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Abstract

Targeted therapeutic approaches are increasingly being implemented in the clinic, but early detection of response
frequently presents a challenge as many new therapies lead to inhibition of tumor growth rather than tumor shrinkage.
Development of novel non-invasive methods to monitor response to treatment is therefore needed. Magnetic resonance
spectroscopy (MRS) and magnetic resonance spectroscopic imaging are non-invasive imaging methods that can be
employed to monitor metabolism, and previous studies indicate that these methods can be useful for monitoring the
metabolic consequences of treatment that are associated with early drug target modulation. However, single-metabolite
biomarkers are often not specific to a particular therapy. Here we used an unbiased 1H MRS-based metabolomics approach
to investigate the overall metabolic consequences of treatment with the phosphoinositide 3-kinase inhibitor LY294002 and
the heat shock protein 90 inhibitor 17AAG in prostate and breast cancer cell lines. LY294002 treatment resulted in
decreased intracellular lactate, alanine fumarate, phosphocholine and glutathione. Following 17AAG treatment, decreased
intracellular lactate, alanine, fumarate and glutamine were also observed but phosphocholine accumulated in every case.
Furthermore, citrate, which is typically observed in normal prostate tissue but not in tumors, increased following 17AAG
treatment in prostate cells. This approach is likely to provide further information about the complex interactions between
signaling and metabolic pathways. It also highlights the potential of MRS-based metabolomics to identify metabolic
signatures that can specifically inform on molecular drug action.
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Introduction

The Warburg effect, wherein cancer cells have an abnormally

elevated rate of glucose consumption and aerobic glycolysis, was

first discovered in the 1920s [1]. Research over the past decade is

increasingly demonstrating that several other aspects of metabo-

lism are also profoundly different in cancer cells [2,3]. Many of

these changes appear to result from the acquisition of mutations

that develop during oncogenesis and provide a growth advantage

to the cancerous cells in the tumor microenvironment. Knowledge

of these metabolic changes is now being used as the basis for

development of more specific molecular imaging methods. For

instance, the higher glycolytic demand characterizing cancer cells

has been exploited in [18F] 2-fluoro-2-deoxy-D-glucose positron

emission tomography (FDG-PET) imaging of tumors [4]. In recent

years, owing to advances in dynamic nuclear polarization (DNP),

the elevated glycolytic rates in tumors have also been imaged using
13C magnetic resonance spectroscopy (MRS) by probing the

conversion of hyperpolarized pyruvate into lactate [5–7]. Con-

versely, several reports have been published reporting normaliza-

tion of glucose metabolism as an indication of response to targeted

treatment [8,9]. A decrease in pyruvate to lactate conversion in

response to treatment with phosphoinositide 3-kinase (PI3K) or

receptor tyrosine kinase (RTK) inhibitors was shown in different

tumor types by 13C MRS [10,11]. Phosphocholine (PC) or,

clinically, total choline (tCho, comprised of choline, PC and

glycerophosphocholine) was also identified in several MR studies

as an important biomarker that is generally elevated in cancer cells

and associated with more aggressive and invasive phenotypes [12–

20]. Inhibition of cell proliferation following treatment with

targeted therapies, including inhibitors of Ras, PI3K, mitogen-

activated protein kinases (MAPK) and hypoxia inducible factor

(HIF) led in most cases to a drop in PC and tCho [21–31]. In

particular, inhibition of HIF-1a with PX-478 in HT-29 colorectal

cancer xenografts induced a drop in intracellular PC levels as well

as tCho [26]. Pharmacological intervention with the PI3K

inhibitor PI-103 induced a drop in PC in PC3 prostate cancer

cells and HCT116 colorectal cancer cells [21]. Similarly in MDA-

MB-231, MCF-7 and Hs578T breast cancer cells treated with

either LY294002 or Wortmannin PC dropped [22]. Finally

orthotopic glioblastoma tumors treated with the PI3K inhibitor

PX-886 also lead to a drop in tCho [31]. Interestingly, treatment

with the heat shock protein (HSP) 90 inhibitor 17-(Allylamino)-17-

demethoxygeldanamycin (17AAG), which likely has a more

complex effect on cellular signaling as it targets a number of

protein kinases (including Akt, MEK and c-Raf) as well as

hormone receptors [32], was reported to cause an increase in PC

in several cancer models including breast and colorectal [24,25].
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However, treatment with 17AAG in prostate cancer xenografts in

mice (hormone sensitive CWR22 and hormone resistant CWR22r)

induced a drop in the tCho pool [27]. While demonstrating the

value of metabolic changes as biomarkers of response to targeted

therapies, these studies also highlight the fact that some metabolic

changes are common to different therapeutic agents. An

alternative approach is the use of completely untargeted and

global metabolic profiling methods coupled with a robust

chemometric analysis based on multivariate statistical methods

of analysis. These approaches have been proposed for the

detection and identification of global metabolic changes in human

biofluids as a diagnostic tool [33–35]. Similar approaches have

also been employed in cell model systems to investigate the

metabolic effects of drug treatments or different genetic pheno-

types [36–38]. Recently this approach was also used in studies of

tumor biopsy samples providing a method to distinguish between

normal and malignant tissue in different cancer types [39–43].

Due to the completely untargeted nature of these studies and the

size and complexity of the metabolic signature datasets, the

application of appropriate multivariate statistical methods of

analysis is key to identifying the most prominent changes in the

metabolic signature. In cell model systems principal component

analysis (PCA) is usually appropriate to efficiently identify and

discriminate the underlying metabolic variation in the datasets.

Moreover, PCA is a completely unsupervised method and does not

require any a priori information about the data allowing for a

completely unbiased analysis of the datasets [44].

Several PI3K inhibitors are currently in clinical trials for cancer

treatment [45]. Similarly, the HSP90 inhibitor 17AAG has been

tested in the clinic for treatment of solid tumors [46,47]. We were

therefore interested in assessing the individual signatures of

response that could potentially be translated into the clinic. In

this study, we investigated two prostate cancer cell lines, PC3 and

LNCaP, and used an untargeted and unbiased 1H MRS-based

metabolomics approach to investigate the metabolic consequences

of pharmacological inhibition of the PI3K signaling pathway and

the HSP90 protein chaperone using LY294002 and 17AAG,

respectively. Moreover, to confirm the generality of our findings,

we investigated the metabolic changes induced by LY294002 and

17AAG in MCF-7 breast cancer cells. Based on the analysis of the

comprehensive changes in the metabolome of these cell lines we

identified a pattern of metabolic changes that was different for

each of the two drugs but identical for the three different cell lines.

This approach could provide drug-specific metabolic readouts of

molecular drug action. Furthermore, this method could be used to

identify previously unrecognized metabolic changes associated

with modulation of specific signaling pathways.

Results

Treatment doses and target inhibition in prostate cancer
cell lines

Two prostate cancer cell lines, PC3 and LNCaP, were treated

for 48 hours with LY294002, a PI3K inhibitor, and 17AAG, a

HSP90 inhibitor. For each cell line, the treatment doses were

determined such that the cell viability remained approximately

constant during treatment (simulating tumor stasis during

treatment, as opposed to the control cells which proliferate

normally). These doses were 25 mM and 10 mM LY294002, and

1 mM and 0.25 mM 17AAG for PC3 and LNCaP prostate cancer

cells, respectively. Inhibition of the target proteins at the

determined doses was confirmed by Western blotting. Following

48 hours of treatment with LY294002, inhibition of the PI3K

signaling pathway was confirmed in both PC3 and LNCaP cells by

probing for p-4E-BP1 protein levels, which decreased following

treatment (Fig. 1). The effectiveness of the 48 hours 17AAG

treatment was verified by probing the levels of the HSP90-client

protein c-Raf, which decreased in both cell lines (Fig. 1).

Moreover, following 17AAG treatment, p-4E-BP1 decreased to

intermediate levels between the control and LY294002 treated

samples (Fig. 1).

Proton MRS-based metabolomics analysis in prostate
cancer cells

1H MR spectra were recorded on the polar fraction of the cell

extracts (8 replicates per treatment per cell line) of PC3 and

LNCaP prostate cancer cells. To investigate the effect of

treatment on the metabolome of the two prostate cancer cell

lines we performed multivariate statistical analysis on the

complete MRS datasets either including both cell lines and all

the treatment conditions or considering each individual cell line.

The scores plots obtained from the analysis (Fig. 2) clearly

highlight that, as expected, the two cell lines have extremely

different phenotypes (more than 90% of the total variability is

explained by the first principal component in Fig. 2A, segregat-

ing the two cell lines). Moreover, the scores plots obtained from

the PCAs performed on the individual cell lines (Fig. 2B–C)

demonstrate excellent clustering of samples within the same

Figure 1. Inhibition of target signaling pathways in cancer cells
following drug treatment. Schematic of signaling pathways
targeted by LY294002 and 17AAG and Western blots showing
modulation of p-4E-BP1 and c-Raf (b-actin as loading control) levels
following administration of DMSO (solvent control; C), LY294002 (L) or
17AAG (A).
doi:10.1371/journal.pone.0026155.g001

MRS Metabolomic Fingerprint of Treatment Response
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treatment group and clear separation between the 3 different

treatment conditions (dimethyl sulfoxide (DMSO) as solvent

control, LY294002 and 17AAG), for both PC3 and LNCaP cell

lines. In light of the excellent separation indicated by the above

analyses and with the objective of gaining a better understanding

of the metabolic changes underlying the observed differences, we

repeated the PCAs, performing comparisons of the spectra

acquired on untreated (solvent control) samples versus those

obtained from either LY294002 or 17AAG treated samples for

each cell line. As expected, the scores plots obtained from these

PCAs (Fig. 3) indicate the complete separation of solvent control

and each of the treatments along the first principal component

(PC1). The advantage of this analysis resides in the fact that the

PC1 loadings plots capture the metabolic changes specifically

induced by the considered drug treatment (compared to control).

In fact, PC1 explains the large majority of the total variability

(between 63% and 77% depending on the cell line/treatment

considered), while PC2 explains less than 12% (between 9% and

12%) of the total variability.

The analysis of the loadings plots (Fig. 4) obtained from each

of the PCAs revealed discriminatory metabolites for the different

cell lines/treatments. Specifically, the loadings plots obtained

from the comparison of solvent control and LY294002 treatments

indicated the decrease of intracellular alanine, lactate, fumarate,

glutathione and phosphocholine concentrations following treat-

ment in both PC3 and LNCaP prostate cancer cells. The

administration of LY294002 also induced the accumulation of

branched amino acids (valine, leucine, isoleucine) and glutamine

in both prostate cancer cells. Some disparate changes among the

two prostate cancer cells were also observed, including the

decrease of taurine, myo-inositol and uridine diphosphate (UDP)-

glucose in PC3 cells and asparagine and glycine in LNCaP cells,

and the accumulation of glucose, glycine, phenylalanine, tyrosine

and histidine in PC3 cells and UDP-N-acetyl-glucosamine, UDP-

N-acetyl-galactosamine, creatine, phosphocreatine, choline, gly-

cerophosphocholine, taurine, myo-inositol and citrate in LNCaP

cells.

In the case of 17AAG treatment, a decrease in lactate, alanine,

fumarate and glutamine, and the intracellular accumulation of

valine, leucine, isoleucine, phosphocholine, myo-inositol, taurine

and citrate were observed in both PC3 and LNCaP cells. It is

worth noting that citrate represents the largest peak in the loadings

plot, Fig. 4B, for PC3 cells treated with 17AAG. This metabolite

was virtually undetected in untreated and LY294002-treated PC3

cells, but accumulated in substantial amounts following 17AAG

treatment, as depicted in Fig. 5.

Other metabolic changes induced by treatment with 17AAG

included the intracellular accumulation of glucose, glycine,

phenylalanine, tyrosine and hystidine in PC3 and accumulation

of creatine, phosphocreatine, choline and glycerophosphocholine

in LNCaP cells. Concurrently glutathione and UDP-glucose

decreased in PC3 and asparagine, glycine, UDP-N-acetyl-

glucosamine and UDP-N-acetyl-galactosamine decreased in

LNCaP cells. Interestingly, our results indicated that several

metabolic changes in response to treatment with LY294002 and

17AAG were common to both prostate cancer cells.

Targeted analysis of proton MR spectra of breast cancer
cells

MCF-7 cells were treated with 25 mM LY294002 or 3 mM

17AAG. Similarly to the prostate samples, these doses were

previously determined such that they induced inhibition of target

proteins and inhibition of cell growth [24,48].

To confirm the generality of our findings in prostate cells we

next conducted a targeted analysis of the metabolic consequences of

LY294002 and 17AAG treatment in the MCF-7 cells. We focused

on the common metabolic changes detected in the prostate

samples when using the untargeted approach and therefore

quantified the modulations in the intracellular levels of lactate,

alanine, fumarate, phosphocholine, glutamine and glutathione. In

complete agreement with the results reported above for the

prostate cells, treatment with LY294002 induced the decrease of

intracellular alanine, lactate, fumarate, glutathione and phospho-

choline in MCF-7 breast cancer cells. Similarly, the decrease of

lactate, alanine, fumarate and glutamine, and the accumulation of

phosphocholine induced by the 17AAG treatment in PC3 and

LNCaP cells was also confirmed in MCF-7 breast cancer cells.

Quantification of the main metabolic changes is summarized in

Figure 6.

Discussion

In this study we investigated the global metabolic effects

induced in PC3 and LNCaP prostate cancer cell lines through

the pharmacological intervention with LY294002, a PI3K

inhibitor, and 17AAG, an HSP90 chaperone-function inhibi-

tor. We characterized the metabolic fingerprints of the prostate

cancer cells with and without treatment using 1H MRS and

then determined the metabolic changes associated with

response to each treatment using a completely untargeted and

unbiased multivariate statistical approach (PCA). Our aim was

to identify the commonalities in the two cell lines of the

Figure 2. Multivariate statistical analysis of the MR spectra. Scores plots (PC1 vs PC2) obtained by performing PCA on the MR spectra
acquired on polar extracts (8 replicates per treatment condition) of (A) both PC3 and LNCaP cells, and individual (B) PC3 and (C) LNCaP prostate
cancer cells following a 48-hrs treatment with DMSO (solvent control, black), LY294002 (green) and 17AAG (red).
doi:10.1371/journal.pone.0026155.g002
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metabolic signatures associated with response to treatment for

each of the inhibitors. A common metabolic profile was

observed in our studies that indicates that several metabolites

are simultaneously modulated following treatment with each of

the inhibitors. Moreover, we also confirmed the generality of

the two treatment-specific metabolic signatures in a breast

cancer cell line (MCF-7).

When considering the two inhibitors, both LY294002 and

17AAG have the ability to affect signaling via the PI3K pathway,

as indicated by decreased p-4E-BP1 levels downstream of

mammalian target of rapamycin (mTOR). The results of the

metabolic profiling indicate that regardless of the inherently

different metabolic fingerprint and genetic background of the two

prostate and one breast cancer cell lines, changes in the metabolic

signatures induced by the drug treatments demonstrate common-

alities which are probably associated with the PI3K/Akt pathway

and downstream modulation of HIF-1a. Both drug treatments

induce the intracellular depletion of lactate and alanine in all 3 cell

lines. Lactate dropped between 30% and 65% after LY294002

treatment and between 17% and 35% after 17AAG treatment,

depending on the cell line. Alanine dropped between 20% and

50% with LY294002 and between 27% and 58% with 17AAG

depending on the cell line. These results points to hindered

glycolysis upon administration of the drug treatments and is

consistent with the known activation of glucose uptake and

glycolysis by PI3K/Akt signaling [49]. Intracellular fumarate also

decreased (between 43% and 72% with LY294002 and between

36% and 88% with 17AAG treatment) in all prostate and breast

cancer cells after the administration of either drug indicating that

it might be a key mediator of this response. In fact, it has been

previously reported that the inhibition of fumarate hydratase (FH)

and the associated accumulation of intracellular fumarate coincide

with HIF upregulation [50].

In contrast, other metabolites showed a ‘‘drug-specific’’

behavior. Phosphocholine dropped (13 to 50% depending on the

cell line) following PI3K inhibition but increased (between 10 and

83%) following HSP90 inhibition, in line with previous studies.

Phosphocholine was previously reported to decrease following

treatment with LY294002 and wortmannin (another PI3K

inhibitor; [22]) and increase following 17AAG treatment in

human breast and colon cancer cell lines [24,25].

The modulation of glutamine was also drug specific: it

increased (approximately 25% in the 2 prostate cancer cell lines)

or stayed constant following PI3K inhibition and dropped (20–

Figure 3. Multivariate statistical analysis of the MR spectra. Scores plots (PC1 vs PC2) obtained by performing PCA on the MR spectra
acquired on polar extracts (8 replicates per treatment condition) of PC3 and LNCaP prostate cancer cells. Control samples were compared to samples
treated for 48 hours with either LY294002 ((A) for PC3 and (C) for LNCaP cells) or 17AAG ((B) for PC3 and (D) for LNCaP cells).
doi:10.1371/journal.pone.0026155.g003

MRS Metabolomic Fingerprint of Treatment Response
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30%) following HSP90 inhibition. To the best of our knowledge,

these findings have not been previously reported. Whereas

further studies are needed to fully understand the underlying

mechanism of these changes, these observations are in line with

the potentially fundamental role of glutaminolysis in cancer cell

growth and the molecular/metabolic links reported between Myc

and both glutaminase expression and glutamine-uptake regula-

tion [51–53].

The observation that the intracellular concentration of citrate

is increased following 17AAG treatment is highly significant in

the context of prostate cancer as it might indicate a specific shift

towards a more physiologic metabolism of prostate cancer cells.

Citrate is known to be physiologically present in large amounts

in the healthy prostate. However, citrate levels dramatically

drop upon development of prostate cancer. Although 17AAG

has not shown significant efficacy in a phase II clinical trial in

prostate cancer patients, it is possible that the use of this drug

combined with other agents would contribute to improving

outcome by mediating a normalization of metabolism in

prostate cancer cells.

In conclusion, this research highlights the potential of MRS-

based untargeted metabolomics. Using this approach we identified

a possible global metabolic signature associated with PI3K and

HSP90 inhibition. This study not only confirmed previous work

Figure 4. Multivariate statistical analysis of the MR spectra. Loadings plots (on PC1) obtained by performing the PCA comparisons on the MR
spectra of control and one treatment per analysis (as shown in Fig. 3) acquired on polar extracts of PC3 (black line) and LNCaP (red line) prostate
cancer cells following 48 hours of treatment with (A) LY294002 or (B) 17AAG. Enlarged sections of the loadings plots represent the region of 1.9–4.1
ppm. Ala: alanine; Asn: asparagine; Cho: choline; Cit: citrate; Cre: creatine; Fum: fumarate; Glc: glucose; Gln: glutamine; Gly: glycine; GPcho:
glycerophosphocholine; GSH: glutathione; His: histidine; Ile: isoleucine; Lac: lactate; Leu: leucine; m-Ino: myo-inositol; Pcho: phosphocholine; Pcre:
phosphocreatine; Phe: phenylalanine; Tau: taurine; Tyr: tyrosine; Val: valine, UDPS: UDP sugars.
doi:10.1371/journal.pone.0026155.g004
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but also identified previously unknown putative links between

signaling and metabolic pathways. Once individual metabolic

changes are validated through detailed mechanistic studies, a

combination of metabolic alterations could be envisaged which

would provide a more specific signature of response than single

metabolite biomarkers. Additional studies are under way in our

lab in animal xenograft models of breast and prostate cancer to

verify and validate in vivo the response signature to treatment with

PI3K and HSP90 inhibitors using high resolution magic angle

spinning (HR-MAS) MRS and MR spectroscopic imaging. The

potential value of HR-MAS MR analysis of tumor biopsies to

predict long-term survival and evaluate response to treatment has

been previously reported [54]. In the long term, knowledge of the

expected metabolic signature of response to targeted therapies

could lead to the development of automated decision-support tools

based on in vivo noninvasive patient MRS data similar to the

approach developed in the context of the INTERPRET project

(http://gabrmn.uab.es/INTERPRET) wherein the MRS signa-

ture is proposed as a tool to assist in the diagnosis and grading of

brain tumors and other abnormal brain masses [55,56].

Ultimately, this could lead to specific non-invasive methods for

monitoring response in the in vivo clinical setting.

Figure 5. Accumulation of citrate following treatment with
17AAG in PC3 prostate cancer cells. Enlarged section (2.49 – 2.72
ppm) of the MR spectra acquired on polar extracts of PC3 cells
following 48 hours of treatment with DMSO (solvent control, black),
LY294002 (green) and 17AAG (red). Spectra were normalized according
to the probabilistic quotient normalization method.
doi:10.1371/journal.pone.0026155.g005

Figure 6. Common metabolic changes in prostate and breast cancer cells following drug treatment. Quantification of selected
metabolites (shown as percent of control, mean 6 standard deviation) from MR spectra acquired on prostate (PC3 and LNCaP, N = 8) and breast
(MCF-7, N = 3) cancer cell lines following 48 hours of treatment with (A) LY294002 or (B) 17AAG. *: p,0.05; **: p,0.005; ***: p,0.0005. Pcholine:
phosphocholine.
doi:10.1371/journal.pone.0026155.g006

MRS Metabolomic Fingerprint of Treatment Response
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Materials and Methods

Cell culture and treatments
PC3, LNCaP (prostate) and MCF-7 (breast) cancer cell lines

were obtained from American Type Culture Collection via

University of California San Francisco (UCSF) Cell Culture

Facility (San Francisco, CA, USA) and were maintained in

exponential proliferation in Dulbecco’s Modified Eagle Medium

(DMEM) supplemented with 10% heat-inactivated fetal bovine

serum, 2 mM L-glutamine, 100 units ml21 of penicillin and

100 mg ml21 of streptomycin. The cells were cultured in a

humidified chamber at 37uC and with 5% CO2.

For all the experiments cells were incubated with drug for

48 hours as follows. PC3 cells with 25 mM LY294002 (PI3K

inhibitor) and 1 mM 17AAG (HSP90 inhibitor), LNCaP cells with

10 mM LY294002 and 0.25 mM 17AAG and MCF-7 cells with

25 mM LY294002 and 3 mM 17AAG. The treatment doses were

determined such that they decreased cell viability to approxi-

mately 50% of solvent control after 48 hours of treatment by

using the cell proliferation assay detailed below. All treatments

were performed with matching DMSO solvent control (1:1000

final concentration in culture medium) and were replenished after

24 hours.

Cell viability assay
The effect of different drug treatment doses on cell viability was

determined using the WST-1 reagent assay (Roche). Cells were

seeded in 96-well plates and treated for 4 to 48 hours with 4

different treatment doses for each drug. After treatment, WST-1

reagent was incubated in wells for approximately 1 hour and cell

viability was determined by spectrophotometric (Tecan) quantifi-

cation of absorbance at 440 nm.

Western Blotting
The effect of treatment with LY294002 and 17AAG on the

levels of target proteins was analyzed by Western blotting. Whole

cell lysates from treated and untreated cells were separated on 4%

to 20% SDS-PAGE gels (Bio-Rad). Proteins were then transferred

onto nitrocellulose membranes, blocked and incubated with

primary and secondary (anti-IgG horseradish peroxidase-linked,

Cell Signaling) antibodies. Primary antibodies against p-4E-BP1,

c-Raf and b-actin (as loading control) (Cell Signaling) were used.

Immunocomplexes were visualized using enhanced chemilumi-

nescence (ECL) Western Blotting Substrate (Pierce).

MR sample preparation
In all cases, cells were extracted using a dual phased extraction,

as described previously [29]. The extraction of MCF-7 breast

cancer cells (3 replicates) was previously described in detail

[24,48]. In the case of PC3 or LNCaP prostate cancer cells,

following 48 hour treatments, approximately 56106 cells were

washed twice with phosphate buffered saline (PBS) in the tissue

culture flask and then fixed using ice-cold methanol. Cells were

then scraped off and transferred with the methanol to a glass

centrifuge tube. Chloroform and water were then added to the

methanol in equal volumes (final solution 1:1:1 methanol:chlor-

oform:water). The solution was vortexed and centrifuged to

separate the aqueous and lipid phases. The two phases were then

collected separately and dried. The dried polar extracts (8

replicates per treatment per cell line) were then redissolved in

600 ml of 100 mM phosphate buffer (pH 7.0) prepared in 90%

H2O - 10% D2O and containing 0.5 mM sodium 3-(trimethylsi-

lyl)propionate-2,2,3,3-d4 (TMSP, Cambridge Isotope Laborato-

ries) as internal reference.

MR data acquisition and processing
One dimensional (1D) 1H MR spectra acquisition was

performed on the aqueous fraction of the PC3 and LNCaP cell

extracts using a 600 MHz spectrometer equipped with a

cryogenically cooled probe. 90u pulse and 4 s relaxation delay

were used and the water resonance was suppressed using

excitation sculpting [57]. The acquisition of 1H MR data from

MCF-7 cells extracts was previously described [24,48].

All the MRS datasets were processed using NMRLab [58] in

the MATLAB programming environment (The MathWorks,

Inc.). Following standard processing steps, spectra were aligned,

selected signals arising from residual solvents (water, methanol

and chloroform) and from TMSP were excluded. Spectra were

normalized according to the probabilistic quotient method [59].

Spectra acquired on PC3 and LNCaP cell samples were then

binned at approximately 0.0017 ppm and the generalized-log

transformation was applied prior to conducting the multivariate

statistical analysis [60]. Principal component analysis (PCA) of the

complete PC3 and LNCaP extract MRS datasets was carried out

using MATLAB. For all datasets, MRS resonances of metabolites

were assigned by comparison with spectra of standard com-

pounds (www.bml-nmr.org) and the peak integrals of selected

metabolites were calculated using ACD/Spec Manager version

9.15 software (Advanced Chemistry Development) for relative

quantification. Data are reported as mean values 6 standard

deviation. It should be noted that the MRS datasets were

acquired under slightly different conditions for the breast and the

prostate cancer samples. However, for each cell line the spectra of

treated samples were always acquired under the exact same

conditions as the matching control samples. The relative

quantifications (as percent change when treatment is compared

to control) are thereby unaffected by the differing acquisition

conditions. For the prostate cancer samples (N = 8 per treatment

condition and per cell line) statistical significance was determined

using a Mann-Whitney U test with p,0.05 considered signifi-

cant. For the breast cancer samples (N = 3) which were used to

confirm the trends observed in the prostate samples, statistical

significance was assessed using a one-sided Mann-Whitney U test

with p,0.05 considered significant.

Acknowledgments

We wish to thank Judy Su and Alissa Brandes for providing MRS data.

Author Contributions

Conceived and designed the experiments: AL SMR. Performed the

experiments: AL. Analyzed the data: AL. Wrote the paper: AL SMR.

References

1. Warburg O (1956) On the origin of cancer cells. Science 123: 309–314.

2. Hsu PP, Sabatini DM (2008) Cancer cell metabolism: Warburg and beyond.

Cell 134: 703–707.

3. Kaelin WG, Thompson CB (2010) Q&A: Cancer: Clues from cell metabolism.

Nature 465: 562–564.

4. Jones RG, Thompson CB (2009) Tumor suppressors and cell metabolism: A

recipe for cancer growth. Genes Dev 23: 537–548.

5. Albers MJ, Bok R, Chen AP, Cunningham CH, Zierhut ML, et al. (2008)

Hyperpolarized 13C lactate, pyruvate, and alanine: Noninvasive biomark-

ers for prostate cancer detection and grading. Cancer Res 68: 8607–

8615.

6. Day SE, Kettunen MI, Gallagher FA, Hu D-E, Lerche M, et al. (2007) Detecting

tumor response to treatment using hyperpolarized 13C magnetic resonance

imaging and spectroscopy. Nat Med 13: 1382–1387.

MRS Metabolomic Fingerprint of Treatment Response

PLoS ONE | www.plosone.org 7 October 2011 | Volume 6 | Issue 10 | e26155



7. Seth P, Grant A, Tang J, Vinogradov E, Wang X, et al. (2001) On-target

inhibition of tumor fermentative glycolysis as visualized by hyperpolarized
pyruvate. Neoplasia 13: 60–71.

8. Stroobants S, Goeminne J, Seegers M, Dimitrijevic S, Dupont P, et al. (2003)

18FDG-Positron emission tomography for the early prediction of response in

advanced soft tissue sarcoma treated with imatinib mesylate (Glivec).
Eur J Cancer 39: 2012–2020.

9. Van den Abbeele AD, Ertuk M (2008) FDG-PET to measure response to

targeted therapy: The example of gastrointestinal stromal tumor and imatinib
mesylate (Gleevec). PET Clinics 3: 77–87.

10. Ward CS, Venkatesh HS, Chaumeil MM, Brandes AH, VanCriekinge M, et al.
(2010) Noninvasive detection of target modulation following phosphatidylinositol

3-kinase inhibition using hyperpolarized 13C magnetic resonance spectroscopy.
Cancer Res 70: 1296–1305.

11. Dafni H, Larson PEZ, Hu S, Yoshihara HAI, Ward CS, et al. (2010)
Hyperpolarized 13C spectroscopic imaging informs on hypoxia-inducible factor-

1 and Myc activity downstream of platelet-derived growth factor receptor.
Cancer Res 70: 7400–7410.

12. Glunde K, Ackerstaff E, Mori N, Jacobs MA, Bhujwalla ZM (2006) Choline

phospholipid metabolism in cancer: Consequences for molecular pharmaceutical

interventions. Mol Pharm 3: 496–506.

13. Jacobs MA, Barker PB, Bottomley PA, Bhujwalla Z, Bluemke DA (2004) Proton
magnetic resonance spectroscopic imaging of human breast cancer: A

preliminary study. J Magn Reson Imaging 19: 68–75.

14. Jagannathan NR, Singh M, Govindaraju V, Raghunathan P, Coshic O, et al.

(1998) Volume localized in vivo proton MR spectroscopy of breast carcinoma:
Variation of water-fat ratio in patients receiving chemotherapy. NMR Biomed

11: 414–422.

15. Kurhanewicz J, Vigneron DB, Hricak H, Narayan P, Carroll P, et al. (1996)

Three-dimensional H-1 MR spectroscopic imaging of the in situ human prostate
with high (0.24-0.1-cm(3)) spatial resolution. Radiology 198: 795–805.

16. Mori N, Delsite R, Natarajan K, Kulawiec M, Bhujwalla ZM, et al. (2004) Loss

of p53 function in colon cancer cells results in increased phosphocholine and

total choline. Mol Imaging 3: 319–323.

17. Nakagami K, Uchida T, Ohwada S, Koibuchi Y, Suda Y, et al. (1999) Increased
choline kinase activity and elevated phosphocholine levels in human colon

cancer. Japanese Journal Cancer Research 90: 419–424.

18. Roebuck JR, Cecil KM, Schnall MD, Lenkinski RE (1998) Human breast

lesions: Characterization with proton MR spectroscopy. Radiology 209:
269–275.

19. Ross B, Michaelis T (1994) Clinical applications of magnetic resonance

spectroscopy. Magn Reson Q 10: 191–247.

20. Yeung DKW, Cheung HS, Tse GMK (2001) Human breast lesions:

Characterization with contrast-enhanced in vivo proton MR spectroscopy -
Initial results. Radiology 220: 40–46.

21. Al-Saffar NMS, Jackson LE, Raynaud FI, Clarke PA, de Molina AR, et al.

(2010) The phosphoinositide 3-kinase inhibitor PI-103 downregulates choline

kinase alpha leading to phosphocholine and total choline decrease detected by
magnetic resonance spectroscopy. Cancer Res 70: 5507–5517.

22. Beloueche-Babari M, Jackson LE, Al-Saffar NMS, Eccles SA, Raynaud FI, et al.

(2006) Identification of magnetic resonance detectable metabolic changes

associated with inhibition of phosphoinositide 3-kinase signaling in human
breast cancer cells. Mol Cancer Ther 5: 187–196.

23. Beloueche-Babari M, Peak JC, Jackson LE, Tiet MY, Leach MO, et al. (2009)

Changes in choline metabolism as potential biomarkers of phospholipase C
gamma 1 inhibition in human prostate cancer cells. Mol Cancer Ther 8:

1305–1311.

24. Brandes A, Ward C, Ronen SM (2010) 17-allyamino-17-demethoxygeldanamy-

cin treatment results in a magnetic resonance spectroscopy-detectable elevation
in choline-containing metabolites associated with increased expression of choline

transporter SLC44A1 and phospholipase A2. Breast Cancer Res 12: R84.

25. Chung YL, Troy H, Banerji U, Jackson LE, Walton MI, et al. (2003) Magnetic

resonance spectroscopic pharmacodynamic markers of the heat shock protein 90
inhibitor 17-allylamino,17-demethoxygeldanamycin (17AAG) in human colon

cancer models. J Natl Cancer Inst 95: 1624–1633.

26. Jordan BF, Black K, Robey IF, Runquist M, Powis G, et al. (2005) Metabolite

changes in HT-29 xenograft tumors following HIF-1a inhibition with PX-478 as
studied by MR spectroscopy in vivo and ex vivo. NMR Biomed 18: 439.

27. Le HC, Lupu M, Kotedia K, Rosen N, Solit D, et al. (2009) Proton MRS detects

Metabolic Changes in Hormone Sensitive and Resistant Human Prostate

Cancer Model CWR22 and CWR22r. Magn Reson Med 62: 1112–1119.

28. Romanska HM, Tiziani S, Howe RC, Gunther UL, Guizar Z, et al. (2009)
Nuclear magnetic resonance detects phosphoinositide 3-Kinase/Akt-indepen-

dent traits common to pluripotent murine embryonic stem cells and their

malignant counterparts. Neoplasia 11: 1301–1308.

29. Ronen SM, Jackson LE, Beloueche M, Leach MO (2001) Magnetic resonance
detects changes in phosphocholine associated with Ras activation and inhibition

in NIH 3T3 cells. Br J Cancer 84: 691–696.

30. Sankaranarayanapillai M, Tong WP, Yuan Q, Bankson JA, Dafni H, et al.

(2008) Monitoring histone deacetylase inhibition in vivo: Noninvasive magnetic
resonance spectroscopy method. Mol Imaging 7: 92–100.

31. Koul D, Shen R, Kim YW, Kondo Y, Lu Y, et al. (2010) Cellular and in vivo

activity of a novel PI3K inhibitor, PX-866, against human glioblastoma. Neuro

Oncology 12: 559–569.

32. Goetz MP, Toft DO, Ames MM, Erlichman C (2003) The Hsp90 chaperone

complex as a novel target for cancer therapy. Annals of Oncology 14:

1169–1176.

33. Clayton AT, Lindon JC, Cloarec O, Antti H, Charuel C, et al. (2006)

Pharmaco-metabonomic phenotyping and personalized drug treatment. Nature

440: 1073–1077.

34. Holmes E, Loo RL, Stamler J, Bictash M, Yap IKS, et al. (2008) Human

metabolic phenotype diversity and its association with diet and blood pressure.

Nature 453: 396–400.

35. Tiziani S, Lopes V, Günther UL (2009) Early stage diagnosis of oral cancer

using 1H-NMR-based metabolomics. Neoplasia 11: 269–276.

36. Peet AC, McConville C, Wilson M, Levine BA, Reed M, et al. (2007) H-1 MRS

identifies specific metabolite profiles associated with MYCN-amplified and non-

amplified tumour subtypes of neuroblastoma cell lines. NMR Biomed 20:

692–700.

37. Tiziani S, Lodi A, Khanim FL, Viant MR, Bunce CM, et al. (2009)

Metabolomic profiling of drug responses in acute myeloid leukaemia cell lines.

PLoS One 4: e4251.

38. Lodi A, Tiziani S, Khanim FL, Drayson MT, Günther UL, et al. (2011)

Hypoxia triggers major metabolic changes in AML cells without altering

indomethacin-induced TCA cycle deregulation. ACS Chem Biol 6: 169–175.

39. Bathen TF, Jensen LR, Sitter B, Fjoesne HE, Halgunset J, et al. (2007) MR-

determined metabolic phenotype of breast cancer in prediction of lymphatic

spread, grade, and hormone status. Breast Cancer Res Treat 104: 181–189.

40. Bathen TF, Sitter B, Sjobakk TE, Tessem MB, Gribbestad IS (2010) Magnetic

resonance metabolomics of intact tissue: a biotechnological tool in cancer

diagnostics and treatment evaluation. Cancer Res 70: 6692–6696.

41. Chan ECY, Koh PK, Mal M, Cheah PY, Eu KW, et al. (2009) Metabolic

profiling of human colorectal cancer using high-resolution magic angle spinning

nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chroma-

tography mass spectrometry (GC/MS). J Proteome Res 8: 352–361.

42. Cheng LL, Burns MA, Taylor JL, He WL, Halpern EF, et al. (2005) Metabolic

characterization of human prostate cancer with tissue magnetic resonance

spectroscopy. Cancer Res 65: 3030–3034.

43. Sitter B, Bathen T, Hagen B, Arentz C, Skjeldestad FE, et al. (2004) Cervical

cancer tissue characterized by high-resolution magic angle spinning MR

spectroscopy. MAGMA Magn Reson Mater Phys Biol Med 16: 174–181.

44. Schnackenberg LK, Beger RD, Dragan YP (2009) NMR-based metabonomics

in toxicology research In: Vaidyanathan S, Harrigan GG, Goodacre RE, eds.

Metabolome Analyses, Strategies for Systems Biology. Springer. pp 159–172.

45. Courtney KD, Corcoran RB, Engelman JA (2010) The PI3K Pathway As Drug

Target in Human Cancer. Journal of Clinical Oncology 28: 1075–1083.

46. Heath EI, Gaskins M, Pitot HC, Pili R, Tan W, et al. (2005) A Phase II Trial of

17-Allylamino-17-Demethoxygeldanamycin in Patients with Hormone-Refrac-

tory Metastatic Prostate Cancer. Clinical Prostate Cancer 4: 138–141.

47. Solit DB, Ivy SP, Kopil C, Sikorski R, Morris MJ, et al. (2007) Phase I Trial of

17-Allylamino-17-Demethoxygeldanamycin in Patients with Advanced Cancer.

Clinical Cancer Research 13: 1775–1782.

48. Su JS, Woods SM, Ronen SM (2011) Metabolic Consequences of PI3K/AKT

signaling in MCF-7 Breast Cancer Cells. NMR Biomed: doi: 10.1002/

nbm.1764.

49. Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, et al. (2004) Akt

stimulates aerobic glycolysis in cancer cells. Cancer Res 64: 3892–3899.

50. Isaacs JS, Jung YJ, Mole DR, Lee S, Torres-Cabala C, et al. (2005) HIF

overexpression correlates with biallelic loss of fumarate hydratase in renal

cancer: Novel role of fumarate in regulation of HIF stability. Cancer cell 8:

143–153.

51. Gao P, Tchernyshyov I, Chang T-C, Lee Y-S, Kita K, et al. (2009) c-Myc

suppression of miR-23a/b enhances mitochondrial glutaminase expression and

glutamine metabolism. Nature 458: 762–765.

52. Regan PL, Jacobs J, Wang G, Torres J, Edo R, et al. (2011) Hsp90 inhibition

increases p53 expression and destabilizes MYCN and MYC in neuroblastoma.

Int J Oncol 38: 105–112.

53. Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang X-Y, et al. (2008) Myc

regulates a transcriptional program that stimulates mitochondrial glutaminolysis

and leads to glutamine addiction. Proc Natl Acad Sci USA 105: 18782–18787.

54. Cao MD, Sitter B, Bathen TF, Bofin A, Lønning PE, et al. (2011) Predicting

long-term survival and treatment response in breast cancer patients receiving

neoadjuvant chemotherapy by MR metabolic profiling. NMR Biomed: doi:

10.1002/nbm.1762.

55. Perez-Ruiz A, Julia-Sape M, Mercadal G, Olier I, Majos C, et al. (2010) The

INTERPRET Decision-Support System version 3.0 for evaluation of Magnetic

Resonance Spectroscopy data from human brain tumours and other abnormal

brain masses. BMC Bioinformatics 11: 581.

56. Tate AR, Underwood J, Acosta DM, Julià-Sapé M, Majós C, et al. (2006)

Development of a decision support system for diagnosis and grading of brain

tumours using in vivo magnetic resonance single voxel spectra. NMR Biomed

19: 411–434.

57. Hwang TL, Shaka AJ (1995) Water suppression that works - Excitation sculpting

using arbitrary wave-forms and pulsed-field gradients. J Magn Reson 112:

275–279.

58. Günther UL, Ludwig C, Ruterjans H (2000) NMRLAB - Advanced NMR data

processing in MATLAB. J Magn Reson 145: 201–208.

MRS Metabolomic Fingerprint of Treatment Response

PLoS ONE | www.plosone.org 8 October 2011 | Volume 6 | Issue 10 | e26155



59. Dieterle F, Ross A, Schlotterbeck G, Senn H (2006) Probabilistic quotient

normalization as robust method to account for dilution of complex biological
mixtures. Application in H-1 NMR metabonomics. Anal Chem 78: 4281–4290.

60. Parsons HM, Ludwig C, Günther UL, Viant MR (2007) Improved classification

accuracy in 1-and 2-dimensional NMR metabolomics data using the variance
stabilising generalised logarithm transformation. BMC Bioinformatics 8: 234.

MRS Metabolomic Fingerprint of Treatment Response

PLoS ONE | www.plosone.org 9 October 2011 | Volume 6 | Issue 10 | e26155


