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Abstract

Genome-wide association studies (GWAS) are a valuable approach to understanding the genetic basis of complex traits. One
of the challenges of GWAS is the translation of genetic association results into biological hypotheses suitable for further
investigation in the laboratory. To address this challenge, we introduce Network Interface Miner for Multigenic Interactions
(NIMMI), a network-based method that combines GWAS data with human protein-protein interaction data (PPI). NIMMI
builds biological networks weighted by connectivity, which is estimated by use of a modification of the Google PageRank
algorithm. These weights are then combined with genetic association p-values derived from GWAS, producing what we call
‘trait prioritized sub-networks.’ As a proof of principle, NIMMI was tested on three GWAS datasets previously analyzed for
height, a classical polygenic trait. Despite differences in sample size and ancestry, NIMMI captured 95% of the known height
associated genes within the top 20% of ranked sub-networks, far better than what could be achieved by a single-locus
approach. The top 2% of NIMMI height-prioritized sub-networks were significantly enriched for genes involved in
transcription, signal transduction, transport, and gene expression, as well as nucleic acid, phosphate, protein, and zinc
metabolism. All of these sub-networks were ranked near the top across all three height GWAS datasets we tested. We also
tested NIMMI on a categorical phenotype, Crohn’s disease. NIMMI prioritized sub-networks involved in B- and T-cell
receptor, chemokine, interleukin, and other pathways consistent with the known autoimmune nature of Crohn’s disease.
NIMMI is a simple, user-friendly, open-source software tool that efficiently combines genetic association data with biological
networks, translating GWAS findings into biological hypotheses.
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Introduction

Genome-wide association studies (GWAS) have greatly facili-

tated the identification of genes involved in complex phenotypes

[1,2]. However, replication of association findings has often been

difficult, probably reflecting the relatively small effects of

individual markers, and the genetic heterogeneity of complex

traits [3]. The critical challenge now is to understand how

multiple, modestly-associated genes interact to influence a

phenotype [4–6]. Many studies have shown that there is a strong

relationship between gene function and phenotype, and that

functionally-related genes are more likely to interact [7–18].

Inspired by this insight, we undertook a systems-biology approach

to identify and prioritize groups of functionally-related genes that

are enriched for genetic variants associated with a trait, what we

call ‘trait prioritized sub-networks.’

Previously described network and pathway-based methods of

GWAS data are useful, but have limitations. Most 1) use licensed

software, which is often costly and lacks transparency [19–22]; 2)

depend on publicly available pathway databases that rely on a

limited number of available pathways (,500) and that often ignore

protein-protein interactions (PPIs) for recently studied genes [23–

30]; 3) rely on simulated or model organism data only [11,31]; 4)

require knowledge of programming [32]; or 5) limit the number of

input genes [33]. Since signals with small effects not detectable at

conventional levels of significance may account for substantial
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heritability [34], methods that can include all signals without

arbitrary thresholds of statistical significance are needed. Such

methods should extract more information from GWAS data by

identifying susceptibility genes that have functional similarity. We

hypothesized that such an approach might lead to a higher rate of

replication in independent datasets, compared to studies that rely

only on single markers. Replicated findings are more likely to

generate sound biological hypotheses for subsequent laboratory

studies.

To this end, we developed a novel software tool called Network

Interface Miner for Multigenic Interactions (NIMMI). This tool

generates biological networks using human PPI data, where

proteins are considered as nodes and the interactions between

proteins as edges. NIMMI assumes that proteins that show more

interactions with other proteins in the same network (i.e., have

higher connectivity) are more important than proteins with fewer

interactions, and weights each protein by use of a modification of

the Google PageRank algorithm [35]. This algorithm ranks

proteins in much the same way as the popular search engine ranks

websites on the internet, giving greater weight to proteins with

more connections to other proteins, especially those that are

themselves highly linked to additional proteins. Unlike the original

Google PageRank algorithm, this modified algorithm uses the PPI

data to calculate a ‘‘damping factor’’ dynamically for every gene in

a network, accounting for differences in the topology of biological

networks compared to computerized networks. To our knowledge,

this approach has never been tested on biological networks.

NIMMI combines these weights with the association signals from a

GWAS to identify trait prioritized sub-networks. In this study we

tested NIMMI in three GWAS datasets analyzed to assess genetic

contributions to height, a classical polygenic trait. We further

validate the method in a categorical phenotype, Crohn’s disease.

The results demonstrate that NIMMI can effectively identify genes

involved in quantitative and categorical traits and group them into

biologically-plausible networks that are highly replicable across

independent studies.

Results

Summary of the statistical approach
NIMMI is a network-based approach that relies on three basic

assumptions: 1) Genes, rather than SNPs are the functional units

in biology; 2) Genes do not work in isolation, thus genes whose

protein products show more interactions with other proteins in the

same network (i.e., higher connectivity) are more important than

proteins with fewer interactions; and 3) genetic association results

for a trait and protein interactions within a network are

complementary forms of information, reflecting a role for that

network in that trait [36–38].

NIMMI prioritizes biological networks in three key steps. First

networks are identified by use of human interactome data.

Proteins are represented as nodes and interactions are represented

as edges. Here we assumed that each gene corresponds to a single

protein and used human protein-protein interaction (PPI) data to

build the networks, but in principle any data that relates one gene

to another could be used. Each gene in the same network is

assigned a weight (wi) based on connectivity to other genes in the

same network, using a modification of the Google PageRank

algorithm. Second, gene-based association p-values are calculated.

Here we applied the Versatile Gene-based association study tool

(VEGAS) (http://gump.qimr.edu.au/VEGAS/) [39] to GWAS

data, but any method for mapping a SNP to a gene could be used.

The gene-based p-value was converted to a z-score (zi) and

combined with wi to generate the network-weighted score for that

gene. We used the Liptak-Stouffer method, which allowed us to

weight the association p-value by the square-root of the sample

size. Third, high-scoring genes are combined into what we call

‘trait prioritized sub-networks’, which were further tested by

DAVID (http://david.abcc.ncifcrf.gov/) [40,41], a publicly avail-

able bioinformatics tool that identifies functionally related groups

of genes. A flowchart of NIMMI’s analysis steps is shown in

Figure 1.

Comparison of single-locus method with NIMMI systems
approach

In order to compare ranking by single-locus analysis with

NIMMI, three independent height GWAS datasets were analyzed

using both single-locus ranking and NIMMI network ranking

methods. Percentile ranks of 34 candidate genes for height that

were deemed confirmed candidates in recent review of GWAS for

height were used as a standard of comparison [42–44].

The relative ranking of genes based on gene-wise association p-

values alone was highly sample dependent, and ranks varied

substantially in each GWAS dataset (Figure 2a). For the three

height GWAS datasets we present the association p-values of

susceptibility genes, gene-wise ranking, gene-wise percentile ranks

(gene-wise PR), NIMMI-network ranking and NIMMI percentile

ranks (Network PR) in Table S1. In contrast, the NIMMI-network

ranking was very stable for 95% of the genes, despite differences in

sample size and ancestry among the three height datasets

(Figure 2b). Most of the confirmed height-associated candidate

Figure 1. NIMMI flowchart. An overview of the dataflow in NIMMI is
shown in Figure 1. The data shown here is drawn from the InCHIANTI
height GWAS dataset. Approximately 2.5 million SNPs were analyzed
using PLINK setting the parameters as specified under GWAS data
module (see Design and Implementation). This resulted in ,2.4 million
SNPs with association p-values, which were then assigned to 17,783
genes. Gene assignment and gene-based p-values were calculated
using VEGAS. These gene-based p-values were converted to z-scores
and combined with gene weights (calculated by the modified Google
PageRank algorithm) in the network using the Liptak-Stouffer method
to identify the ‘trait prioritized sub-networks’ that were evaluated in
DAVID.
doi:10.1371/journal.pone.0024220.g001
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genes consistently fell in the top 2nd–5th percentile of the NIMMI

ranking, and 95% of the genes fell in the top 20th percentile of all

three datasets. For example, SCMH1 and CDK6, which belong to

the same PPI network, were consistently ranked in the 1st

percentile in all three datasets. This demonstrates that NIMMI’s

gene ranks are highly replicable and more stable across

populations than those based on gene-based association p-values

alone.

Identification and prioritization of ‘trait prioritized sub-
networks’ for height GWAS datasets

Since 50% of the confirmed height-associated candidate genes

(shown in Figure 2b) consistently fall in the top 2% of the NIMMI-

ranked networks, these networks were compared in the three

height datasets. A total of 38 ‘height prioritized sub-networks’ were

generated, which consistently replicated across the three datasets

(Figure 3). There were 7 to 10 sub-networks that appeared to be

specific to each dataset and 4 to 7 sub-networks that were common

to any two datasets. The 38 height prioritized sub-networks

common to all three datasets were further evaluated for gene-set

enrichment using DAVID.

For each NIMMI prioritized sub-network, the p-values

(corrected for the total number of genes in a GWAS and for the

total number of networks in each of the datasets) are presented in

Table S2. A maximum of two significant Gene Ontology (GO)

terms generated by DAVID are shown, along with the specific GO

term, the number of genes associated with that GO term, and the

corrected gene-set enrichment p-value (see Methods for GO term

selection criteria). For example, one sub-network includes a total of

129 genes, of which 76 genes are involved in gene expression and

56 are involved in nucleic acid metabolism. Nineteen of the 38

sub-networks prioritized by NIMMI were significantly enriched

for genes involved in nucleic acid metabolism. Eight sub-networks

were enriched for genes that regulate gene expression and 12 sub-

networks were enriched for zinc metabolism. Other associated GO

terms implicated by NIMMI were transcription, signal transduc-

tion, transport, and phosphate and protein metabolism. Four sub-

networks were excluded because they were not associated with any

GO terms (not shown in Table S2).

NIMMI analysis of randomized data
Some networks identified by NIMMI may represent general

relationships among well-studied genes that arise frequently due to

‘‘small-world’’ effects. To estimate the impact of this phenomenon

in our data, we re-analyzed the height GWAS datasets after

randomization by two methods: 1. Randomization of the network

nodes; and 2. Permutation of gene labels in the GWAS data. Two

sub-networks appeared consistently in the random networks

Figures 2. Comparison of gene-based percentile ranks with NIMMI’s network percentile ranks. The x-axis shows the candidate genes for
height and the y-axis shows the percentile rank. Blue triangles represent the InCHIANTI GWAS dataset, red squares represent the Korean height GWAS
dataset and green circles represent the GAIN Controls height GWAS dataset. Figure 2a shows the single-locus ranking and Figure 2b shows NIMMI
network-based ranking for 34 height candidate genes.
doi:10.1371/journal.pone.0024220.g002
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analysis. Eight additional sub-networks appeared in .50% of

NIMMI runs performed on the randomized GWAS results (Table

S3). NIMMI analysis of randomized data is thus an important step

in the identification of sub-networks that are most deserving of

further study.

Comparison of NIMMI prioritized height sub-networks
with Cytoscape

The three height GWAS datasets were also analyzed in

Cytoscape using jActive modules and BiNGO plugins (as

described in Baranzini et al [33]). Table 1 shows the 9 GO terms

that were prioritized by either NIMMI or Cytoscape. There was

substantial agreement between the two methods, with 7 out of 9

GO terms identified by both methods.

Identification and prioritization of Crohn’s disease sub-
networks by NIMMI

To test the performance of NIMMI with a categorical trait, we

analyzed a published GWAS based on a case-control sample

studied for Crohn’s disease, an autoimmune disorder that has

yielded about 20 risk loci by GWAS. NIMMI prioritized nine sub-

networks that were significantly enriched for the GO terms

‘‘apoptosis’’, ‘‘response to organic substance’’, ‘‘intracellular

signaling’’, ‘‘gene expression’’, ‘‘nucleic acid metabolism’’, ‘‘RNA

metabolism’’, and ‘‘protein metabolism’’ (Table 2). KEGG and

BioCarta pathway analysis of these nine prioritized sub-networks

showed significant enrichment of apoptosis, B-cell receptor, T-cell

receptor, chemokine, IL-2, IL-6, Jak-STAT, Wnt and TPO

signaling pathways. These results are consistent with the known

autoimmune nature of Crohn’s disease. A complete list of

significantly enriched pathways is presented in Table 3.

Discussion

NIMMI is a simple and efficient software tool that allows

researchers to prioritize their GWAS results based on the

functional relationships of the associated genes. To our knowledge,

NIMMI is the first software tool that maps all the genes in a

GWAS dataset to human interactome data using a modified

Google PageRank algorithm. With NIMMI it is possible to

identify ‘trait prioritized sub-networks’ in complex, multigenic

traits and thus provide biological hypotheses for further study.

We hypothesized that NIMMI would produce more robust

findings than single-locus analyses. To test this hypothesis, NIMMI

was run on three independent samples rated for the classic

polygenic trait of height. NIMMI produced a list of genes with

very consistent ranking across all 3 datasets. This level of

reproducibility was not achieved with gene-based analysis,

probably reflecting small effect sizes of individual loci and differing

sample sizes, reducing power to detect true signals. Despite

population and sample size differences, NIMMI also identified

networks that were enriched with confirmed height associated

candidate genes. Furthermore, when height associated candidate

genes were analyzed in DAVID, there were no significantly

enriched GO terms suggesting that the functional relationships

between genes that NIMMI networks represent could not be

identified with single-locus analyses alone.

NIMMI’s approach is unique. Previous studies that have used

the Google PageRank algorithm to rank genes in a network relied

on fixed damping factor values (0.5#d#0.95) (see Methods)

[45,46,47]. Research by Fu et al has shown that a fixed damping

factor can result in inconsistent ranking of the nodes in a network.

Given that a flexible damping factor is needed, one of the natural

approaches is to calculate it dynamically by using the ratio of

interactions between neighboring genes [35]. Hence, NIMMI

calculates the damping factor dynamically for every gene in a

network which may be more appropriate for biological networks

than the fixed damping factor typically used for ranking pages on

the internet.

Most of the literature published on network and pathway-based

approaches has focused on statistically significant findings from

Figure 3. Network overlap. Top 2% overlap of NIMMI prioritized
networks in InCHIANTI, Korean and GAIN controls datasets shows 38
networks that are common to all three datasets. Five networks are
common to InCHIANTI and GAIN controls datasets only. Korean and
GAIN controls datasets have seven networks in common and four
networks are common between InCHIANTI and Korean datasets. Ten
networks are specific to InCHIANTI dataset, whereas Korean and GAIN
controls datasets have 8 and 7 networks, respectively.
doi:10.1371/journal.pone.0024220.g003

Table 1. NIMMI ’height prioritized sub-networks’ vs.
Cytoscape.

GO-terms* NIMMI sub-networks Cytoscape sub-networks

E x x

H x

M x x

N x x

P x x

R x x

S x x

T x x

Z x

*E-Gene Expression; H - Steroid Hormone receptor signaling; M-Protein
metabolic process/protein modification process; N-Nucleic acid metabolism/
Nucliec acid binding/DNA-Replication; P-Phosphate/phosphorus metabolic
process; R-RNA processing/RNA binding/RNA metabolic process/RNA splicing/
Transcription/Transcription Regulation; S-Signal transduction/Intracellular
signaling/Cell communication; T-Transport/localization; Z-metal ion binding/
zinc ion binding.

doi:10.1371/journal.pone.0024220.t001
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GWAS studies for replication or for downstream analysis

[20,21,25,27,28,33], [48]. These studies are limited by the

problem of finding an optimal p-value threshold. If the p-value

threshold is set too low, then the number of genes might be too few

to create a biological network and to find associated pathways

[49]. Sets of findings with higher p-value thresholds, on the other

hand, will contain more false positives. The magnitude of this

problem was illustrated by the results of the International

Schizophrenia GWAS Consortium, where optimal discrimination

between cases and controls was achieved only after the inclusion of

over 70,000 markers with p-values as high as 0.2 [34]. A major

advantage of NIMMI’s approach is that it includes all the findings

in a GWAS dataset, weighting the findings by p-value and other

factors that users may specify (such as effect size). This reduces the

‘‘top hits’’ selection bias. An example may illustrate this point. The

gene BMP2, which encodes bone morphogenetic protein 2, has

been implicated in several height GWAS studies [42], but it is not

significant in any of the GWAS datasets used in the current study

(gene-wise p-values of 0.57, 0.61 and 0.27). Although BMP2 plays

a major role in bone development, this gene would not have been

selected for downstream analysis with the classical p-value

approach. However, NIMMI’s network ranking correctly places

this gene in the top 1st–3rd percentile. This is because NIMMI

takes advantage of signals in genes whose protein products interact

with BMP2, making NIMMI sensitive to statistical significance in

any individual dataset.

The goal of NIMMI is to prioritize networks for further study.

To aid decisions as to which networks to pursue, NIMMI can be

applied to randomized networks and GWAS data. Of the 38

‘height prioritized sub-networks’ that successfully replicated in the

three GWAS datasets, 2 appeared consistently in the random

networks analysis, suggested that the Type I error rate was about

5% at the network level. When NIMMI was used to analyze

10,000 randomized GWAS datasets, a number of sub-networks

appeared in .50% of the results sets (Table S3). We suggest that

the users assess their own results in this way and ignore sub-

networks that occur frequently in the results derived from

randomized data. It is likely that such sub-networks represent

general relationships among well-studied genes that arise fre-

quently due to ‘‘small-world’’ effects. Sub-networks that occur

rarely in the results derived from randomized data appear to have

good trait specificity. For example, 16 height-prioritized sub-

networks that were observed in ,5% of the randomized results

included 7 sub-networks that were significantly enriched for zinc

metabolism. This GO term was enriched only for height and not

Crohn’s disease. Zinc plays an important role in human growth.

Studies in rats and tissue culture confirm that zinc stimulates DNA

synthesis and protein synthesis in bone development [50,51].

Furthermore, zinc is a co-factor for zinc finger proteins that bind

to methylated DNA to suppress transcription, thus regulating gene

expression and protein synthesis [52].

Other GO terms significantly enriched among the height-

prioritized sub-networks include nucleic acid metabolism, tran-

scription, gene expression, signal transduction and transport,

proteosome and protein metabolism. The effects of growth

hormone on protein metabolism are well-documented in the

literature, in both human and animal models. These studies

suggest that growth hormone stimulates protein synthesis and

decreases protein catabolism, a process that mainly occurs in the

proteosome [53–56]. Additionally, keywords such as gene

expression, signaling and proteases have recently been associated

with height markers by GRAIL [57], a statistical text mining

approach. Although most of the NIMMI detected ‘height

prioritized sub-networks’ are well-supported by the literature,

further functional studies are required to confirm these results.

NIMMI is reasonably sensitive in detecting true trait-related

genes. For example, Table S1 includes 34 height associated genes,

16 of which were among the 1,232 genes identified within the top

2% of height prioritized sub-networks by NIMMI. This is a highly

significant overlap, given that the total number of genes in all sub-

networks created by NIMMI is 6035 (p-value = 1.1161024,

hypergeometric test). Although 38 sub-networks were prioritized

for height, there is substantial overlap among these sub-networks

(75%-90%). Each functional category consists of #100 genes.

There is also overlap of genes between functional categories. For

example, the category ‘‘gene expression’’ (E) includes ,100 genes,

and ‘‘transcription’’ (R) includes ,75 genes, but at least 50% of

the genes in set E overlap with those in set R.

Some of the functional categories (nucleic acid metabolism,

gene expression) overlap between height and Crohn’s disease

prioritized sub-networks. These are broad categories and may

reflect a true pathway overlap for these two otherwise disparate

Table 2. NIMMI prioritized sub-networks for Crohn’s Disease.

Crohn’s
Disease
Bonf.
corrPval

David
GO
Set 1*

Genes
in
Set1

Enrichment
Pval

David
GO
Set 2*

Genes
in
Set2

Enrichment
Pval

David
GO
Set 3*

Genes
in
Set3

Enrichment
Pval

9.51E-14 A 29/96 3.50E-08 N 31/96 7.30E-05 M 26/96 1.90E-10

2.12E-13 27/107 1.90E-03 33/107 1.70E-03 R 27/107 4.40E-11

3.30E-13 28/110 2.60E-03 O 27/110 1.00E-06 S 38/110 1.50E-07

3.53E-13 30/91 7.30E-07 23/91 4.90E-04

3.23E-16 R 65/115 1.90E-20 O 28/115 4.90E-04 E 35/115 3.80E-15

4.10E-13 74/152 2.50E-18 N 41/152 9.00E-15 S 38/152 1.50E-04

2.89E-13 N 31/89 9.40E-05

2.08E-14 31/123 1.80E-02

A-Apoptosis; E-Gene Expression; M-Protein metabolic process/protein modification process; N-Nucleic acid metabolism/Nucliec acid binding/DNA-Replication; O-
response to organic substance; R-RNA processing/RNA binding/RNA metabolic process/RNA splicing/Transcription/Transcription Regulation; S-Signal transduction/
Intracellular signaling/Cell communication.
doi:10.1371/journal.pone.0024220.t002
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phenotypes [58]. A few functional categores, such as zinc

metabolism and transport, were specific to height. Several

functional categories were specific to Crohn’s disease, including

apoptosis, response to organic substance, Jak-Stat signalling and

autoimmune pathways (B-cell receptor, T-cell receptor signalin-

g,etc), consistent with the auto-immune nature of this disease.

Although these pathways were detected by other studies [59],

additional research is necessary to confirm the NIMMI results in

additional samples.

Comparison of NIMMI prioritized height sub-networks to those

from Cytoscape jActive modules illustrate that NIMMI gave

similar results to the greedy algorithm implemented in Cytoscape.

A major limitation of Cytoscape jActive modules is that it requires

the input gene set be limited to those with p-value #0.05. NIMMI

considers all genes implicated in a GWAS dataset, with no p-value

threshold required. Consideration of all genes in the network

analysis is important because GWAS p-values are inconsistent,

especially when sample sizes are small. Including all genes in the

Cytoscape analysis resulted in more than 1500 significantly

associated GO terms, some of which could be false positives.

Furthermore, NIMMI prioritizes trait networks within 3 seconds,

which is 10 times faster than what we could achieve with

Cytoscape. Cytoscape jActive modules and BiNGO also need

more user intervention and formatting than is ordinarily necessary

for NIMMI.

The goal of GWAS is to help illuminate the underlying

molecular mechanism of a particular phenotype. To maximize the

information provided by a GWAS, it is important to integrate

functional data with GWAS results. NIMMI is a user-friendly

software tool that will help researchers in their post-GWAS

decisions by prioritizing genes and networks that are of the highest

biological relevance.

Limitations
Some important limitations of network and pathway-based

approaches should be mentioned. SNPs do not always bear a clear

relationship to a particular gene, and may occur in non-genic

regions. Some widely studied genes appear to have relatively

greater connectivity, while less studied genes have less, due largely

to publication bias. PPIs are sometimes inconsistent, or tissue

dependent. Functional annotation systems, such as GO, have not

yet been experimentally confirmed for most genes. In spite of these

limitations, network and pathway-based approaches provide a

unique insight into biology that is often not immediately evident in

the GWAS results. As additional genome-wide functional studies

are completed in the field, the quality of network and pathway

information is likely to improve [29,60–63].

Conclusions
NIMMI is an open-source tool that takes into account

information on biological relationships to help interpret GWAS

data and to prioritize trait networks for further study. NIMMI

offers several advantages over other network and pathway-based

approaches. The results of this study demonstrate that NIMMI

can identify important genes involved in a multi-genic trait with a

high degree of consistency and reproducibility, even across

datasets of differing size and ancestry.

The main aim of NIMMI is to help investigators prioritize genes

and networks related to a particular phenotype after a GWAS.

Although there are limitations to this approach, protein-protein

networks and pathways are an excellent source of biological

information that, when combined with genomics, could lead to a

better understanding of molecular mechanisms. NIMMI efficiently

combines genetic association data with protein networks, thus

helping to effectively translate GWAS findings into biological

hypotheses.

Materials and Methods

Height GWAS datasets
A total of three independent GWAS height samples were

analyzed by NIMMI.

The Invechhiare in Chianti (InCHIANTI) GWAS da-

taset. The InCHIANTI Study is a population-based epidemio-

logical cohort study in the Chianti region of Tuscany, Italy. The

study employs two clinical sites, in the towns of Greve and Bagno a

Ripoli, with participants recruited from the population registries of

these immediate areas. Further details on this cohort have been

previously published elsewhere [64]. DNA extracted from

InCHIANTI participants was genotyped at the Laboratory of

Neurogenetics, National Institute on Aging, using Illumina 550K

beadchips. After standard QC measures, missing genotypes were

imputed using MACH 1.0 software (http://www.sph.umich.edu/

csg/abecasis/mach/) [65]. Maximum likelihood genotype dosages

were filtered for quality of imputation prior to analysis (R2 from

MACH.0.30). Analyses were conducted on 975 unrelated

members of the InCHIANTI cohort who had height data within

+/-3SD from the mean of the sample. After outliers were removed

height was log transformed. PLINK (http://pngu.mgh.harvard.

Table 3. NIMMI prioritized Crohn’s Disease enriched KEGG/
BioCarta pathways.

enriched KEGG/BioCarta pathways enrichment p-value

Adherens junction 8.70E-07

Apoptosis 3.50E-05

B-cell receptor signaling 1.10E-02

Cell cycle 1.70E-07

Chemokine signaling 9.90E-03

Control of gene expression by vitamin D receptor 1.30E-07

EGF signaling 7.60E-04

ErbB signaling 8.10E-06

Erk1/Erk2 Mapk signaling 9.20E-05

Fc gamma R-mediated phagocytosis 5.80E-14

Focal adhesion 3.20E-06

IL-2 Receptor Beta Chain in T cell Activation 1.60E-02

IL6 signaling 2.80E-03

Insulin signaling 2.90E-04

Jak-STAT signaling 2.70E-03

Neurotrophin signaling 1.20E-02

p53 signaling 1.20E-03

Pathways in cancer 6.30E-11

Pelp1 Modulation of Estrogen Receptor Activity 1.20E-04

Role of PPAR-gamma Coactivators in Obesity
and Thermogenesis

2.40E-04

T Cytotoxic Cell Surface Molecules 8.00E-03

T-cell receptor signaling 1.50E-04

TPO signaling 7.30E-03

Wnt signaling 1.70E-03

doi:10.1371/journal.pone.0024220.t003
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edu/,purcell/plink/), a whole genome association analysis toolset

[66], was used for association analysis using study site and sex as

covariates, resulting in a ,2.4 million SNPs after pruning.

Genomic control inflation factor (l) was 1.008. A l close to 1

indicates that association of markers to the phenotype is real rather

than due to population stratification. A total of 17,783 genes with

gene-wise p-values were used in the downstream analysis (Table 4).

Korean GWAS dataset. Height GWAS data published by

Cho et al. were obtained from the researchers [67]. Unimputed

summary data for 8,842 Korean individuals was provided as well.

Age, sex and study site were used as co-variates in the PLINK

association analysis. l was 1.061 and ,350K SNPs were left after

pruning, resulting in 17,408 genes being analyzed by NIMMI

(Table 4).

Genetic Association Information Network (GAIN) Con-

trols GWAS height dataset. GWAS data for GAIN controls

was obtained from GAIN (http://www.genome.gov/19518664)

under a data access agreement. Self-reported height was available

for 768 individuals. Only sex was used as a co-variate and ,720 K

SNPs were left after pruning by PLINK. l was 1.059 and a total of

17,720 genes were used in the final analysis by NIMMI (Table 4).

Crohn’s disease (CD) GWAS dataset
Summary SNP association results for the CD GWAS dataset

(,2000 cases and ,3000 controls) was obtained from the

Wellcome Trust Case Control Consortium (WTCCC). Association

analysis results are detailed elsewhere [68]. Approximately 409 K

SNPs with their association p-values were assigned to 17,114 genes

that were included in NIMMI network analysis (Table 4).

Algorithm
Modified Google PageRank Algorithm. Each protein in a

network was considered a node, and the interactions between

proteins were considered edges, resulting in an undirected graph.

Some of the centrality measures available to rank networks are: 1)

Degree centrality, which simply counts the number of interactions

to a node; 2) Betweenness centrality, where nodes which fall in the

shortest path of other nodes have high betweenness; 3) Closeness

centrality, which is related to the topology of the nodes in a

network; and 4) Eigenvector centrality which ranks the nodes in a

network based on the its interacting neighbors, i.e., it takes into

account the quantity and quality of connections to a particular

node [69,70]. For example, when ranking a webpage (wp),

Google’s PageRank algorithm not only considers the number of

connections a wp has, but also the connectivity of the pages linked

to wp. Therefore, wp will receive a higher rank if it is connected to

other highly ranked webpages. Since proteins in a biological

network should also be ranked based on the importance of their

interacting partners, scoring them by eigenvector centrality seems

to be a reasonable approach.

The PageRank algorithm, which is a based on eigenvector

centrality, starts by creating an adjacency matrix (A) for all the

proteins (nodes) in a network based on their interactions.

Ai,j = Aj,i = 1 if protein ‘i’ interacts with protein ‘j and vice versa,

else Ai,j = Aj,i = 0. According to the Perron-Frobenius theorem in

linear algebra, for a real square matrix with positive values there

exists a largest positive eigenvalue and a corresponding positive

dominant eigenvector [69]. The algorithm finds the dominant

eigenvector for this adjacency matrix via power iteration (Figure S1)

[45,71–73]. Thus, the resulting dominant eigenvector values are

considered weights of proteins in a network.

The original Google PageRank algorithm suggested by

Lawrance Page and Sergey Brin had a damping factor of 0.85

and excluded dangling links (nodes that have only incoming links

but no outgoing links), before ranking the web networks. A

damping factor is essential because it improves the speed of the

algorithm and keeps it from hitting dead ends [74–77] (http://

www.miislita.com/information-retrieval-tutorial/matrix-tutorial-3-

eigenvalues-eigenvectors.html; http://www.webworkshop.net/

PageRank.html). Investigators who previously applied the Google

PageRank algorithm to rank SNPs or genes used a damping

factor between 0.5#d#0.95 [45,46]. The damping factor of 0.85

has been well evaluated for web networks and not for biological

networks. Additionally, Fu et al have shown that a fixed damping

factor value will lead to inconsistent ranking of nodes in a

network [35]. Since all biological networks are not the same,

having a fixed damping factor value for all networks might not be

ideal. Furthermore, dangling links should be included while

ranking a biological network. Given these limitations of the

original Google PageRank algorithm, we used the modified

Google PageRank algorithm suggested by Fu et al in 2006 [35] to

rank the proteins in each of our 2,849 networks (see Design and

Implementation).

Equation (1) depicts the modified Google PageRank algorithm

wa~ 1{

X
giX
li

 !
x

1

2N
z

X
giX
li

x
w g1ð Þ

l1
z

w g2ð Þ
l2

z. . .
w gnð Þ

ln

� �
ð1Þ

where,

wa = weight/PageRank of protein (gene) A in a network

g = all proteins that interact with protein A

Table 4. Summary of GWAS datasets.

Height Datasets n Observed [O] Imputed [I] SNPs after QC Total Genes

InCHIANTI 975 I 2,453,309 17,783

Korean 8,842 O 352,228 17,408

GAIN Controls 768 O 722,742 17,720

Crohn’s Disease Cases Controls Observed [O] Imputed [I] SNPs after QC Total Genes

WTCCC Crohn’s 1,748 2,953 O 409,541 17,114

doi:10.1371/journal.pone.0024220.t004
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X
li = sum of all proteins that interact with ‘g’ proteinsX gi

li
= damping factor, which is the ratio of total proteins ‘g’

that interact with protein A to the sum of all proteins that interact

with ‘g’ proteins

w g1ð Þ,w g2ð Þ, . . . w gnð Þ= weight/PageRank of proteins H1 to

Hn that interact with protein A

l1,l2, . . . ln = proteins that interact with proteins g1, g2,…… gn

respectively

N = Total number of proteins in the network

The advantage of using the modified formula is that it

considers all nodes in the network without any exclusion, and that

the damping factor is calculated dynamically for every node in a

network based on its interactions with neighboring nodes, making

it more optimal to rank biological networks. Such an approach

results in a damping factor value that is better reflective of the

network. To scale the total probability of a given network

between 0 and 1, the N in the above formula was doubled. Each

protein in a network has a weight ranging between 0 and 1. The

protein with weight closer to 1 plays an important role in the

network than a protein with weight closer to 0, indicating that the

higher the weight the higher the importance of a node in a

network.

The Liptak-Stouffer method. The gene-wise association

p-value, which is calculated by VEGAS, was integrated with

gene weight (obtained from the modified Google PageRank

algorithm) in a network. While several approaches are possible,

for simplicity we chose the Liptak-Stouffer method. This

method of combining p-values from independent experiments

has previously been used in the analysis of genome-wide gene

expression data [78-80] among others. At first, the association

p-value of each gene was converted to its corresponding z-score

as calculated in equation (2):

zi~
pi{m

s
ð2Þ

where,

zi = z-score of a particular gene

pi = empirical gene-wise p-value of a particular gene in a given

GWAS dataset

m = mean of all the p-values in a given GWAS dataset

s = standard deviation of the p-values in a given GWAS dataset

Then, a combined z-score for a network was calculated using

the Liptak-Stouffer formula shown in equation (3):

Zcomb~

Xn

i~1
wiziffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i~1
w2

i

q ð3Þ

where,

Zcomb = combined Z-score of a given network

wi = weight of the protein (gene) obtained from modified Google

PageRank in a given network

zi = association z-score of the gene obtained from GWA data

n = number of proteins (genes) in a given network

Usually, the ‘‘wi’’ in the Liptak-Stouffer formula refers to

sample-size. However, we assigned gene weights based on the

modified Google PageRank algorithm. A justification is provided

in Methods S1 and Figure S2. The Zcomb is then transformed into

its corresponding p-value and corrected for the number of genes in

a network and total number of networks (by Bonferroni

correction).

Architecture of Network Interface Miner for Multigenic
Interactions (NIMMI)

NIMMI consists of three levels: SNPs, Genes and Networks.

Each level in turn has sub-modules (Figure 4). At the SNPs level

(or Level 1), the SNPs were analyzed in the GWAS data module,

which were then assigned to genes at GENES level (Level 2) using

VEGAS, a software tool. VEGAS also calculates a gene-based p-

value for each gene. The Database Miner and Network generator

module in Networks level (or Level 3) mined the BioGRID

database for human PPIs and created two-step networks that were

then ranked using the modified Google PageRank algorithm using

Gene/Network ranker module. An association gene-wise p-value

of a gene from VEGAS and gene weight from Gene/Network

ranker module were then combined using Liptak-Stouffer method.

The resulting ‘trait prioritized sub-networks’ were then evaluated

in DAVID.

Level 1: SNPs: GWAS data module. Individual population-

based samples from the ‘‘Invechhiare in the Chianti’’ (InCHIANTI)

study and Genetic Association Information Network (GAIN) were

genotyped on Illumina 550 K and Affymetrix 6.0 microarrays

respectively. Genotype information from these SNPs and phased

haplotype information on a reference dataset from the HapMap

Phase 2 CEU samples (http://hapmap.ncbi.nlm.nih.gov/) were

used to impute the allele frequencies of SNPs that are absent on

these microarrays. Imputation was performed using MACH 1.0

software. The resulting data were analyzed using PLINK. The

following criteria were applied while executing PLINK:

1. SNPs with minor allele frequency (MAF),1% were excluded.

2. SNPs that deviate from Hardy-Weinberg equilibrium (HWE)

may indicate genotyping errors [81–83]. Hence, SNPs with

HWE p-value,10-5 were excluded.

3. SNPs with failure rate.2% were excluded.

4. Any individuals with.2% missing genotypes were excluded.

A summary statistics file (SNP name along with its association p-

value) of analyzed height GWA data was obtained from our

collaborators in Korea and a similar file for Crohn’s disease

GWAS dataset was obtained from WTCCC.

At the end of Level 1, GWA data consisted of a SNP name and

an association p-value which are annotated to their respective

genes in Level 2.

Level 2: GENES: Versatile Gene-based Association Study

(VEGAS). VEGAS is an open source software tool that assigns

SNPs from Level 1 to their respective genes based on their position

and calculates an empirical gene-based p-value using Monte Carlo

simulations (# 1 million) (http://gump.qimr.edu.au/VEGAS/)

[39]. Any SNP that falls within a 50 kb flanking region of a gene

will be assigned to that particular gene. Such an assignment will

capture the regulatory regions and SNPs in LD. Although this

value is arbitrary, it could be modified according to user

specification. When a SNP belongs to more than one gene, that

particular SNP was assigned to multiple genes in that location.

Given that the PPI data is incomplete, such an assignment allows

us to include all the possible genes with interaction data to be

included in our downstream analysis. The linkage disequilibrium

for each gene is estimated using HapMap populations. For

InCHIANTI and GAIN controls height GWAS dataset, and CD

GWAS dataset CEU population was used as a reference dataset,

whereas CHB_JPT was used as a reference for Korean height

GWAS dataset.

Level 3: NETWORKS. This level is made up of a Database

Miner and Network generator module and a Gene/Network

Ranker and prioritizer module. (1) Database Miner: The entire

Network Interface Miner Multigenic Interactions
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human interactome consisting of 40,206 human PPIs was

downloaded from the Biological General Repository for

Interaction Datasets (BioGRID) database (http://www.

thebiogrid.org/). After excluding human-nonhuman PPIs, a total

of 38,509 human-human PPIs were left. Any PPIs detected by

different experimental methods were integrated and self

interacting proteins were deleted resulting in 24,101 unique

human-human PPIs involving 7,646 unique proteins. These

unique interactions were used to build biological networks. (2)
Network generator: In the human PPI network, proteins are

represented as nodes and the interaction between proteins are

represented as edges. In order to find the optimal number of

proteins per network, networks were created using single-step,

two-step and three-step methods (data not shown). The median

number of proteins per network with a single-step is three (too few)

and with three-step was found to be 815 (too large). However, the

median number of proteins per network created by two-step

process was 58; this is an optimal number for computational

efficiency as well as for the search space. A total of 7,646 networks

were created by the network generator using the two-step method

(Figure S3), of which 2,912 networks were complete subsets of

other networks. Hence, these were excluded in the downstream

analysis leaving 4,734 networks. These were then ranked using the

modified Google PageRank algorithm (see Algorithm). Each of the

4,734 networks had between two and 1000 proteins. To reduce the

search space, multiple-testing correction factor associated with the

number of proteins and number of networks, and to avoid any

false positive networks that could arise due to large size of the

networks, we included networks that have only 20–200 proteins

[29,48,84]. The algorithm was tested on various protein ranges in

InCHIANTI dataset; this also led to the conclusion that the

optimal range of proteins in a network is 20–200 (data not shown)

resulting in a total of 2,849 networks. (3) Gene/Network
Ranker module: The resulting 2,849 networks from above

Network generator module were ranked using the modified

Google PageRank algorithm (see Algorithm). (4) Network
Prioritizer module: In this module the association signals

were combined with gene weights using the Liptak-Stouffer

method (see The Liptak-Stouffer method).

Summary statistics module. In this module summary

statistics for each network were generated. These consisted of

names of significant genes and non-significant genes, number of

significant and non-significant genes; total number of genes in a

network; network number; combined Z-score (Zcomb); network p-

value and corrected p-value.

DAVID, a functional annotation tool. To evaluate results

obtained from NIMMI, genes in the top replicated networks were

submitted to DAVID, a functional annotation tool [40,41]. There

were a total of 7,646 unique proteins (genes) in BioGRID. The

official names of these genes were converted to Genbank

accession numbers and submitted as background to DAVID.

Of the 7,646 genes, DAVID found 6,327 genes and set them as

background. DAVID corrects the enrichment p-values for the

number of background genes submitted. Then genes belonging to

a particular network were submitted and results from the

functional annotation tool were selected based on the following

criteria:

N Each GO category should have at least 25% gene overlap with

the input list.

N Enrichment p-value for each GO term had to be significant

(p#0.05).

Figure 4. Architecture of Network Interface Miner for Multigenic Interactions (NIMMI). Network Interface Miner for Multigenic Interactions
(NIMMI) consists of three levels: SNPs, Genes and Networks, and each level in turn has different modules necessary to prioritize ‘trait prioritized sub-
networks’. At the SNPs level (or Level 1), the SNPs are analyzed in the GWAS data module using PLINK. The SNPs are then assigned to genes and a
gene-wise p-value is calculated using VEGAS (Level 2). The Database Miner and Network generator module in Networks level (or Level 3) mine the
BioGRID database for human PPIs and created two-step networks that are then ranked using the modified Google PageRank algorithm in the Gene/
Network ranker and prioritizer module. The association p-value of a gene from Level 2 and gene weight from Level 3 are then combined using the
Liptak-Stouffer method. The resulting ‘trait prioritized sub-networks’ are then evaluated in DAVID.
doi:10.1371/journal.pone.0024220.g004
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N Benjamini-Hochberg p-value (False discovery rate (FDR))

should be #0.05.

N Medium to high stringency level was selected.

N General GO terms like plasmamembrane, membrane, cyto-

plasm, intracellular, etc were excluded.

To keep the tables concise, the top two GO categories that fit

the abovementioned criteria were presented in the results.

Replication
Since NIMMI considers genes and networks as the functional

units rather than individual SNPs, replication is expected at the

gene/network level rather than at SNP level in the new sample.

To test this, the networks NIMMI identified for height in the

InCHIANTI GWAS dataset were tested in two independent

GWAS datasets (Korean and GAIN Controls) for height.

Randomization of networks
Networks were randomized by permutation of the node labels.

Although the number of nodes and edges per network remain the

same as the original network, the identities of the nodes were

changed resulting in randomization of the network. By this

randomization procedure hubs will not remain as hubs. We

performed 100 randomizations of the original networks.

Permuting GWAS data
In a given GWAS dataset the gene labels and the association p-

values were permuted and NIMMI analysis was performed on

each of the 10,000 permuted files.

Implementation of NIMMI
The user input file can either be in PLINK format (*.ped and

*.map files) or a summary file with marker names along with

association p-values. VEGAS then assigns these markers to their

respective genes and calculates a gene-wise association p-value.

The output file from VEGAS is then input to a perl script,

weightedZscore_forVegasFiles.pl, which converts the association

p-values to z-scores and integrates them with gene weights in

networks to obtain a combined Z-score for a network (Zcomb),

which is then converted to a p-value and corrected for the number

of tests. The implementation of the modified Google PageRank

algorithm in NIMMI has allowed it to identify ‘trait prioritized

sub-networks’ in a given dataset within three seconds.

Availability and Future Directions
NIMMI software along with user manual can be downloaded

from http://mapgenetics.nimh.nih.gov/datashare.html.

The current version of NIMMI includes only human PPIs, but

this could easily be extended to PPIs from other model organisms.

Future versions will incorporate gene expression data and micro

RNA studies, whenever available, which could help in further

pruning of the prioritized list of networks.

Supporting Information

Figure S1 Power iteration. An adjacency matrix was created

based on the links of all the proteins in a network. The power

iteration starts by initializing an eigenvector which is multiplied

with the adjacency matrix resulting in a new eigenvector. This new

eigenvector is normalized and multiplied with the original

adjacency matrix until the algorithm finds a dominant eigenvector

for this adjacency matrix.

(PDF)

Figure S2 Standard error of the mean versus network
size. The x-axis shows the number of genes in a network and y-

axis shows the standard error of the mean (SEM).

(PDF)

Figure S3 Constructing Two-step networks. Building a

two-step network starts with one protein-protein interaction

(protein1-protein2). In STEP1 all the proteins interacting with

protein1 and protein 2 are added to the network i.e., protein 3

interacts with protein 1 and protein 4 interacts with protein 1 and

protein 2, so it is linked to both these proteins. In STEP2 all

proteins interacting with proteins in STEP1 are added to the

network, for e.g., proteins 6, 7 and 8 interact with protein 4 and

protein 5 interacts with protein 3.

(PDF)

Methods S1 Rationale for using gene weight ‘‘wi’’ in
Liptak-Stouffer method.
(DOC)

Table S1 Comparison of single-locus ranking with
NIMMI network ranking.
(DOC)

Table S2 ‘Trait prioritized sub-networks’ for height.
(DOC)

Table S3 Empirical p-values of height-prioritized sub-
networks.
(DOC)

Acknowledgments

This study makes use of data generated by the Wellcome Trust Case-

Control Consortium. A full list of the investigators who contributed to the

generation of the data is available from www.wtccc.org.uk. Special thanks

to all the participants whose DNA was used in this analysis. We would like

to thank the staff at the Center for Information Technology at National

Institutes of Health for help with the computational analysis on Helix and

Biowulf servers.

Bipolar Disorder Genome Study (BiGS) Consortium institutions:

Scripps Genomic Medicine and Scripps Translational Science Institute

and Dept of Molecular and Experimental Medicine, The Scripps Research

Institute, La Jolla, CA, USA; Dept of Psychiatry, Univ of Chicago,

Chicago, IL, USA; Dept of Psychiatry, Portland VA Medical Center,

Portland, OR, USA; Dept of Psychiatry, Johns Hopkins School of

Medicine, Baltimore, MD, USA; Dept of Psychiatry, Univ of Pennsylvania,

Philadelphia, PA, USA; Dept of Psychiatry, Univ of California, San

Francisco, CA, USA; Dept of Psychiatry, Univ of Iowa, Iowa City, IA,

USA; Neurogenomics Division, The Translational Genomics Research

Institute, Phoenix, AZ, USA; Dept of Biochemistry and Molecular Biology,

Indiana Univ School of Medicine, Indianapolis, IN, USA; Dept of Medical

and Molecular Genetics, Indiana Univ School of Medicine, Indianapolis,

IN, USA; Dept of Computer Science, Univ of California, Los Angeles, CA,

USA; Dept of Psychiatry, Univ of California, San Diego, La Jolla, CA,

USA; Dept of Psychiatry, Howard Univ, Washington, D.C., USA; Dept of

Psychiatry, Indiana Univ School of Medicine, Indianapolis, IN, USA; Dept

of Psychiatry, Univ of Michigan, Ann Arbor, MI, USA; Genetic Basis of

Mood and Anxiety Disorders Unit, National Institute of Mental Health

Intramural Research Program, National Institutes of Health, US Dept of

Health and Human Services, Bethesda, MD, USA; Division of Biostatistics,

Washington Univ, St. Louis, MO, USA; Dept of Psychiatry, Rush Univ,

Chicago, IL, USA; Dept of Psychiatry, VA San Diego Healthcare System,

La Jolla, CA, USA

Author Contributions

Conceived and designed the experiments: NA FJM. Analyzed the data: NA

FJM. Contributed reagents/materials/analysis tools: MAN AS LF TT SB

YSC YJK JYL BGH BiGS Consortium. Edited the manuscript: AB DS JS

FJM. Wrote the manuscript: NA.

Network Interface Miner Multigenic Interactions

PLoS ONE | www.plosone.org 10 September 2011 | Volume 6 | Issue 9 | e24220



References

1. Risch N, Merikangas K (1996) The future of genetic studies of complex human
diseases. Science 273: 1516–1517.

2. Altshuler D, Daly MJ, Lander ES (2008) Genetic mapping in human disease.
Science 322: 881–888.

3. Kraft P, Zeggini E, Ioannidis JP (2009) Replication in genome-wide association

studies. Stat Sci 24: 561–573.

4. Carlborg O, Haley CS (2004) Epistasis: too often neglected in complex trait

studies? Nat Rev Genet 5: 618–625.

5. Marchini J, Donnelly P, Cardon LR (2005) Genome-wide strategies for detecting
multiple loci that influence complex diseases. Nat Genet 37: 413–417.

6. Evans DM, Marchini J, Morris AP, Cardon LR (2006) Two-stage two-locus

models in genome-wide association. PLoS Genet 2: e157.

7. Peri S, Navarro JD, Amanchy R, Kristiansen TZ, Jonnalagadda CK, et al.

(2003) Development of human protein reference database as an initial platform
for approaching systems biology in humans. Genome Res 13: 2363–2371.

8. Krauthammer M, Kaufmann CA, Gilliam TC, Rzhetsky A (2004) Molecular

triangulation: bridging linkage and molecular-network information for identify-

ing candidate genes in Alzheimer’s disease. Proc Natl Acad Sci U S A 101:
15148–15153.

9. Gandhi TK, Zhong J, Mathivanan S, Karthick L, Chandrika KN, et al. (2006)

Analysis of the human protein interactome and comparison with yeast, worm
and fly interaction datasets. Nat Genet 38: 285–293.

10. Huang R, Wallqvist A, Covell DG (2006) Comprehensive analysis of pathway or
functionally related gene expression in the National Cancer Institute’s anticancer

screen. Genomics 87: 315–328.

11. Lage K, Karlberg EO, Storling ZM, Olason PI, Pedersen AG, et al. (2007) A
human phenome-interactome network of protein complexes implicated in

genetic disorders. Nat Biotechnol 25: 309–316.

12. Feldman I, Rzhetsky A, Vitkup D (2008) Network properties of genes harboring

inherited disease mutations. Proc Natl Acad Sci U S A 105: 4323–4328.

13. Ideker T, Sharan R (2008) Protein networks in disease. Genome Res 18:
644–652.

14. Iossifov I, Zheng T, Baron M, Gilliam TC, Rzhetsky A (2008) Genetic-linkage
mapping of complex hereditary disorders to a whole-genome molecular-

interaction network. Genome Res 18: 1150–1162.

15. Kohler S, Bauer S, Horn D, Robinson PN (2008) Walking the interactome for
prioritization of candidate disease genes. Am J Hum Genet 82: 949–958.

16. Cordell HJ (2009) Detecting gene-gene interactions that underlie human
diseases. Nat Rev Genet 10: 392–404.

17. Emily M, Mailund T, Hein J, Schauser L, Schierup MH (2009) Using biological

networks to search for interacting loci in genome-wide association studies.
Eur J Hum Genet 17: 1231–1240.

18. Pattin KA, Moore JH (2008) Exploiting the proteome to improve the genome-
wide genetic analysis of epistasis in common human diseases. Hum Genet 124:

19–29.

19. Inada T, Koga M, Ishiguro H, Horiuchi Y, Syu A, et al. (2008) Pathway-based
association analysis of genome-wide screening data suggest that genes associated

with the gamma-aminobutyric acid receptor signaling pathway are involved in

neuroleptic-induced, treatment-resistant tardive dyskinesia. Pharmacogenet
Genomics 18: 317–323.

20. Torkamani A, Topol EJ, Schork NJ (2008) Pathway analysis of seven common

diseases assessed by genome-wide association. Genomics 92: 265–272.

21. Vink JM, Smit AB, de Geus EJ, Sullivan P, Willemsen G, et al. (2009) Genome-

wide association study of smoking initiation and current smoking. Am J Hum
Genet 84: 367–379.

22. Sun J, Jia P, Fanous AH, van den Oord E, Chen X, et al. (2010) Schizophrenia

gene networks and pathways and their applications for novel candidate gene

selection. PLoS One 5: e11351.

23. Askland K, Read C, Moore J (2009) Pathways-based analyses of whole-genome
association study data in bipolar disorder reveal genes mediating ion channel

activity and synaptic neurotransmission. Hum Genet 125: 63–79.

24. Chen L, Zhang L, Zhao Y, Xu L, Shang Y, et al. (2009) Prioritizing risk

pathways: a novel association approach to searching for disease pathways fusing
SNPs and pathways. Bioinformatics 25: 237–242.

25. Holmans P, Green EK, Pahwa JS, Ferreira MA, Purcell SM, et al. (2009) Gene

ontology analysis of GWA study data sets provides insights into the biology of
bipolar disorder. Am J Hum Genet 85: 13–24.

26. Hong MG, Pawitan Y, Magnusson PK, Prince JA (2009) Strategies and issues in
the detection of pathway enrichment in genome-wide association studies. Hum

Genet 126: 289–301.

27. O’Dushlaine C, Kenny E, Heron EA, Segurado R, Gill M, et al. (2009) The
SNP ratio test: pathway analysis of genome-wide association datasets.

Bioinformatics 25: 2762–2763.

28. Peng G, Luo L, Siu H, Zhu Y, Hu P, et al. (2010) Gene and pathway-based

second-wave analysis of genome-wide association studies. Eur J Hum Genet 18:
111–117.

29. Wang K, Li M, Bucan M (2007) Pathway-Based Approaches for Analysis of

Genomewide Association Studies. Am J Hum Genet 81.

30. Eleftherohorinou H, Wright V, Hoggart C, Hartikainen AL, Jarvelin MR, et al.

(2009) Pathway analysis of GWAS provides new insights into genetic
susceptibility to 3 inflammatory diseases. PLoS One 4: e8068.

31. Suthram S, Beyer A, Karp RM, Eldar Y, Ideker T (2008) eQED: an efficient

method for interpreting eQTL associations using protein networks. Mol Syst

Biol 4: 162.

32. Jia P, Zheng S, Long J, Zheng W, Zhao Z (2011) dmGWAS: dense module

searching for genome-wide association studies in protein-protein interaction
networks. Bioinformatics 27: 95–102.

33. Baranzini SE, Galwey NW, Wang J, Khankhanian P, Lindberg R, et al. (2009)
Pathway and network-based analysis of genome-wide association studies in

multiple sclerosis. Hum Mol Genet 18: 2078–2090.

34. International Schizophrenia Consortium, Purcell SM, Wray NR, Stone JL,

Visscher PM, et al. (2009) Common polygenic variation contributes to risk of
schizophrenia and bipolar disorder. Nature 460: 748–752.

35. Fu H, Lin DKJ, Tsai H (2006) Damping factor in Google page ranking. Applied
Stochastic Models in Business and Industry 22: 431–444.

36. Lesnick TG, Papapetropoulos S, Mash DC, Ffrench-Mullen J, Shehadeh L,
et al. (2007) A genomic pathway approach to a complex disease: axon guidance

and Parkinson disease. PLoS Genet 3: e98.

37. Neale BM, Sham PC (2004) The future of association studies: gene-based

analysis and replication. Am J Hum Genet 75: 353–362.

38. Tu Z, Wang L, Arbeitman MN, Chen T, Sun F (2006) An integrative approach

for causal gene identification and gene regulatory pathway inference.

Bioinformatics 22: e489–496.

39. Liu JZ, McRae AF, Nyholt DR, Medland SE, Wray NR, et al. (2010) A versatile

gene-based test for genome-wide association studies. Am J Hum Genet 87:
139–145.

40. Dennis G, Jr., Sherman BT, Hosack DA, Yang J, Gao W, et al. (2003) DAVID:
Database for Annotation, Visualization, and Integrated Discovery. Genome Biol

4: P3.

41. Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative

analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:
44–57.

42. Gudbjartsson DF, Walters GB, Thorleifsson G, Stefansson H, Halldorsson BV,
et al. (2008) Many sequence variants affecting diversity of adult human height.

Nat Genet 40: 609–615.

43. Lettre G, Jackson AU, Gieger C, Schumacher FR, Berndt SI, et al. (2008)

Identification of ten loci associated with height highlights new biological

pathways in human growth. Nat Genet 40: 584–591.

44. Weedon MN, Lango H, Lindgren CM, Wallace C, Evans DM, et al. (2008)

Genome-wide association analysis identifies 20 loci that influence adult height.
Nat Genet 40: 575–583.

45. Morrison JL, Breitling R, Higham DJ, Gilbert DR (2005) GeneRank: using
search engine technology for the analysis of microarray experiments. BMC

Bioinformatics 6: 233.

46. Davis NA, Crowe JE, Jr., Pajewski NM, McKinney BA (2010) Surfing a genetic

association interaction network to identify modulators of antibody response to
smallpox vaccine. Genes Immun 11: 630–636.

47. Draghici S, Khatri P, Tarca AL, Amin K, Done A, et al. (2007) A systems
biology approach for pathway level analysis. Genome Res 17: 1537–1545.

48. Saccone SF, Saccone NL, Swan GE, Madden PA, Goate AM, et al. (2008)
Systematic biological prioritization after a genome-wide association study: an

application to nicotine dependence. Bioinformatics 24: 1805–1811.

49. Elbers CC, van Eijk KR, Franke L, Mulder F, van der Schouw YT, et al. (2009)

Using genome-wide pathway analysis to unravel the etiology of complex

diseases. Genet Epidemiol 33: 419–431.

50. Ma ZJ, Yamaguchi M (2001) Stimulatory effect of zinc on deoxyribonucleic acid

synthesis in bone growth of newborn rats: enhancement with zinc and insulin-
like growth factor-I. Calcif Tissue Int 69: 158–163.

51. Yamaguchi M, Oishi H, Suketa Y (1987) Stimulatory effect of zinc on bone
formation in tissue culture. Biochem Pharmacol 36: 4007–4012.

52. Filion GJ, Zhenilo S, Salozhin S, Yamada D, Prokhortchouk E, et al. (2006) A
family of human zinc finger proteins that bind methylated DNA and repress

transcription. Mol Cell Biol 26: 169–181.

53. Biolo G, Bosutti A, Iscra F, Toigo G, Gullo A, et al. (2000) Contribution of the

ubiquitin-proteasome pathway to overall muscle proteolysis in hypercatabolic
patients. Metabolism 49: 689–691.

54. Biolo G, Iscra F, Bosutti A, Toigo G, Ciocchi B, et al. (2000) Growth hormone
decreases muscle glutamine production and stimulates protein synthesis in

hypercatabolic patients. Am J Physiol Endocrinol Metab 279: E323–332.

55. Hardin DS, Ellis KJ, Dyson M, Rice J, McConnell R, et al. (2001) Growth

hormone decreases protein catabolism in children with cystic fibrosis. J Clin

Endocrinol Metab 86: 4424–4428.

56. Schirra HJ, Anderson CG, Wilson WJ, Kerr L, Craik DJ, et al. (2008) Altered

metabolism of growth hormone receptor mutant mice: a combined NMR
metabonomics and microarray study. PLoS One 3: e2764.

57. Raychaudhuri S, Plenge RM, Rossin EJ, Ng AC, Purcell SM, et al. (2009)
Identifying relationships among genomic disease regions: predicting genes at

pathogenic SNP associations and rare deletions. PLoS Genet 5: e1000534.

58. Barabási AL, Gulbahce N, Loscalzo J (2011) Network medicine: a network-

based approach to human disease. Nat Rev Genet. 12(1): 56–68.

59. Ballard D, Abraham C, Cho J, Zhao H (2010) Pathway analysis comparison

using Crohn’s disease genome wide association studies. BMC Med Genomics 3:
25.

Network Interface Miner Multigenic Interactions

PLoS ONE | www.plosone.org 11 September 2011 | Volume 6 | Issue 9 | e24220



60. Han JD (2008) Understanding biological functions through molecular networks.

Cell Res 18: 224–237.
61. Kraft P, Raychaudhuri S (2009) Complex diseases, complex genes: keeping

pathways on the right track. Epidemiology 20: 508–511.

62. Rhee SY, Wood V, Dolinski K, Draghici S (2008) Use and misuse of the gene
ontology annotations. Nat Rev Genet 9: 509–515.

63. Schadt EE (2009) Molecular networks as sensors and drivers of common human
diseases. Nature 461: 218–223.

64. Ferrucci L, Bandinelli S, Benvenuti E, Di Iorio A, Macchi C, et al. (2000)

Subsystems contributing to the decline in ability to walk: bridging the gap
between epidemiology and geriatric practice in the InCHIANTI study. J Am

Geriatr Soc 48: 1618–1625.
65. Li Y, Abecasis GR (2006) Mach 1.0: Rapid Haplotype Reconstruction and

Missing Genotype Inference. Am J Hum Genet S79: 2290.
66. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, et al. (2007)

PLINK: a tool set for whole-genome association and population-based linkage

analyses. Am J Hum Genet 81: 559–575.
67. Cho YS, Go MJ, Kim YJ, Heo JY, Oh JH, et al. (2009) A large-scale genome-

wide association study of Asian populations uncovers genetic factors influencing
eight quantitative traits. Nat Genet 41: 527–534.

68. Wellcome Trust Case Control Consortium (2007) Genome-wide association

study of 14,000 cases of seven common diseases and 3,000 shared controls.
Nature 447: 661–678.

69. Newman MEJ (2003) The mathematics of networks. Available: http://www-personal.
umich.edu/,mejn/papers/palgrave.pdf. Accessed 2011 August 9.

70. Langville A, Meyer C (2006) Google’s PageRank and Beyond: The Science of
Search Engine Rankings. Princeton University Press, ISBN 0-691-12202-4.

71. Golub G, van Loan C (1996) Matrix computations. BaltimoreMD: Johns

Hopkins Univ Press, 3rd edition.
72. Lohmann G, Margulies DS, Horstmann A, Pleger B, Lepsien J, et al. (2010)

Eigenvector centrality mapping for analyzing connectivity patterns in FMRI
data of the human brain. PLoS One 5: e10232.

73. Strang G (1988) Linear Algebra and Its Applications. New York: Saunders

College Publishing.

74. Avrachenkov K, Litvak N, Pham KS (2006) A singular perturbation approach

for choosing PageRank damping factor. arXiv:math/0612079v.

75. Brin S, Page L (1998) The Anatomy of a Large-Scale Hypertextual Web Search

Engine, In: Seventh International World-Wide Web Conference.

76. Bryan K, Leise T (2006) The $25,000,000,000 Eigenvector, the linear

algebra behind Google. Available: http://www.rose-hulman.edu/,bryan/

googleFinalVersionFixed.pdf. Accessed 2011 August 9.

77. Vise D, Malseed M (2005) The Google Story. New York: Bantam Dell.

78. Hwang D, Rust AG, Ramsey S, Smith JJ, Leslie DM, et al. (2005) A data

integration methodology for systems biology. Proc Natl Acad Sci U S A 102:

17296–17301.

79. Majeti R, Becker MW, Tian Q, Lee TL, Yan X, et al. (2009) Dysregulated gene

expression networks in human acute myelogenous leukemia stem cells. Proc Natl

Acad Sci U S A 106: 3396–3401.

80. Setlur SR, Royce TE, Sboner A, Mosquera JM, Demichelis F, et al. (2007)

Integrative microarray analysis of pathways dysregulated in metastatic prostate

cancer. Cancer Res 67: 10296–10303.

81. Clayton DG, Walker NM, Smyth DJ, Pask R, Cooper JD, et al. (2005)

Population structure, differential bias and genomic control in a large-scale, case-

control association study. Nat Genet 37: 1243–1246.

82. Hosking L, Lumsden S, Lewis K, Yeo A, McCarthy L, et al. (2004) Detection of

genotyping errors by Hardy-Weinberg equilibrium testing. Eur J Hum Genet 12:

395–399.

83. Wittke-Thompson JK, Pluzhnikov A, Cox NJ (2005) Rational inferences about

departures from Hardy-Weinberg equilibrium. Am J Hum Genet 76: 967–986.

84. Zhong H, Prentice RL (2008) Bias-reduced estimators and confidence intervals

for odds ratios in genome-wide association studies. Biostatistics 9: 621–634.

Network Interface Miner Multigenic Interactions

PLoS ONE | www.plosone.org 12 September 2011 | Volume 6 | Issue 9 | e24220


