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Abstract

Estimating date of infection for HIV-1-infected patients is vital for disease tracking and informed public health decisions, but
is difficult to obtain because most patients have an established infection of unknown duration at diagnosis. Previous studies
have used HIV-1-specific immunoglobulin G (IgG) levels as measured by the IgG capture BED enzyme immunoassay (BED
assay) to indicate if a patient was infected recently, but a time-continuous model has not been available. Therefore, we
developed a logistic model of IgG production over time. We used previously published metadata from 792 patients for
whom the HIV-1-specific IgG levels had been longitudinally measured using the BED assay. To account for patient variability,
we used mixed effects modeling to estimate general population parameters. The typical patient IgG production rate was
estimated at r = 6.72[approximate 95% CI 6.17,7.33]61023 OD-n units day21, and the carrying capacity at K = 1.84[1.75,1.95]
OD-n units, predicting how recently patients seroconverted in the interval ‘t = (31,711) days. Final model selection and
validation was performed on new BED data from a population of 819 Swedish HIV-1 patients diagnosed in 2002–2010. On
an appropriate subset of 350 patients, the best model parameterization had an accuracy of 94% finding a realistic
seroconversion date. We found that seroconversion on average is at the midpoint between last negative and first positive
HIV-1 test for patients diagnosed in prospective/cohort studies such as those included in the training dataset. In contrast,
seroconversion is strongly skewed towards the first positive sample for patients identified by regular public health
diagnostic testing as illustrated in the validation dataset. Our model opens the door to more accurate estimates of date of
infection for HIV-1 patients, which may facilitate a better understanding of HIV-1 epidemiology on a population level and
individualized prevention, such as guidance during contact tracing.
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Introduction

Accurately estimating incidence of an infectious disease is vital

for informed and targeted prevention, and knowing the date of

infection per case is important for estimating the incidence in a

population. For acute infections, like influenza, it is relatively

straightforward to infer the date of infection because it occurred

just shortly before the diagnosis. For chronic infections, like

human immunodeficiency virus type 1 (HIV-1) infection, it is more

complicated to infer the date of infection because only rarely are

persons diagnosed during primary HIV-1 infection (PHI). Instead,

most diagnosed persons have an established HIV-1 infection of

unknown duration. Consequently, the World Health Organization

(WHO), the Joint United Nations Programme on HIV/AIDS

(UNAIDS), as well as national public health institutes usually

simply report the number of newly diagnosed cases. Due to the

current problems with HIV-1 incidence estimation, there is

considerable interest in the development of assays and biomarkers

that can determine if an HIV-1 infection is recent, in order to

allow for estimating HIV-1 incidence in a population

[1,2,3,4,5,6,7,8].

Seroconversion occurs on average 21 days after HIV-1 infection

[9,10], and is thus a useful date to infer by serology. Serological

assays are based on the knowledge about the development and

maturation of the HIV-1 antibody response in infected persons

(reviewed in [3,4,6,11]). These assays are collectively referred to as

Serological Testing Algorithm for Recent HIV Seroconversion

(STARHS) [4] or Recent Infection Testing Algorithm (RITA) [2].

In 1998 Janssen et al. described the first mathematical method

that was specifically developed to estimate HIV-1 incidence using

a cross-sectional sampling approach [12]. This method used results

from a ‘‘less-sensitive’’ (or detuned) version and a standard version
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of an HIV-1 enzyme linked immunoassay (EIA). Since then,

additional assays have been developed, such as the IgG capture

BED enzyme immunoassay (BED assay) [13], the IDE-V3 assay

[14], and several different avidity assays (reviewed in [15]).

Adjustments of Janssen’s original formula have also been

presented [16,17]. The BED assay, which was developed by the

US Centers for Disease Control and Prevention (CDC), has been

commercialized. The assay name ‘BED’ signifies that it is based on

a trimeric branched peptide with each branch derived from the

immunodominant region of the gp41 glycoprotein of HIV-1

subtype B, circulating recombinant form (CRF) 01_AE or subtype

D to overcome subtype-specific differences associated with some

other assays [4]. Importantly, the BED assay, like most other

serological assays, has been designed for incidence estimates in

populations. At present, it provides a binary result, i.e., recent vs.

long-term infection based on a cutoff value of a normalized optical

density (OD-n = 0.8) in the EIA, rather than a quantitative

estimation of time since seroconversion. The mean time interval

from seroconversion to this cutoff value, i.e., the mean recency

period, has been estimated at around 180 days, with some

differences between genetic subtypes and populations [18]. The

cutoff value was optimized to minimize misclassification of recent

and long-term infections, but such misclassifications still occur. For

instance, it is well-established that the BED assay can give a false

impression of recent infection for some patients with advanced

disease because HIV-1 antibody levels to the BED peptides

sometimes wane with advancing immunodeficiency [13]. For this

reason different approaches to adjust BED incidence estimates

have been suggested [16,17].

The objectives for this study were: 1) To create a biologically

motivated time-continuous model of the production of BED-

specific IgG (BED IgG) data; 2) To address the patient variability

of the BED IgG growth following HIV-1 seroconversion,; 3) To

critically examine the common modeling assumption that

sercconversion happens at the midpoint between last negative

and first positive HIV-1 test result; and 4) To reevaluate national

Swedish surveillance data utilizing BED data. To achieve these

goals, we explored various parameterizations of a basic logistic

growth model describing the production of BED IgG, trained on a

large cohort metadata set from a recent study by Parekh et al.

[18]. To account for patient variability, universal parameter values

were estimated using mixed effects modeling, and final model

selection and validation was performed on a second large dataset,

consisting of new BED data from Swedish patients newly

diagnosed with HIV-1 infection between 2002 and 2010. While

we informed the model with BED assay results, because it is

currently the most used biomarker for recency estimation, our

model could be adjusted to other available and future serological

biomarkers as well as be included in multi-assay approaches

[8,19,20].

Materials and Methods

Ethical Approval
For the new data in this study, collected in Sweden, informed

written or oral consent was obtained from all adult participants

and from the next of kin, caregivers or guardians on the behalf of

participants that were minors or children. The research was

conducted according to the Declaration of Helsinki and was

approved by the Regional Medical Ethics Board in Stockholm,

Sweden, which had permitted the use of oral consent to minimize

the risk of selection biases due to patient drop-out because some

ethnic groups of participants were known to be willing to take part

in the study, but reluctant to provide written consent (Dnr 02–367,

04–797 and 2007/1533). Written or oral consent were document-

ed in the patient clinical records.

Study Populations and BED Measurements
To infer parameters for our time-continuous IgG model, we

used BED data from a previous meta-study by Parekh et al [18],

encompassing 756 HIV-1 diagnosed patients sampled at regular

intervals in 16 cohorts. These metadata came from longitudinal

cohorts where patients were tested on regular intervals with a

maximum time span between the last HIV-negative and first HIV-

positive test of 365 days (median = 168 days), where the authors

assumed that the time of seroconversion occurred at the interval

midpoint. We used patients sampled at least twice, resulting in

2975 OD-n measurements from 718 HIV-1 patients.

In addition, we performed BED-testing on plasma samples from

819 patients who were previously diagnosed as HIV-1-infected in

Sweden in 2002–2010. These patients are a subset from a recently

published study of transmitted drug resistance [21]; we included

patients who were living in Sweden when they became infected,

whereas patients infected before first arrival in Sweden were not

included. The study population constituted 68% (819 of 1196) of

all Swedish patients in this category who were diagnosed during

the study period and they also accurately reflect the entire

population with respect to gender, age, transmission routes, and

infections with various HIV-1 subtypes (approximately 40%

subtype B, and further subtypes A, C, D, CRF01, CRF02 and

others). In contrast to the patients studied by Parekh et al., the

Swedish patients did not undergo HIV-testing at regular intervals

as they were identified by regular public health diagnostic testing.

Nevertheless, for 523 of the 819 Swedish patients we had the date

of the last negative HIV-test result.

For the Swedish samples BED OD-n was measured using the

AwareTM BEDTM EIA HIV-1 Incidence Test (Calypte Biomedical

Corporation, Portland, OR, USA) according to the manufactur-

er’s instructions on a Dynex Technologies MRX Revelation

spectrophotometer. A calibrator is used with a known amount of

HIV-1-specific IgG in order to make individual runs comparable.

Thus, a normalized OD-value (OD-n) for each well is calculated

by dividing the raw OD-measurement by the median calibrator

value of that individual run. As specified by the manufacturer,

samples with OD-n values ,1.2 were rerun in triplicate and the

median value was used.

A Logistic Model Describes BED IgG Production
Similar to many biological systems where the rate of reproduc-

tion is proportional to the existing population and limited

resources, the growth of HIV-1-specific IgG following serocon-

version can be modeled by a logistic function,

dPIgG

dt
~rPIgG 1{

PIgG

K

� �
, ð1Þ

where r is the growth rate of HIV-1-specific IgG and K is the

limiting factor, lim
t??

PIgG(t)~K , aka. the carrying capacity. We

assume that the carrying capacity does not change over the time

we are interested in, i.e., during the ramp-up of IgG directed to

HIV-1 in the first few years of infection. The solution to this

differential equation is

A Time-Continuous HIV-1 IgG-Model
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PIgG(t)~
KPIgG(0)ert

KzPIgG(0)½ert{1�

We focus on the portion of HIV-1-specific IgG that is measured

by the BED assay [13,18,22], henceforth referred to as ‘‘BED

IgG’’. This assay measures the absorbance of light (l= 450 nm

with reference 630–650 nm) of HIV-1-specific IgG complexes.

According to Beer-Lambert’s law, the absorbance (optical density,

OD) is directly proportional to the concentration of the absorbing

species, ODIgG(l) = log10(I0/I), where I0/I is the ratio of light that

passes through a solution containing BED IgG complexes. The

measured ODIgG is normalized using an assay standard as

described above; the calibrated OD value is denoted OD-n.

Hence, because OD-n operates on a logarithmic scale, the

logistic function is transformed to a linear-asymptotic curve, which

we model as

ODIgG(t)~Kz½ODIgG(0){K �e({er)t, ð2Þ

where r is modeled as the logarithm to enforce positivity of the rate

constant, ensuring it will reach the asymptote K.

Estimating Logistic Model Parameters
Based on metadata from Parekh et al [18], we selected patients

with longitudinal samples (n$2) to use as model training data. In

Parekh et al. the mean time interval between their estimated time

of seroconversion and reaching a specified assay cutoff value in a

population was defined as the ‘‘mean recency period’’. We are

ultimately interested in the date of infection of each patient, Tinf(i);

for that, we first estimate the time (t) between when the sample for

BED testing was collected (TBED) and when seroconversion

occurred (Tsc), as defined in Figure 1. Thus, the logistic model

parameters will refer to time since seroconversion for a typical

patient. We used a mixed effects linear-asymptotic model to

accommodate the logarithmic OD-n scale to infer ODIgG, r and K

(Eq. 2) corresponding to the three parameters of the logistic IgG

model (Eq. 1). In addition, we modeled ODIgG and r independently

from K by a generalized linear mixed effects model in the IgG

growth phase (t#350 days).

While we model both the response ODIgG and the random

effects B as random variables, we only observe values of ODIgG.

The conditional distribution ODIgG |B and the marginal distribu-

tion B are independent, multivariate normal distributions. Values

of ODIgG were grouped corresponding to patient, resulting in 2975

OD-n measurements in 718 groups (Figure S1). Consequently, the

model estimates parameter values representative for the whole

population of the training data in the fixed effects, while the

random effects describe conditional modes of the estimated

parameters. The random effects in the linear-asymptotic mixed

model are described in a general positive-definite matrix structure,

allowing parameter inclusion/exclusion as well as defining

different covariance dependencies. We tested all possible random

effects structures (df = 5–9) to investigate which of them that could

be omitted to avoid over-parameterizing our model (Table 1).

Similarly, to investigate parameterization level and dependen-

cies in the generalized linear mixed effects modeling of ODIgG and r

only, we tested whether a correlated (df = 4) or uncorrelated

(df = 5) random effects model would better fit the data. To

maximize the amount of patient data and to allow for varying

trends as well as varying sampling periods, for this analysis we

included all patients sampled at least 5 times within t ,350 days

(N = 116).

All submodels are referred to in the following text by their

model abbreviations as defined in Table 1.

The linear-asymptotic mixed model was fitted by full maximum

likelihood estimation using the nlme package version 3.1-103 [23]

and the generalized linear mixed model was fitted by restricted

maximum likelihood (REML) estimation using the lme4 package

version 0.999375-42 [24], both made for the R computing

environment [25].

Model Selection, Validation and Estimating Time-bias
To select which of the mixed effects parameterizations best

described independent data, model validation was done with the

Swedish data. We used our logistic model with parameters

estimated by the fixed effects to translate the Swedish OD-n

measurements to estimate the time interval (‘t) between a patient’s

date of seroconversion (‘Tsc) and date of BED test (TBED). By

definition, when OD-n ,0.07, the lower BED detection limit [18],
‘t = 0. As defined in Figure 1, this time was compared to a time

Figure 1. Definitions of dates and time intervals relative to BED
testing. The time since seroconversion (t) is the time from the date a
patient seroconverted (Tsc) to when a sample for BED testing was
collected (TBED). We estimate t by a logistic IgG model (Eq. 1) as ‘t. Date
of infection (Tinf) occurred on average 21 days prior to Tsc [9,10]. When
available, the patient history also includes the dates of last negative
HIV-1 antibody testing (T(2)) and first positive HIV-1 antibody testing
(T(+)), defining the serological interval. Note that T(+) and TBED may often
occur at the same date. To reevaluate national Swedish HIV surveillance
data we compared ‘Tinf with T(+), resulting in a time difference D.
doi:10.1371/journal.pone.0060906.g001

Table 1. Mixed effects model parameterizations.

Model OD(0) r K df AIC

Full mixed effects model

all 3 random effects (ISAR) 1 1 1 9 2

intercept+slope random
effects (ISR)

1 1 0 7 3648

intercept+asymptote random
effect (IAR)

1 0 1 7 2

slope+asymptote random
effects (SAR)

0 1 1 7 3645

intercept random effect (IR) 1 0 0 5 2

slope random effect (SR) 0 1 0 5 3643

asymptote random effect (AR) 0 0 1 5 3971

Growth phase mixed
effects model

correlated growth (CG) 1 1 NA 4 753

uncorrelated growth (UG) 1 1 NA 5 641

Footnotes: 1, random effect included; 0, random effect excluded; 2, model did
not converge; NA, not applicable.
doi:10.1371/journal.pone.0060906.t001

A Time-Continuous HIV-1 IgG-Model
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interval constrained by the last negative and first positive HIV-1

testing (the serological interval) relative to BED testing, T(2) and

T(+), respectively. Thus, ‘t = a+b|T(2)+t(T(+) – T(2))|, where

t= (0,1) describes the relative position within the serological

interval (T(2),T(+)), optimized when a= 0 and b= 1, which

assumes that ‘t perfectly infers Tsc. Final model selection was

performed by a hit-and-miss statistic, formally evaluated by a

Poisson test. The hit accuracy was measured as the mean distance

(in days) between the model-inferred ‘t’s and the serological

intervals (targets). When a patient’s target was hit the accuracy

distance was zero. The precision is then defined as the distribution

of the accuracy distances.

Comparing Date of Infection to National Swedish HIV
Surveillance Data

National data on number of diagnoses per year in Sweden were

collected from the Swedish Institute for Communicable Disease

Control (http://www.smittskyddsinstitutet.se/statistik/

hivinfektion/, accessed 01-26-2012). To match the Swedish BED

data we excluded patients that had been infected before first

arrival to Sweden. Between years 2005–2008 the sampling of our

BED data was directly proportional to the national number of

diagnoses per year (p.0.05, Wilcoxon rank sum test), and

included all relevant transmission risk groups.

The Swedish BED data consisted of patients diagnosed

September 2002 through July 2010 (N = 819). The date of

infection (Tinf) for each patient was estimated as the date of

BED sampling (TBED) minus two time intervals; the model-

inferred time since seroconversion (‘t) and a time interval of 21

days between infection and seroconversion. The latter time

interval was based on published data on HIV-1 seroconversion

phases [9,10]. Hence, ‘Tinf = TBED – ‘t –21 days. To reevaluate

national Swedish HIV surveillance data we compared ‘Tinf with

the reported date of diagnosis (first positive HIV-1 sample) T(+),

resulting in a time difference D (Figure 1). As mentioned above,

the date of diagnosis and date of BED sampling was identical for

many of the patients in our study.

Results

Model Training and Parameterizations Using Cohort
Metadata

In the full mixed effects modeling the random effect of ODIgG(0)

was found to have very small deviations (model ISR ODIgG(0)

s.d. = 1.2261025 OD-n units). Furthermore, no covariance

between ODIgG(0) and r was observed (model ISR ODIgG(0) to r

correlation = 0.001). Similarly, when only modeling ODIgG(0) and r

in the IgG growth phase (models CG and UG; Table 1), an

ANOVA supported the observation that no pattern of correlation

between intercepts ODIgG(0) and slopes r could be observed in the

random effects (p,,0.001, x2 = 134.72, df = 1; Table 1). In

addition, biologically it is logical to assume that there is no patient

variation in the HIV-1-specific IgG level before a patient has been

infected; they should all be below detection limit of the BED assay.

Indeed, the fixed effect ODIgG(0) in all models was very close to

zero at t = 0. Importantly, when ODIgG = 0, ‘t was also close to zero

for all models, which means that the assumption that seroconver-

sion on average occurred at the midpoint of the serological interval

was correct for these cohort data.

For K the relevant time interval since seroconversion is defined

by when the BED HIV-1-specific IgG production has reached its

asymptote. In the training data that appeared in SAR at

approximately ‘t = 711 days (OD-n within 99% of K) in those

patients that were followed at least that long (N = 74). For

comparison to the fixed effect K, that data resulted in a normally

distributed OD-n distribution (p = 0.64, Shapiro-Wilk test), with a

weighted mean of OD-n = 2.65 and a standard deviation of 0.89

OD-n units. Thus, our fixed effect K is well within the spread of

patient data that cover the asymptotic phase, justifying the use of

our mixed effects modeling to find the typical patient parameter

values.

Overall our best parameterization appeared to be SAR, which

includes all fixed effects and the random effects of r and K (Table 1),

however, we could not exclude models SR and ISR on statistical

grounds using the cohort training data (AIC scores of SR and ISR

were not significantly worse than that of SAR). Model SAR

estimated the growth rate at r = 0.00672 OD-n units per day, and

the asymptote at K = 1.85 OD-n units, while models SR and ISR

both estimated r = 0.00151 and K = 3.78. To evaluate which of

these models performed best on independent data, we examined

new BED data collected from Swedish patients detected by regular

public health diagnostic testing, i.e., non-cohort type data.

Model Selection and Validation Using Non-cohort Type
Data

For model validation we used new data from 819 Swedish HIV-

1-infected patients diagnosed in 2002–2010. For the SAR model,

500 patients had BED OD-n measurements that fell within the

model predictive interval, and of these 350 had a previous negative

test. For the SR and ISR models 703 patients had a BED OD-n

measurement that fell within the model predictive intervals, and of

these 464 had a previous negative test. These patients describe a

general population, with different transmission modes, analyzed by

one BED measurement per patient, similar to cross-sectional data.

A hit-and-miss statistic, measuring whether the model-inferred

date of seroconversion(‘Tsc) hit between the dates of collection of

the last negative and first positive HIV-1 test (the serological

interval; Figure 1), identified SAR as the best model. In the

interval where all methods had predictive power (‘t,711 days), the

point estimate of SAR hit 90% of the patients’ serological intervals,

compared to 88% for SR and ISR. When including the 95%

confidence interval (CI), SAR hit 94% compared to 92% for SR

and ISR. Critically, the number of patient serological intervals

SAR predicted correctly while SR and ISR failed was significantly

better than when SR and ISR were correct and SAR failed

(p,0.05 and p,0.0005, Poisson test, respectively for point

estimate and 95% CI estimate). Even when considering the longer

predictive interval of SR and ISR (‘t,3056 days), these models

only hit 86% of the serological intervals.

The accuracy of the estimated date of seroconversion using

SAR was on average only 3.8 days off the serological interval,

significantly better than SR and ISR at 60 days (p,0.05, paired

Wilcoxon rank sum test). Among those patients that SAR missed

(N = 29 of 350), unsurprisingly, there was a tendency towards

smaller serological intervals (mean target size = 327 days;

p,0.001, jackknife subsampling). However, the hit-and-miss

statistic for targets ,327 days was still good at 88% accuracy.

Importantly, SAR showed no correlation between the length of the

serological interval (target size) and the precision of the model

estimate, measured by the distribution of the accuracy measure-

ments (p = 0.12, Pearson’s correlation = 20.083).

Hence, the validation data showed that SAR was our best

parameterization of the logistic IgG model (Figure S2), which

supports the biological intuition that there is no patient variation

in BED OD-n at t = 0. Thus, the typical patient is represented by a

logistic growth of the BED detected HIV-specific IgG following

infection (Figure 2). The model is informative of time since

seroconversion when the BED OD-n value of the kit negative

A Time-Continuous HIV-1 IgG-Model
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control is within an acceptable range of OD-n = (0,0.3), corre-

sponding to ‘t = (0,52) days, but specific to each run of BED

measurements. Using the average value for a positive test result in

the cohort data (OD-n = 0.07 (range: 0.05,0.11; [18]), and OD-

n#1.84 (corresponding to a OD-n value within 99% of the

asymptote in SAR), the informative OD-n interval translates into a

continuous time interval with predictive power in ‘t = (31, 711)

days since seroconversion. In our Swedish data the BED kit

negative control was at OD-n = 0.16 (range: 0.08,0.28), corre-

sponding to ‘t = 39 days. The fixed effects of this model, describing

the typical patient with an accuracy of 94%, was described by

ODIgG(0) = 20.35 [20.40,20.30] OD-n units, r = 6.72 [6.17,

7.33]61023 OD-n units day21, and the population carrying

capacity at K = 1.84 [1.75, 1.95] OD-n units, where the intervals

are the approximate 95% confidence limits (Figure 2).

For comparison, the BED binary classification of whether

patients have ‘‘recent’’ or ‘‘long-term’’ HIV-1 infection is based on

a cutoff at OD-n = 0.8, reported in different studies to time since

seroconversion of 109–220 days [16,17,18,26]. This time overlaps

with our time-continuous model (SAR) estimate, which predicts

that at OD-n = 0.8 the typical patient seroconverted 92–133 days

before BED test sampling (95% CI).

Date of Seroconversion is Biased Towards Date of
Diagnosis

We next investigated where the inferred date of seroconversion

was inferred on each corresponding patient’s serological interval in

our Swedish data (N = 350). Naturally, seroconversion (and

infection, bar the time from infection to detectable HIV-1 by a

valid method [27]) must have happened sometime between the

dates that define the serological interval (Figure 1). Recall that the

Swedish data was not from a cohort study, but rather data from for

patients detected by regular public health diagnostic testing. From

this type of data it is not obvious that the population average date

of seroconversion is in the middle of the serological interval.

Indeed, the Swedish data shows a clear bias of seroconversion

shifted towards the date of diagnosis T(+)(Figure 3). The relative

position (t) of our model-based point-estimate of the date of

seroconversion within the serological interval was significantly

right-skewed (p,0.01, Wilcoxon rank sum test). Hence, this shows

1) that BED test results are applicable to infer the date of

seroconversion in non-cohort type data, but 2) that estimating date

of seroconversion as the midpoint between the last negative and

the first positive HIV-1 test result is inaccurate and misleading in

this type of data.

Patients in the Swedish data (that had a previous negative test

and were within the model predictive interval, N = 350) were

estimated to have seroconverted at a median of 60 days before

BED testing (Figure 3C). However, the long tail of this distribution

implies that many patients had seroconverted considerably longer

ago. As expected when including patients above the model

predictive interval (OD-n.1.84) a longer median time since

seroconversion was estimated at 143 days (N = 500). Moreover,

when analyzing the entire Swedish set (N = 819), the median time

Figure 2. Logistic modeling of IgG-capture BED-enzyme immunoassay absorbance as a function of time since seroconversion. The
resulting logistic model is predictive when BED OD-n = (0.07, 1.84), corresponding to 31–711 days. This model describes the typical patient estimated
by the SAR mixed effects model (Table 1), where parameter values correspond to the whole population.
doi:10.1371/journal.pone.0060906.g002

A Time-Continuous HIV-1 IgG-Model
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since seroconversion increased to 193 days, with 319 (39%) having

an estimated time of seroconversion more than 711 days before

sampling. Clearly, to infer date of infection and incidence for

entire HIV-infected human populations it becomes important to

account for such time intervals.

Reevaluation of National Swedish HIV Surveillance Data
Using our model-based estimations of date of seroconversion we

reevaluated epidemiological data for Swedish patients from whom

there previously only was information on the date of diagnosis. As

an illustrative example, Figure 4 shows reevaluations affecting year

2006, moving cases into 2006 from following years or out of 2006

to previous years. Most diagnoses stemmed from a date of

infection within a year before or after 2006, and a few (n = 4) were

estimated to have been infected longer ago than possible to

estimate with the SAR model. Note that here the maximal time

that can operate is 732 days, composed of the SAR upper

predictive value (711 days) plus the average time from infection to

seroconversion (21 days).

Panel A in Figure 5 shows the resulting distributions of time

between diagnosis and date of infection as inferred by our time-

continuous IgG model (SAR) for years 2003–2009, partitioned

into men who have sex with men (MSM), injecting drug users

(IDU), and heterosexual (HET) transmission groups. For compar-

ison, we have included results from conventional BED assay

interpretation using a binary model (Bin) which classifies infections

as ‘‘recent’’ or ‘‘long-term’’, with a cutoff at OD-n = 0.8 [18]. Each

field shows the predictions of Bin and SAR of patients classified as

within (orange) or beyond (blue) the ‘‘recent’’ or quantifiable

range, respectively. It is evident that the SAR model gives more

informative results, i.e., SAR classifies more patients with its

quantifiable range than Bin classifies as ‘‘recent’’.

Using our date of infection-estimates we note some interesting

results relating to the Swedish HIV epidemic: 1) MSM in general

had larger proportions of yearly diagnosed individuals that were

classified within the quantifiable range (,711 days) than IDU and

HET (Figure 5A), suggesting higher risk awareness and more

frequent HIV testing within the MSM transmission group in

Sweden. 2) In 2006, IDUs showed the greatest deviation in the

proportion of yearly diagnoses classified within the quantifiable

range (Figure 5A), revealing a change in the epidemic dynamics. 3)

Also in IDUs, the most drastic shift resulting from our date of

infection-estimates occurred towards 2006 of cases diagnosed in

2007 (Figure 5B), which corresponds to a well-described

Figure 3. Comparison of inferred time since seroconversion to serological interval. (A) The model-inferred time since seroconversion [grey
circles with 95% confidence interval as grey lines] from 350 Swedish patients was compared to their known serological intervals [(T(+),T(2)), blue lines].
When the inferred time since seroconversion did not hit the serological interval, the point estimate and 95% confidence interval is marked in red; 94%
of the intervals overlapped. (B) The relative positioning parameter t measures the normalized position of the inferred time since seroconversion to
the serological interval. Values outside this interval are shown in grey at t= 0 and t= 1. The relative positioning was biased towards the most recent
positive HIV test result at large t. (C) Distribution of the inferred time since seroconversion, i.e., the times between BED tests and t-corrected dates of
seroconversion.
doi:10.1371/journal.pone.0060906.g003

Figure 4. Example from the reevaluation of Swedish IDU
surveillance data. Vertical bars of the rug represent inferred date of
infection after model application. The maximal time shift, 6732 days,
implied by our SAR based predictive upper time-level (711 days) plus
average time from infection to seroconversion (21 days) is indicated by
grey zones before and after year 2006. The arrows show the resulting
shift, starting at the time of diagnosis and pointing at the inferred date
of infection, colored according to the time difference D.
doi:10.1371/journal.pone.0060906.g004
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Figure 5. Lattice graph showing date of infection analysis of the Swedish data. (A) Time difference (D) distributions for the SAR model
(dark shades) and Bin (binary) model (light shades) according to transmission group and year. Time differences either fall within (orange) or beyond
(blue) the ‘‘recent’’ or quantifiable time since seroconversion, for Bin and SAR respectively. (B) Inference of dates of infection according to
transmission group. Each bar in the lower part of each graph represents one inferred infection date, colored according to the time difference D (same
colors as in Figure 4). The upper part of each graph summarizes the number of diagnoses (grey line) and infections (black line) for each quarterly year.
For clarity, we have omitted the 95% CI on the bars and curves. See figures 2, 3, and S3 for confidence estimates.
doi:10.1371/journal.pone.0060906.g005
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CRF01_AE outbreak among IDUs in Stockholm discovered in the

summer of 2006 [28]. Indeed, further dividing the infections into

subtypes showed that the shift was due to CRF01_AE infections

and not an increase of subtype B infections, which previously had

been the dominantly spreading subtype among Swedish IDUs.

Furthermore, the fact that a relatively large number of cases

discovered in 2007 were predicted to have been infected for more

than 732 days indicates that the outbreak started earlier than the

diagnosis dates would suggest.

A comparison of the number of HIV diagnoses (grey line) and

SAR inferred date of infections (black line), summarized quarterly

from mid-2002 to mid-2010, is shown in Figure 5, Panel B. The

lower part of each graph shows the estimated date of infection

colored according to the time shift. Only patients that fall within

the quantifiable range according to the SAR model are included.

The model-inferred infection dates significantly shifted the main

IDU outbreak one year back from 2007 to include 2006, as

discussed above and shown in Figure S3.

Discussion

Due to the current limitations in HIV-1 incidence estimation

there is considerable interest amongst international and national

public health agencies in serological biomarkers that relate to the

time of HIV-1 infection, such as the BED assay that was developed

by the USA CDC [1,2,3,4,5,6,12,13,29,30,31]. For example, an

international panel recently urged for novel incidence assays and

algorithms, especially for use on cross-sectional data [32]. Here,

we have created a time-continuous model that allows quantitative

estimation of time since seroconversion based on BED assay results

that works on both cohort and cross-sectional type of data. We

expect that time-continuous rather than two-level discrete (recent

or long-term) estimates will make incidence estimation more

accurate, given that this new detailed information can be

incorporated in algorithms used to calculate incidence in a

population. For instance, Sommen et al [33] recently proposed an

approach for estimating HIV incidence from continuous biomark-

er values. We exemplify that our quantitative estimation of time

since seroconversion can improve national Swedish HIV surveil-

lance data, which currently show a peak in newly diagnosed cases

in 2007 while our analyses show that most of the corresponding

infections occurred in 2006. Importantly, this finding is corrob-

orated by independent phylodynamic analyses of an outbreak

among IDUs [28]. Our method should be valuable also in other

countries that have incorporated biomarker testing in their

national HIV surveillance programs, e.g., France, the UK and

Germany [6,30,31].

For patients diagnosed as a result of seeking public health

diagnostic testing services we found that the date of seroconver-

sion, as inferred by our BED-based SAR model, was closer to the

first HIV-1 positive sample than to the midpoint between the last

negative and first positive sample. This should not be surprising

because persons who seek public health services often have a

reason to get tested for HIV infection, such as an unsafe sexual

encounter. In contrast, we found that midpoint dating is a valid

approach for cohort population-studies of HIV-1 infection

(followed longitudinally) because they are tested at regular

intervals rather than due to perceived risk of infection. Hence,

date of serocoversion, and by inference date of infection, can be

estimated using the midpoint approach for cohort data, but not for

data resulting from public health diagnostic testing. This fact is

supported by previous incidence modeling results showing that

cohort-based estimates were robust against dependence between

testing and time of infection, while STARHS estimates may be

biased because of early testing in recently infected persons [34,35].

This finding is relevant because the ‘‘midpoint assumption’’

frequently is made also on data collected from patients diagnosed

in public health services; this includes for instance the three large

European collaborative projects Eurosida, Cascade, and Spread

[36,37,38,39].

Every natural system is limited by its resources. The HIV-

specific IgG growth within a patient thus has to reach a limit, in

population biology often referred to as the carrying capacity of the

system. Our model does not specify the limiting factor(s), but it is

obviously related to the immune response to HIV replication and

production, which in turn is controlled by e.g. target cell

populations and immune clearance [40]. Thus, this becomes a

dynamic system that ultimately determines the carrying capacity of

the system. Over long infection times, and certainly with

development of immunodeficiency, it is reasonable to assume that

the carrying capacity changes. While logistic models with more

than one carrying capacity have been developed [41,42], we did

not include this complication as we are only interested in the stage

during which the initial IgG response develops. Once the (first)

carrying capacity is reached (here at t .711 days), such models no

longer have power to predict time. Encouragingly, based on more

limited data, another paper published while our study was under

review found a similar expression for the BED IgG growth using a

statistical approach rather than our biologically principled

approach [43]. Similar to the biological limiting factors that

influence the carrying capacity, the OD measurements also have

an upper limit. Most ELISA spectrophotometers used to measure

absorbance have an upper limit of OD = 3–4, and therefore there

is also a technical limit on the maximum IgG concentration that

can be measured. Note that this refers to the raw OD measured

directly on each sample. In the BED assay, the raw measurements

are normalized by an assay standard, making results comparable

between runs. This standard should have a raw absorbance in the

interval OD = (0.380,1.350), resulting in an upper OD-n range

that can be reliably modeled of 2.22–10.53. As our model

estimates the carrying capacity at K = 1.84 [1.75, 1.95] OD-n

units, instrument limitations should have minimal impact in the

model predictive interval of ‘t#711 days. For patients with high

OD-n values, it is possible that the model predictive interval could

be extended by serial dilutions of patient’s serum samples prior to

BED testing, but this is something that we have not yet explored,

partly because no such training data are available.

Recently, Parekh et al showed that different human populations

as well as humans infected with different HIV-1 subtypes may

show different rates of development of BED-specific IgG in

response to HIV-1 infection [18]. They analyzed a large set of

cohorts from different geographical locations worldwide, and

concluded that previous recency period cutoff-times based on

subtype B virus infections needed to be adjusted to better describe

world variation. The new BED kit instructions will be updated to

reflect this important finding. The parameter values of our logistic

model were informed by a slightly expanded set, kindly provided

by Dr. Parekh, and thus also reflect the world human- as well as

HIV-1-variation. Similarly, our Swedish data also consisted of

patients of different genetic backgrounds as well as infections with

different HIV-1 subtypes [21,44]. However, we did not attempt to

explicitly include data about human genetics or HIV-1 genetic

subtype in our model because 1) it is still largely unknown if

human genetic factors involved in humoral immune responses

differ among human populations, 2) differences within HIV-1

subtypes appear to affect OD-n trends as much as between

subtypes [18], and 3) often this type of information is not available

anyway.
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The fact that the BED assay can give a false impression of

recent infection for patients with advanced disease [13] deserves

some discussion. This is an important problem when the BED

assay is used for HIV-incidence estimation in populations by

anonymous testing. Thus, if diagnosis occurs in late stage infection

and no other clinical data is available, e.g. CD4 counts, the

problem with false recent classification becomes more severe.

However, for our Swedish patients we had access to CD4 counts

informing about possible late stage. We are currently exploring if

our model can be further improved by formal incorporation of

CD4 counts as a covariate and/or by using results from two or

more consecutive BED-tests from each patient. Similarly, ‘‘late

presentation’’, i.e. persons presenting for care with a CD4 count

below 350 cells/mL [45,46], affects around 50% of patients

diagnosed in several European and US settings [45,47,48,49]. Late

presentation is an important clinical problem because it leads to

increased morbidity and mortality [45,46,50] as well as epidemi-

ological problems because patients who are unaware of their

infection are more likely to transmit the infection to others than

patients who have been diagnosed [51]. However, it is important

to point out that late presentation is not equivalent to a long-

standing infection [52]. Thus, our method to estimate the date of

infection could add important information on the epidemiology of

late presentation.

In conclusion, we have created a model that quantifies the time

since seroconversion based on a simple serological assay, i.e. the

BED assay. The model is applicable to BED results from patients

included in cohort studies as well as patients diagnosed as a result

of public health services. This model should be generally

applicable to many quantitative antibody tests, such as improved

HIV-1 ‘‘recency’’-tests as well as tests for other pathogens. We

show that using the midpoint between the last negative and the

first positive HIV-1 sample gives an inaccurate estimate of date of

seroconversion for patients identified by regular public health

diagnostic testing, but has validity for patients who are sampled at

pre-defined intervals, e.g. in longitudinal cohort studies. We expect

that our method can improve incidence estimates, and thus

provide valuable information for HIV-1 surveillance and preven-

tion.

Supporting Information

Figure S1 Model training data. The graph shows data from

Parekh et al [18] for patients sampled $2 times. This formed the

model training data and included 2975 OD-n measurements from

718 patients.

(PDF)

Figure S2 Individual patient data compared to popula-
tion estimate. Each of the 718 patient’s BED data in the model

training set is individually compared to our logistic IgG model (Eq.

1) informed by the SAR-estimated fixed effects parameter values

(blue lines).

(PDF)

Figure S3 The difference of estimating date of infection
compared to using date of diagnosis. The 95% confidence

bands of the difference between number of diagnoses and

estimated infections shown quarterly for the IDU transmission

group. Points on the zero line indicate that the number of

diagnoses is a good approximation of the number of infections in

that quarter. A significant deviation from zero is highlighted with

red points when diagnoses would underestimate infections and

blue points for overestimating infections.

(EPS)
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