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Energy Stores Are Not Altered by Long-Term Partial
Sleep Deprivation in Drosophila melanogaster

Susan T. Harbison™*, Amita Sehgal

Howard Hughes Medical Institute, Department of Neuroscience, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America

Abstract

Recent human studies reveal a widespread association between short sleep and obesity. Two hypotheses, which are not
mutually exclusive, might explain this association. First, genetic factors that reduce endogenous sleep times might also
impact energy stores, an assertion that we confirmed in a previous study. Second, metabolism may be altered by chronic
partial sleep deprivation. Here we address the second assertion by measuring the impact of long-term partial sleep
deprivation on energy stores using Drosophila as a model. We subjected flies to long-term partial sleep deprivation via two
different methods: a mechanical stimulus and a light stimulus. We then measured whole-body triglycerides and glycogen,
two important sources of energy for the fly, and compared them to un-stimulated controls. We also measured changes in
energy stores in response to a random circadian clock shift. Sex and line-dependent alterations in glycogen and/or
triglyceride levels occurred in response to the circadian clock shift and in flies subjected to a single night of sleep
deprivation using light. Thus, consistent with previous studies, our findings suggest that acute sleep loss and changes to the
circadian clock can alter metabolism. Significant changes in energy stores were also observed when flies were subjected to
chronic sleep loss via the mechanical stimulus, although not the light stimulus. Interestingly, mechanical stimulation
resulted in the same change in energy stores even when it was not associated with sleep deprivation, suggesting that the
changes are caused by stress rather than sleep loss. These findings emphasize the importance of taking stress into account
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when evaluating the relationship between sleep loss and metabolism.
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Introduction

Recent human studies have discovered a widespread association
between short sleep times, obesity, and diabetes (reviewed in [1]).
These studies compare the body-mass index (BMI), which is body
weight in kilograms divided by the square of height in meters, to
the amount of time spent sleeping. A significant association
between short sleep times (less than six hours per night) and high
BMI is consistently reported in both male and female adults [2—-8].
In some cases BMI forms a U-shaped distribution with sleep times;
high BMI is associated with both short and long (nine hours or
more per night) sleep times [4,5,8,9]. In general, effect sizes tend to
be small, but the association of short sleep with obesity has been
consistently reported in human studies totaling over one million
participants. Short sleep was also positively correlated with body
fat [10] and non-fasted serum triglycerides, although the
association was dependent upon gender, smoking, and BMI [8].
Thus, a growing body of evidence links metabolic disorders to
sleep behavior.

However, endogenous sleep in humans is confounded with the
voluntary curtailment of sleep [11]. Recent surveys by the
National Sleep Foundation indicate that many Americans curb
nightly sleep by two hours or more in favor of other activities
[12,13]. When humans are deprived of sleep experimentally,
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decreases in the appetite-suppressing hormone leptin [14-16] and
increases in the appetite-stimulating hormone ghrelin [16] are
observed, which may alter eating behavior in favor of weight gain.
However, reduced leptin and increased ghrelin have also been
linked with short sleep in the absence of experimental sleep
deprivation [9], underscoring the difficulty in dissociating sleep
curtailment from naturally short sleep times in humans.

It may be possible to use animal model systems to distinguish
the metabolic effects of endogenous sleep need from those of
chronic sleep deprivation. Indeed, we recently used Drosophila
melanogaster, a model for mammalian sleep[17-19], to identify
genetic correlations between normal sleep periods and metabolism
[20]. Here we consider the metabolic impact of chronic partial
sleep deprivation. We deprived flies of two hours of sleep every
night for a week to mimic human voluntary sleep restriction. We
used two methods, a mechanical stimulus and a light stimulus, to
deprive flies of sleep. The light stimulus allowed us to distinguish
between effects that were due to sleep loss and effects that were
due to physical stimulation. To decouple the effect of the light
stimulus on sleep from its effect on the molecular circadian clock,
we examined the metabolic effects of a random circadian clock
shift. Finally, to account for possible adaptation to the light
stimulus, we measured the metabolic effects a single night of sleep
loss induced with light.
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We used triglyceride and glycogen levels to assess metabolic
changes in sleep-deprived flies. Many genes involved in the storage
of triglycerides in flies have been evolutionarily conserved in
mammals, making triglyceride stores a relevant model for human
systems[21]. Furthermore, both triglyceride and glycogen stores
are important for stress resistance in flies [22]. Since our
hypothesis was that sleep restriction would impact energy stores,
flies were measured immediately after the sleep deprivation
protocol on the last day to prevent recovery sleep. We compared
triglyceride and glycogen levels of sleep-deprived flies to that of
controls.

Our findings suggest that a single night of sleep loss and changes
in the circadian clock can alter metabolism, consistent with human
studies; however, chronic sleep loss in the absence of a physical
stressor does not impact energy stores. On the other hand, physical
stress impacts energy stores, suggesting that it should be considered
as a contributing factor in all studies of short sleep times.

Results

Protocol for long-term partial sleep loss

To assess the impact of long-term, partial sleep deprivation on
energy stores, we deprived flies of four different wild type strains
of sleep for seven days using either a mechanical or a light
stimulus according to the protocol in Figure 1. Each strain was
compared to its corresponding age- and environment-matched
controls in four independent experiments (see Methods). The
results of the statistical analysis for all conditions are presented
in Table S1. The data reveal that the brief two-hour period of
mechanical stimulation in the late night produced a net sleep
loss per day in both males and females (Figure 2A). Females
from all four strains lost sleep each day as compared to controls;
females lost as little as 7.65% (Canton-S) to as much as 21% (22-
2) of sleep per day on average. Males were less affected by the
mechanical stimulus, losing 7.44% (22-2) of sleep at most per
day on average. To determine if our experimental manipulation
induced hyperactivity, we compared the waking activity (average
activity counts for the time spent awake) for each line/sex to
controls (Figure 2B). With the exception of line 22-2, waking
activity did not change significantly in females. Waking activity
did change significantly in males of three of the four lines,
increasing significantly in Canton-S and 22-2 males and
decreasing in Oregon males.

In contrast to flies mechanically stimulated at night, both male
and female flies that were stimulated in the same manner during
the day, when they would normally be active, showed increased
sleep relative to controls (Figure 2C). Interestingly, alterations in
waking activity relative to controls in flies mechanically stimulated
during the day were similar to those in flies mechanically
stimulated at night (Figure 2D).

We also attempted to deprive flies of sleep by turning on the
lights during the night. We exposed flies to eight additional hours
of light for seven days and compared their behavior to age-
matched controls in two separate experimental blocks. Female flies
lost considerable amounts of sleep as compared with their
respective controls when stimulated by light during the night,
from 25.8% to 41.0% per day on average (Figure 2E). Previous
studies have shown that male flies tend to sleep more during
daylight hours than females, suggesting that males would be less
responsive to the light stimulus [23]. Indeed, we observed a net
increase in male sleep each day (Figure 2E). In general, waking
activity decreased in both males and females stimulated by light
(Figure 2F), despite the fact that the females lost sleep, while the
males did not.
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Flies did not fully compensate for sleep loss caused by the
mechanical stimulus applied at night by sleeping more; with the
exception of introgression line 22-2, sleep lost on the first day was
not significantly different from sleep lost on successive days
(Figure 3; see Methods and Table S2). Thus in general the flies do
not adapt to the mechanical stimulus when it is applied at night.
Flies mechanically stimulated during the day, on the other hand,
have a more variable sleep pattern across days, consisting of both
increases and decreases in daily sleep (Figure 4 and Table S2).
Long-term mechanical stimulation, therefore, produces a net sleep
loss only when applied at a time when flies would normally be
asleep.

When stimulated by light, males lost sleep overnight but
compensated for the loss during the day. With the exception of
0"'"8; Canton-S females, females did not compensate for the loss of
sleep due to the light stimulus (Figure 5; see Methods and Table
S2). Sleep in w''"%; Canton-S females was progressively increased
over time; thus, it would appear that females of this line
compensated for sleep loss. We therefore successfully deprived
female flies of sleep over a long period via two independent
methods; males were deprived of sleep using the mechanical
stimulus but not the light stimulus.

Effect of chronic partial sleep deprivation on energy
stores

We measured whole-body triglyceride levels in flies after they
had been sleep deprived for seven days and compared them to
age- and environment-matched controls. Triglyceride stores
increased in all mechanically stimulated flies, whether the
stimulation occurred during the day or at night (Figure 6A and
6B). Triglycerides were also altered after light stimulation
(Figure 6C), but the effects consisted of non-significant decreases
as well as increases. In particular, we observed no significant
changes in triglycerides in females, who were deprived of sleep by
the light stimulus. Thus, long-term mechanical sleep deprivation at
night reduced sleep and increased triglyceride stores, while
deprivation using the light stimulus reduced sleep in females and
did not significantly affect triglycerides. However, mechanically
stimulating flies during the day, which increased sleep, also
increased triglyceride stores. These findings indicate that a loss of
sleep was not the reason for the increase in triglycerides in flies
deprived at night with the mechanical stimulus.

We also assessed the effect of sleep deprivation on whole-body
glycogen stores. Glycogen was measured after seven days of sleep
deprivation and compared to age- and environment-matched
controls. Whole-body glycogen stores were reduced considerably
in response to long-term mechanical stimulation, whether the
stimulation occurred during the day or at night (Figure 7A and
7B). However, light stimulation had little effect on glycogen stores
with the exception of a large decrease seen in w'''®; Canton-$
females (Figure 7C). Neither males, who slept longer in the
presence of the light stimulus, nor females, who lost sleep, had
significant differences in glycogen stores when compared to the
control. Thus, as for the triglycerides, the decrease in glycogen by
the mechanical stimulus does not appear to be due to a loss of
sleep. Alternatively, since light can have many profound effects on
an organism, other factors may have dampened the effects
produced by light-induced sleep loss in females (see below).

Effect of circadian clock shifts on energy stores

Sleep behavior is intertwined with circadian rhythms. While the
mechanical stimulation protocol does not alter the circadian clock
[17], the seven-day chronic light stimulus protocol may have had
an effect [24]. Since it is possible that effects on the clock
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Figure 1. Sleep deprivation protocol used for the sleep deprivation experiments. The bars indicate the light:dark cycles experienced by
the flies, with white signifying the light period, and black signifying the dark period. Light:dark cycles are aligned to the control light:dark cycle. The
mechanical stimulus and chronic light stimulus experiments were conducted over a seven-day period. The acute light stimulus experiment lasted
24 hours. The constant clock shift experiment lasted 12 days; some light:dark patterns lasted two days, as indicated. ZT, zeitgeber time.

doi:10.1371/journal.pone.0006211.g001

countered effects on sleep, we measured the effect of shifting the
clock multiple times over a 12 day period on energy stores (see
Methods and Figure 1). We designed the shifts so that at the end of
the experiment, the flies had the same amount of light exposure as
their age-matched controls. Although the clock-shift experiment
was not intended to deprive flies of sleep, both males and females
lost sleep (Figure 8A), underscoring the difficulty in uncoupling
sleep from the circadian clock.

We saw little effect of the clock shift on triglycerides; as
Figure 8B shows, only Oregon females exhibited significant changes
over their control, increasing triglyceride stores. The effect on
glycogen was more widespread, with significant increases and
decreases, indicating a sex- and line-specific response to the clock
shift (Figure 8C). Since the pattern was different across line, we
infer that shifting the clock does not have consistent, predictable
effects on glycogen stores. In addition, since the clock shift
produced sleep loss, these data support the conclusion above that
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long-term sleep loss is not associated with consistent changes in
glycogen or triglycerides.

Effect of acute sleep deprivation on energy stores

Our results indicate that chronic light-induced sleep deprivation
does not affect energy stores. In addition to potentially affecting
the circadian clock as mentioned above, the flies may have
acclimated to the light stimulation over time. Post-hoc Tukey
analysis revealed that the difference in sleep in most of the light-
stimulated flies and their respective controls changed significantly
(P<<.05) over the course of the seven-day experiment (see Figure 5).
w8, Canton-S females in particular appeared to adapt to the light
stimulus over time, increasing sleep each day. We therefore tested
the effect of a single day of the light stimulus protocol on energy
stores. Overnight sleep was greatly reduced in females exposed to
the acute light stimulus (Figure 9A); for example, 22-2 females lost
5.87 hours of sleep. Unlike in the chronic light stimulus protocol,
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males did not have the opportunity to compensate for lost sleep.
Thus, they also exhibited sleep loss when the light stimulus was
applied overnight although the loss of sleep was only statistically
significant in w'"'%; Canton-S males (2.88 hours). Triglycerides in
males were virtually unaffected (Figure 9B). Despite losing
significant quantities of sleep, Oregon and 22-2 females also did
not exhibit significant changes in triglycerides. However triglyc-
erides in w'''%; Canton-S and Canton-S females had significant
increases. Glycogen levels did not change significantly in response
to the acute light stimulus for any line or sex (Figure 9C). Thus, as
with the long-term sleep deprivation using the light stimulus, acute
sleep loss did not significantly impact glycogen stores. The
response of triglycerides to acute sleep deprivation was both sex-
and line-dependent.

Discussion

We deprived flies of sleep using two methods: a mechanical
stimulus and a light stimulus. The mechanical stimulus produced
sleep loss when applied at night, but not during the day. When
chronically sleep-restricted during the night, flies only partly
compensated for the sleep loss, consistent with studies in both
rodents and humans [25,26]. When exposed to the same
mechanical stimulation during the day, flies slept more than
controls. Yet energy stores in both groups of flies displayed a
pattern that was consistent across lines and sexes: glycogen levels
decreased, while triglycerides increased. These data suggest that
the changes in energy stores that we observed are not due to
chronic partial sleep loss. Supporting evidence is provided by
our findings for flies deprived of sleep using the light stimulus.
While not effective at chronically depriving males of sleep, the
additional light produced greater sleep loss in females than the
mechanical stimulus. However, the pattern of decreased
glycogen and increased triglycerides seen after mechanical
stimulation was not seen in females stimulated by light. Instead,
triglycerides were not significantly altered as compared to the
controls, and glycogen was significantly reduced in only one line
(@""'®; Canton-S). Taken together, the data indicate that chronic
partial sleep loss per se does not impact energy stores.
Furthermore, our circadian clock shift experiment was not
intended to deprive flies of sleep, but they did lose sleep. Despite
the sleep loss, the clock shift experiment had little effect on
triglycerides, reinforcing the conclusion that changes in triglyc-
erides were a result of factors other than sleep loss. The effect of
the clock shift on glycogen varied among sexes and lines. Since
the clock shift was not de-coupled from the sleep loss, two
conclusions are possible: alterations in the molecular circadian
clock affected glycogen stores, or the sleep loss in combination
with changes in the molecular circadian clock affected glycogen.
Recent evidence that the fly circadian clock controls feeding
behavior argues for the former conclusion. Peripheral clocks in
the fat body (analogous to the mammalian liver) inhibited
nighttime feeding [27] and disruption of this peripheral clock
reduced glycogen levels in the fat body, an effect which was
opposed by disrupting the circadian clock in neuronal cells [27].
Although the current study examined whole-body glycogen,
these findings nevertheless imply that the circadian clock can
affect glycogen stores in the fly.

It is not clear why the mechanically stimulated flies exhibited
increases in triglycerides while having a reduction in glycogen
stores. To keep the flies awake, the mechanical stimulus physically
perturbs the flies, which may result in an increase in their activity.
For example, loss of glycogen has been observed in both the heads
and bodies of female flies after sleep deprivation by hand tapping,
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whether the flies were stimulated during their normal sleep period
or during their active period [28]. One possibility is that the large
reduction in whole-body glycogen that we observed could be due
to increases in locomotor activity elicited by the mechanical
stimulus. However, if changes glycogen or triglycerides were solely
mediated by changes in total activity counts resulting from altered
sleep, then one would always observe the same relationship
between these nutrients and sleep time. The observations herein
suggest that the total amount of activity is not the sole determinant
of glycogen or triglyceride levels.

Furthermore, we did not observe a consistent pattern between
changes in energy stores and changes in waking activity. Nor was
waking activity uniformly increased with the application of the
mechanical stimulus, underscoring the previously observed lack of
correlation between sleep time and waking activity [29,30].

We suggest that the increase in triglycerides we observed after
mechanical stimulation may be induced as part of the stress
response. A number of stress response pathways are conserved
between mammals and flies [31,32]. Recent studies have shown
that stress pathway molecules such as c-Jun N-terminal kinase,
which is conserved in flies, influence insulin signaling and fat
storage [33]. Flies deprived of sleep using the mechanical stimulus
have increased expression of genes involved In stress response
pathways, including genes involved in the inflammatory, oxidative
stress, and unfolded protein responses [34], which may account for
the increase in triglycerides we observed. Thus, stress is more likely
the stronger influence on triglyceride level when flies are
mechanically stimulated. How stress might alter triglyceride level,
whether through changes in physiology or behaviors such as
feeding, remains to be determined.

When human sleep was restricted to four hours for six days,
mmpaired carbohydrate metabolism and endocrine function were
observed [35], leading the authors to suggest that long-term sleep
loss might produce metabolic changes increasing the likelihood of
obesity and type 2 diabetes [35,36]. In this experiment, we did not
observe changes in glycogen or triglyceride stores that would
suggest similar metabolic changes take place with chronic partial
sleep loss in flies. However, in a parallel study, we observed a
genetic link between endogenous sleep and energy stores [20].
Based upon the metabolic effects of stress discussed above, we
suggest that stress may contribute to the effects of short sleep on
metabolism.

Materials and Methods

Drosophila stocks

Wild-type fly lines were used to assay the effect of sleep
deprivation on energy stores. Common laboratory strains Oregon-
R and Canton-S were used, as well as an isogenized w8,
Canton-S strain created as part of the Berkeley Drosophila
Genome Disruption Project [37]. We also assayed a recombi-
nant inbred line derived from Oregon-R and the Russian 2b
strain, 22-2 [38].

Flies were reared and maintained on standard medium in a
25°C, 12-hour light/dark cycle incubator. All rearing cultures
were adult-density controlled at five males and five females per
vial. For all assays, adult virgins were collected and maintained at
30 flies to a single-sex vial until the time of assay to mitigate the
effects of social enrichment on sleep [39] and to give equal access
to the food source. Flies had access to food at all times.

Sleep behavior monitoring

For all manipulations (mechanical stimulus, light stimulus, or
clock shift), we monitored sleep and activity using the Drosophila
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Activity Monitoring System (Trikinetics, Waltham, MA) [40].
Sleep and activity were quantified using an in-house C** program
that calculated hours of sleep, numbers of sleep bouts, average
bout length, and activity counts per waking minute (waking
activity). Sleep was defined as any period five minutes or longer
without an activity count [17,18,23,40].

Sleep deprivation using mechanical stimulus

We subjected wild-type flies to long-term sleep deprivation using
a mechanical stimulus as described [23]. We deprived flies of sleep
for two hours each day over a seven-day period. This protocol
resulted in a 10-25% loss of sleep per night, based on preliminary
data. We divided flies into three treatment groups: mechanically
stimulated at night (Night Mechanical Stimulus), mechanically
stimulated during the day (Day Mechanical Stimulus), and un-
stimulated controls (see Figure 1). Sixty-four flies of each sex per
line were assayed per treatment group in four experimental blocks.
At the end of the sleep deprivation period, we measured energy
storage parameters as described below.

Sleep deprivation using light stimulus

To discriminate between the effects of sleep loss and effects that
were solely due to the mechanical stimulus, we deprived flies of
sleep using light (see Figure 1). The Chronic Light Stimulus
protocol consisted of exposing flies to eight hours of additional
light during their normal 12-hour dark cycle in the following
pattern: two hours dark, eight hours light, and two hours dark.
After seven days, we harvested flies at the beginning of the normal
light cycle and assayed them for energy storage parameters. Flies
subjected to the light stimulus were compared to age-matched
controls subjected to the usual 12 hr light: 12 hr dark cycle. We
assayed 32 flies of each sex per line in each treatment group in two
experimental blocks. To account for possible adaptation to the
light stimulus over time, we subjected flies to a single night of sleep
deprivation using light. The Acute Light Stimulus protocol was the
same as the Chronic Light Stimulus protocol, except that flies were
harvested after a single day of exposure to additional light.

Clock shift assay

We examined the impact of a long-term random shift in the fly
circadian clock on energy stores. Importantly, the Clock Shift
assay was designed to give flies the same amount of light as control
flies on a normal 12-hour light:dark schedule. This methodology
enabled us to distinguish between potential effects on energy stores
due to manipulation of the circadian clock and to different
amounts of light. We shifted the clock for 12 days (see Figure 1).
We tested 32 flies of each sex per line in each treatment group in
two experimental blocks. Note that at the end of the experiment,
both experimental flies and their age-matched controls had the
same circadian light:dark cycle. All flies were harvested at the
same circadian time and assayed for energy stores.

Measurement of energy stores

For homogenization, all flies were collected at the beginning of
their lights-on period (see Figure 1). Flies were weighed in groups
of ten; whole bodies (including the head) were homogenized on ice
in 0.0IM KHyPO,, 1 mM EDTA pH 7.4 buffer as described
[41]. We used 25 pl of homogenizing buffer per fly. Homogenates
were immediately used to measure whole-body protein, glycogen,
and triglycerides. Each colorimetric assay was read using a Perkin-
Elmer V? plate reader (Waltham, MA). Bradford’s method was
used to determine the protein in pg per fly [42]; BSA was used for
the protein standard curve. We measured total glycogen in ug per
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fly as described [41]. Briefly, glycogen from the homogenates was
broken down into glucose by adding 0.1 U/ml amyloglucosidase
enzyme slurry (Sigma) to 1.5 pl samples of homogenate in a 96-
well plate. Total glucose was then determined using the PGO
Enzymes Kit (Sigma) [41]. Free glucose is estimated at less than
5% of the amount of glycogen stored [41]; thus, this measure is
effectively the amount of whole-body glycogen. Glucose concen-
trations were determined using a glucose standard curve run on
the same plate. Known concentrations of glycogen were used as
standards to assess the expected recovery of glycogen [28]; we
repeated the measurements if less than 95% of the glycogen
standard was recovered. True serum triglycerides in pg per fly
were determined using an enzymatic assay kit (Serum Triglyceride
Determination Kit, Sigma-Aldrich, St. Louis, MO) [43]. Homog-
enates were then stored at —80°C, and measurements were
repeated the next day. Two separate biological replicates were
assayed for the clock shift assay and the assays using light to
deprive flies of sleep; four separate replicates were performed for
the mechanical sleep deprivation assays.

Statistical analysis

We used the following ANOVA model to assess the changes in
sleep and energy storage phenotypes after sleep deprivation:
y = pHLASHTHL XS+HLXTH+S X T+L xS x T+E, where L is the line,
S is sex, T is the treatment (control or sleep-deprived), and E is the
within-tube environmental variance. Comparisons among me-
chanically-stimulated flies using this model were highly significant
(P<<0.05), indicating differences among sexes and lines as well as
among treatments. We therefore determined the effect of each
treatment on sleep for each line/sex combination separately using
the reduced model y = p+T+E, where T is the treatment (control,
deprived, etc.) and E is the environmental variance within
treatments. Note that initially we used body weight as a covariate
in the energy storage analyses; however, we found that there were
no significant differences among treatments or among lines for
body weight. We thus dropped the weight term from our reduced
analysis. We performed a post-hoc Tukey analysis for each
parameter in order to rank differences between treatments.

We performed an additional analysis on the flies deprived of
sleep using the mechanical or the light stimulus to see if the flies
were adapting to either stimulus over time. We subtracted the
average 24-hour sleep for each control line/sex per day from the
respective  mechanical- or light-stimulated group. We then
analyzed these differences in an ANOVA model: y=p+D+E,
where D is day and E is the variance among individuals. We
performed a post-hoc Tukey analysis on this data, which ranked
the difference in sleep observed between the control and the light-
stimulated flies by day. Flies were considered to be compensating
for the sleep-depriving stimulus if they met the following two
criteria. First, ANOVA results had to reveal a statistically
significant effect of day on the change in sleep (P<<.05). Secondly,
the post-hoc Tukey ranking had to indicate that flies had increased
sleep for each successive day.

Supporting Information

Table S1 Analyses of variance of sleep traits.
Found at: doi:10.1371/journal.pone.0006211.s001 (0.22 MB
DOC)

Table 82 Post-hoc Tukey analysis to detect adaptation to
mechanical and light stimuli.

Found at: doi:10.1371/journal.pone.0006211.s002 (0.15 MB
DOC)
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