards predicting cumulative survival, whereas it showed

a slight advantage over the LCM models for the one-year

outcomes. In addition, there were discrepancies between relative

performance of SHFM in BEST and MOCHA. The SHFM c-

index for MOCHA according to the proportional hazards model

was far lower than has been described in any other validation set,

although the c-index using the logistic regression model was

comparable to previous assessments and its performance in BEST.

[43] This may be related to the low number of events and short

duration of follow-up in MOCHA as discussed earlier or to

differences in methodology for estimating the c-index for the

respective survival functions.

Another important limitation is the generalizability of these

latent class definitions. Utilization of the coefficients derived in this

analysis to determine LCM subtype for other patients assumes that

the patient population is the same as the nonischemic patients

enrolled in BEST. This assumption may be particularly problem-

atic for LCM B, which includes LVEF in its definition. Like all

clinical trials, the inclusion and exclusion criteria of the BEST

study are a critical source of selection bias and limit the

generalizability of any predictive models developed from BEST

to patients that do not meet those entry criteria. [14] This is

especially relevant for data-driven latent class models like those

presented here, as subtype definitions are by definition dependent

on the original study population, and patient subtypes not present

in the derivation population might be misidentified. It must also be

remembered that latent classes only represent patterns of the

variables included in the models, and that those latent classes may

not necessarily exist as recognizable patient types in an indepen-

dent population, [6] due in part to other variables that may be

important in a disease process. The utility of these models must

therefore be validated further in other patient populations, and the

definitions of subtypes will need to be revised over time as more

diverse patient populations are incorporated.

Latent class analysis is helpful in identifying highly prevalent

subtypes of patients. However, subtypes with only a small number

of individuals may be missed. This can be addressed by increasing

the hypothesized number of subtypes in each model to identify

poorly represented subtypes, but the danger of over-fitting

increases with the number of latent classes and must be balanced

with the goal of identifying more subtypes of disease.

Conclusion
High-dimensional phenotyping combined with latent class

analysis provide a method of identifying subtypes of nonischemic

HFREF patients who may have shared pathophysiology with

implications for prognosis and response to bucindolol therapy.

Significant reduction in all-cause mortality and increase in

likelihood of LVEF response was associated with bucindolol

treatment in specific groups identified using these classification

methods. Identification of patients’ HFREF subtype may provide a

means of personalizing clinical prognosis and estimating likelihood

of responding to medical treatment.

Supporting Information

Appendix S1

(DOCX)

Author Contributions

Conceived and designed the experiments: DPK MRB BDL. Performed the

experiments: DPK MRB. Analyzed the data: DPK BDW ADR.

Contributed reagents/materials/analysis tools: DPK BDL. Wrote the

paper: DPK BDL BDW. Primary investigator for BEST Trial: MRB. Data

collation of primary trial data: ADR. Conception of retrospective analysis:

DPK BDL. Development of software tools to perform analysis: DPK.

Execution of primary phenotyping analysis: DPK. Statistical analysis: DPK

BDW ADR. Authoring of manuscript: DPK BDL BDW. Revision of

manuscript: DPK BDL MRB BDW ADR. Approval of final submitted

version: DPK BDL MRB BDW ADR.

References

1. De Keulenaer GW, Brutsaert DL (2011) Systolic and diastolic heart failure are

overlapping phenotypes within the heart failure spectrum. Circulation 123:

1996–2004; discussion 2005.

2. Nagarakanti R, Whellan D, Rubin S, Mather PJ (2007) Reversible cardiomy-

opathies. Cardiol Rev 15: 178–183.

3. Rindskopf D (2002) Proceedings of the Survey Research Methods Section.

Alexandria, VA: American Statistical Association. 2912–2916.

4. Kim J, Jacobs DR, Luepker RV, Shahar E, Margolis KL, et al. (2006) Prognostic

value of a novel classification scheme for heart failure: the Minnesota Heart

Failure Criteria. Am J Epidemiol 164: 184–193.

5. Cassidy F, Pieper CF, Carroll BJ (2001) Subtypes of mania determined by grade

of membership analysis. Neuropsychopharmacology 25: 373–383.

6. Lanza ST, Rhoades BL (2011) Latent Class Analysis: An Alternative Perspective

on Subgroup Analysis in Prevention and Treatment. Prev Sci.

7. Crow SJ, Swanson SA, Peterson CB, Crosby RD, Wonderlich SA, et al. (2012)

Latent class analysis of eating disorders: relationship to mortality. J Abnorm

Psychol 121: 225–231.

8. Starkstein S, Dragovic M, Jorge R, Brockman S, Merello M, et al (2011)

Diagnostic criteria for depression in Parkinson’s disease: a study of symptom

patterns using latent class analysis. Mov Disord 26: 2239–2245.

9. Grayson PC, Maksimowicz-McKinnon K, Clark TM, Tomasson G, Cuthbert-

son D, et al. (2012) Distribution of arterial lesions in Takayasu’s arteritis and

giant cell arteritis. Ann Rheum Dis 71: 1329–1334.

10. Ogden LG, Stroebele N, Wyatt HR, Catenacci VA, Peters JC, et al. (2012)

Cluster analysis of the National Weight Control Registry to identify distinct

subgroups maintaining successful weight loss. Obesity (Silver Spring) 20: 2039–

2047.

11. Jaeger S, Pfiffner C, Weiser P, Kilian R, Becker T, et al. (2012) Adherence styles

of schizophrenia patients identified by a latent class analysis of the Medication

A Personalized BEST

PLOS ONE | www.plosone.org 14 November 2012 | Volume 7 | Issue 11 | e48184



Adherence Rating Scale (MARS): A six-month follow-up study. Psychiatry Res

[epub ahead of print].

12. Shiboski SC, Shiboski CH, Criswell L, Baer A, Challacombe S, et al. (2012)

American College of Rheumatology classification criteria for Sjögren’s
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