
Sustainable Water Management in the Southwestern
United States: Reality or Rhetoric?
Robert M. Marshall*, Marcos D. Robles, Daniel R. Majka, Jeanmarie A. Haney

The Nature Conservancy Center for Science and Public Policy, Tucson, Arizona, United States of America

Abstract

Background: While freshwater sustainability is generally defined as the provisioning of water for both people and the
environment, in practice it is largely focused only on supplying water to furnish human population growth. Symptomatic of
this is the state of Arizona, where rapid growth outside of the metropolitan Phoenix-Tucson corridor relies on the same
groundwater that supplies year-round flow in rivers. Using Arizona as a case study, we present the first study in the
southwestern United States that evaluates the potential impact of future population growth and water demand on
streamflow depletion across multiple watersheds.

Methodology/Principal Findings: We modeled population growth and water demand through 2050 and used four
scenarios to explore the potential effects of alternative growth and water management strategies on river flows. Under the
base population projection, we found that rivers in seven of the 18 study watersheds could be dewatered due to municipal
demand. Implementing alternative growth and water management strategies, however, could prevent four of these rivers
from being dewatered.

Conclusions/Significance: The window of opportunity to implement water management strategies is narrowing. Because
impacts from groundwater extraction are cumulative and cannot be immediately reversed, proactive water management
strategies should be implemented where groundwater will be used to support new municipal demand. Our approach
provides a low-cost method to identify where alternative water and growth management strategies may have the most
impact, and demonstrates that such strategies can maintain a continued water supply for both people and the
environment.
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Introduction

Although the concept of sustainability is widely touted as an

ideal for urban growth policies, achieving sustainability can be

difficult. Nowhere is this more evident than in the case of water

and water uses. Sustainability in the realm of freshwater is

generally defined as the provisioning of water for both people and

the environment for generations to come [1–4]. Unfortunately,

plans for urban growth rarely embrace this definition for water

policy and instead focus almost entirely on the pursuit of new

supplies to accommodate future growth without consideration of

environmental water needs [5].

Conflict over water has become a hallmark of the southwestern

United States, where large-scale water infrastructure projects in

the 20th Century facilitated rapid urban and economic expansion

at the expense of the environment. As dams, diversions, and

increased groundwater pumping modified hydrologic regimes

throughout the western United States, surface flow diminished or

disappeared altogether at some locations, and associated riparian

and aquatic systems declined [6–8].

Populations and cities continue to expand in the western United

States, which calls into question what might be done to promote

sustainable water use moving forward. A crucible for these

pressures is Arizona, where population is projected to double by

2050 [9] and streamflow depletion has been documented

throughout the state [10,11]. Seventeen of the state’s 33 native

fish species now have status under the U.S. Endangered Species

Act [12]. Three fish species within the Colorado River Basin

(Pahranagat spinedace, Las Vegas dace, Monkey Spring pupfish)

have already been driven to extinction from human modification

of aquatic habitats and introduction of non-native species [13–16].

Our analysis suggests there will be additional streamflow depletion

and further species imperilment without actions to reverse current

trends.

Using Arizona as a case study, we develop a scenario-based

assessment approach as a tool for exploring how water

management strategies could sustain water for both people and

the environment. Our study area is experiencing some of the

highest growth rates in the United States, and this growth is

relying on the same groundwater that supplies year-round flow in

our rivers. We present the first study in the southwestern United

States that evaluates the potential impact of population growth

and water demand on streamflow depletion across multiple

watersheds.
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Materials and Methods

Estimating River Base Flow
Base flow is the proportion of surface flow that comes from

groundwater discharge and supports year-round streamflow. To

estimate base flow, we first inventoried locations where groundwater

discharge still supports perennial streamflow across the state. We

intersected the USGS streamflow gage data layer (http://waterdata.

usgs.gov/az/nwis/rt) with a GIS layer of perennial streamflow [17]

and selected 18 gages on unregulated perennial streams (Figure 1).

We focused on gages with at least a 20-year data record, although for

four gages we accepted a record of 7 to 10 years. We digitized the

watershed area reporting to each selected streamflow gage using

groundwater basin boundaries delineated by the Arizona Dept of

Water Resources [18] as a starting point (Text S1). We researched

published base flow values and evaluated several methods of base flow

separation. We found that accurately separating base flow is difficult

in areas of low total runoff [19]. We examined flow duration curves

and daily mean flow hydrographs, and, where available, we

compared published base flow values to median flow. From our

analysis, we concluded that median streamflow approximates base

flow for our study streams (Text S1).

Estimating Current and Future Municipal Water Demand
We estimated municipal (i.e. all residential) water demand in the

study watersheds by combining water use data from the Arizona

Water Atlas [18], with current and projected population data

obtained from the 1990 and 2000 Census [20] and Arizona

Department of Commerce [9]. We calculated per capita water use

rates (gallons per capita per day, GPCD) using watershed demand

and population data over a recent 10 year period, 1996–2005.

These rates were calculated for Arizona Department of Water

Resources groundwater basins, within which the study watersheds

are nested [18]. To calculate municipal demand in the year 2000,

we multiplied GPCD rates by watershed populations derived from

2000 Census Block data (Table S1).

Because county-level population projections are spatially

incongruent with our study watershed boundaries, it is not

possible to calculate future demand without first estimating future

population projections at a finer spatial resolution. To estimate

future water demand, we multiplied year 2000 GPCD rates by

population projections created using the raster-based Spatially

Explicit Regional Growth Model (SERGoM) [21].

SERGoM allocates county-level population projections [9] for

future decades (2010, 2020, 2030, 2040, 2050) to 100 m pixels

within the study watersheds. Projected growth is not allocated to

pixels classified as water, private protected lands, federal lands, or

steep slopes .25%. SERGoM estimates future growth based on 3

basic steps. First, the model calculates past growth trends between

the previous and current time step (e.g. 1990 and 2000) within 24

development classes. These classes are derived by combining 4

housing density classes (urban, suburban, exurban, rural) with 6

Figure 1. Locations of study watersheds and USGS gages.
doi:10.1371/journal.pone.0011687.g001
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automobile travel-time classes (0–5, 5–10, 10–20, 20–30, 30–45,

.45 minutes to the nearest urban or suburban core area). Second,

the model distributes county-wide population projections to each

100 m pixel according to the relative growth rate of the pixel’s

development class. Third, the model recalculates development

classes at each decadal time step, to allow for development classes

to evolve or change as urbanization occurs (e.g. development of a

new urban core).

Water Demand Scenarios
We developed four population growth and water management

scenarios. Estimates for Arizona’s 2050 population have ranged

from 8 million [22] to 16 million [23], with an estimate of 12.8

million by the latest Arizona Department of Commerce projec-

tions [9]. To accommodate this range of uncertainty and explore

the effects of alternative water management strategies, we modeled

municipal water demand in each watershed under four scenarios:

1) base – uses population estimates from Department of

Commerce with constant GPCD; 2) high growth – increases

population by 25% above base projection, 3) conservation –

retains base population projection but reduces water demand 30%

by 2050; 4) conservation and low growth – reduces water demand

by 30% by 2050 and reduces population 25% below base

projection. We selected 30% as a water conservation target

because cities such as Albuquerque, NM and Long Beach, CA

have successfully reduced their municipal water demand by at

least that much [24].

Comparing Base Flow to Water Demand
We compared base flow to municipal water demand in each

of the 18 study watersheds to determine degree of streamflow

depletion under equilibrium conditions when steady state

conditions are reached for each projected water demand

[25].

To assess the relative impact of municipal water demand on

river base flow we used a simple index, the base flow demand

index (BDI) where BDI = demand/base flow * 100. Although

empirically-derived thresholds that predict species’ persistence

Figure 2. Base flow demand index (BDI) for 18 watersheds for the year 2000 and across four future scenarios. BDI is calculated as the
percentage of municipal water demand to river base flow within a watershed. The solid horizontal line indicates the threshold where demand
exceeds 100% of base flow; the dashed line delineates the transition from low BDI (#50% of base flow) to stressed BDI (.50%–100% of base flow).
See text for description of scenarios.
doi:10.1371/journal.pone.0011687.g002
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exist for some riparian plant species [26], most aquatic and

riparian-dependent species in our study area lack such thresholds.

In lieu of these thresholds, we present risk to base flow in relative

terms by categorizing BDI values into 3 ranges:

low BDI ~ municipal water demand ƒ 50% of river base flow

stressed BDI ~ municipal water demand

w 50 � 100% of river base flow

exceeds critical threshold BDI ~ municipal water demand

w 100% of river base flow

As an example of the practical implication of BDI values, a BDI

of 100%, over time, would result in the complete de-watering of a

river. Year 2000 baseline BDI values for the 18 watersheds

examined as well as projected BDI for the 4 management

scenarios are available as supplementary information (Table S1).

Species Analysis
We identified 59 rare, plant and animal species (vertebrates and

invertebrates) that occur within the study area and can be

classified as obligate- or facultative- aquatic, wetland or riparian

species (Table S2). First, we selected all rare species that have an

extant population within the study watershed boundaries observed

by an authoritative source since 1975 [27]. These are species or

subspecies that are either globally rare (NatureServe Global

Conservation Rank of G1-G3 for species, T1-T3 for subspecies) or

are listed under the US Endangered Species Act (endangered,

threatened, candidate, proposed, special concern, similarity of

appearance). Second, we identified species that are obligate- or

facultative- aquatic, wetland or riparian species using standard

references [28,29] and expert review. From this list of species, we

used a regional conservation database to compare the number of

aquatic, wetland or riparian species within our study area that

have status under the U.S. Endangered Species Act to the number

found within the Colorado River Basin [30].

Figure 3. Regional significance of the study watersheds to species. Nearly one-half (45%) of the aquatic, wetland and riparian species that
are listed under the U.S. Endangered Species Act in the Colorado River Basin occur in the watershed basins of this study. Inset: Colorado River Basin
within North America.
doi:10.1371/journal.pone.0011687.g003
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Results

Our models indicate that in 2000, municipal water demand

had already exceeded 100% of base flow in two watersheds, and

was nearly 100% of base flow in one other (Figure 2). On the

other end of the demand spectrum, there are seven watersheds

where not only is current BDI low,demand is projected to

remain in the low BDI range under any growth/water

management scenario (Figure 2). The critical opportunities for

management are found in the intermediate watersheds, where

growth/water management scenarios determine whether or not

watersheds fall into the dewatered status or remain a sustainable

resource for biodiversity and people. In particular, implementing

either of the two conservation scenarios would prevent four

watersheds from transitioning from the low to stressed BDI range

(Williamson Valley, Upper Cienega Creek, Verde Oak Creek,

Big Sandy River; Figure 2). Three of these watersheds have

relatively low annual discharge, so communities in these areas

have little water to begin with. One watershed ranks within the

top five in annual discharge; it has a relatively large volume of

water, but also a population projected to more than double by

2050 (Table S1).

In year 2000, demand in each of the five remaining

watersheds was already approaching or within the stressed BDI

range (Figure 2). However, implementing one of the conserva-

tion scenarios would prevent four of these systems from

transitioning to the critical threshold BDI range (Arivaca Creek,

Little Colorado River, Upper Verde River, San Pedro River;

Figure 2).

The outcome of our modeled water demand/river flow

relationships has important implications for plant and animal

species that are dependent upon freshwater environments. While

our study watersheds comprise only 11% of the area within the

Colorado River basin (Figure 3), they host 45% of the aquatic,

wetland and riparian species in the basin currently listed under the

U.S. Endangered Species Act [30]. If current urban growth and

water use trends follow our projections, more species will trend

toward threatened or endangered status and, perhaps, extinction

(Table S2).

Discussion

In Arizona, natural perennial streamflow has already declined

or disappeared completely at a number of locations due to human

groundwater use [7,10,11]. Our study demonstrates that if actions

are not taken to reserve a portion of river base flows for the

environment, then at least seven other river systems will be de-

watered over time and an additional four will experience

substantial degradation. Although coarse, our scenarios illustrate

how future risks can be reduced by implementing alternative

growth and water management strategies. The question is how to

do so in practice.

Renewable water supplies are limited in the Southwest. Even

though Arizona’s alluvial basin aquifers contain substantial

amounts of water, it takes only a small fraction of use for effects

to show up as river depletion [31]. Time lags associated with

groundwater systems can extend the time frame of full depletion

out decades (Figure 4) [32].

One challenge for any approach to sustainable water use in

Arizona is that climate change will intensify existing difficulties of

maintaining water supplies in an arid climate prone to drought.

With climate change, surface flows in the southwestern U.S. will

likely decline as temperatures continue to rise and evaporation

rates increase. Colorado River flows are predicted to decline by

10–30% [33], and there is an 85% chance that flows in the Salt

and Verde River basins will be reduced by 2050 [34].

Additionally, climate change may lead directly to reductions in

base flows by reducing groundwater recharge [35,36].

In addition to climate issues, there are regulatory and policy

complications. The complexity of Arizona’s laws and regulations

guiding surface and groundwater use arose out of an attempt to

bring equity to all water users. Water for the environment,

however, was not considered in decisions regarding equity. In

Arizona, surface water and groundwater are managed under

different regulatory schemes and there is no legal recognition of

the physical connection between the two. In the majority of our

study area, groundwater use is unregulated and rivers can be de-

watered through groundwater extraction.

Our current environmental policies and legal framework do not

consider environmental water needs and, thus, are inadequate to

protect flowing rivers. Planning is currently underway for water

infrastructure projects to be implemented 20 or more years in the

future. By the time those projects receive funding and are

subjected to environmental compliance, further degradation and

loss of river flows will already have occurred. With implementation

of one or more conservation strategies now, impacts to streamflow

can be reduced. As Figure 4 illustrates, if groundwater pumping

continues, impacts to the river accumulate and cannot be

immediately reversed if pumping is stopped altogether. Thus,

mitigating project effects to endangered species 20 or more years

in the future is not the same as acting now while we still have

options in many watersheds to allocate water for the environment.

Fortunately, the discussion over water sustainability is already

being reframed by communities that recognize the interdepen-

dence of the environment and economy. Many communities and

regions around the world are implementing sustainable water

management policies that address the needs of competing sectors

while sustaining water for the environment. For example,

Australia’s constitution now mandates environmental flows as

the first allocation [37]. Kansas [38], Michigan [39], and

Massachusetts [40], among other states, have developed tools

and regulatory mechanisms to limit new water uses such that

existing users, including the environment, can maintain current

condition. The Upper San Pedro River Partnership in Arizona has

Figure 4. Cumulative effects of groundwater pumping on
streamflow depletion even after pumping is stopped. In this
case, from Lower Clear Creek in Arizona, streamflow continues to
decline for nearly 30 years after pumping is stopped in 2060. Adapted
from Alley and Leake (2007).
doi:10.1371/journal.pone.0011687.g004
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employed hydrologic and ecological models to support zoning

overlays that encourage groundwater pumping more distant from

the river [41] and recharge of treated municipal effluent near the

river [42].

The underlying drivers in many of these examples are economic

as much as environmental; in the era of sustainable development,

would private investment flow to communities perceived as

unsustainable? As our study shows, developing modest growth

and water management strategies can ensure a continued water

supply for people and rivers, and transform the rhetoric of

sustainable water management into reality. The quicker we act,

the more options we will preserve.

Supporting Information

Text S1 Estimating river base flows. Contains detailed methods

on how we estimated river base flow in the 18 watersheds studied.

Found at: doi:10.1371/journal.pone.0011687.s001 (0.09 MB

DOC)

Table S1 Population, base flow, and municipal water demand

under four scenarios for eighteen river basins in Arizona. Provides

baseline data used for estimating population growth, water

demand, river flows, and the values used in scenarios.

Found at: doi:10.1371/journal.pone.0011687.s002 (0.06 MB

DOC)

Table S2 Vulnerable aquatic, riparian and wetland species

found in 18 study watersheds in Arizona. Provides taxonomic and

conservation data for the imperiled species found within our study

watersheds.

Found at: doi:10.1371/journal.pone.0011687.s003 (0.09 MB

DOC)
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