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Abstract

Nuclear hormone receptors (NHRs) play vital roles in the regulation of metabolism, reproduction, and development. We
found that inactivation of a C. elegans HNF4 homologue nhr-64 by RNA interference (RNAi) suppresses low fat stores in
stearoyl-CoA desaturase-deficient fat-6;fat-7 double mutants and sterol regulatory element binding protein (SREBP) sbp-1
mutants. Furthermore, inactivation of nhr-64 improves the growth rate of the fat-6;fat-7and sbp-1 strains. While nhr-64RNAi
subtly affects fatty acid composition and fat storage in wild-type C. elegans, its effects on lipid metabolism are most
apparent in the background of stearoyl-CoA desaturase or SREBP deficiency. NHR-64 displays transcriptional activating
activity when expressed in yeast, and inactivation of nhr-64 affects the expression of at least 14 metabolic genes. Wild-type
worms treated with nhr-64 RNAi display increased expression of acetyl-CoA carboxylase as well as increased abundance of
de novo synthesized monomethyl branched chain fatty acids, suggesting an increase in fat synthesis. However, reduced
expression of the acetyl-CoA synthetase gene acs-2 and an acyl-CoA oxidase gene indicates that a key role of NHR-64 may
be to promote fatty acid oxidation in mitochondria and peroxisomes. These studies reveal that NHR-64 is an important
regulator of fat storage in C. elegans.
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Introduction

Nuclear hormone receptors (NHRs) are transcription factors

that respond to lipophilic molecules to regulate the expression of

target genes involved in metabolism, reproduction, and develop-

ment. In mammals, peroxisome proliferator-activated receptors

(PPARs), liver X receptors (LXR), hepatocyte nuclear factor 4

(HNF4) and farnesoid X receptor (FXR) are important regulators

of lipid metabolism [1]. The genome of nematode Caenorhabditis

elegans contains 284 NHRs, several of which have been implicated

in lipid metabolism [2,3]. For example, DAF-12, a homologue of

the vertebrate vitamin D receptor, responds to its ligand,

dafachronic acid, to regulate fat metabolism as well as develop-

ment, dauer formation, and longevity [4–6]. Several NHRs were

shown to regulate lipid deposition as indicated by Nile Red

staining in a genome-wide screen [7].

The HNF4 class of nuclear receptors is greatly expanded in C.

elegans, with 269 members. Mutations in human HNF4a are

associated with maturity-onset diabetes of the young, an autosomal

dominant genetic condition associated with early onset diabetes

[8]. Drosophila melanogaster encodes only one HNF4 ortholog, and

larvae carrying a null mutation in this gene are unable to mobilize

fat stores for energy during starvation [9]. Furthermore, the

Drosophila mutants display decreased expression levels of genes

involved in fatty acid catabolism and oxidation. Two C. elegans

HNF4a orthologs, NHR-49 and NHR-80, regulate fatty acid

desaturation [10,11]. In addition, NHR-49 regulates fatty acid

oxidation and the response of nematodes to fasting [10,12].

Another key regulator of lipid metabolism is the membrane

tethered transcription factor SREBP [13]. It resides in the ER

membrane and levels of cellular lipids regulate its cleavage and

translocation to the nucleus, where it activates a number of genes

involved in lipid synthesis [14,15]. The mammalian SREBP-1a

and SREBP-1c transcription factors stimulate expression of genes

involved in fatty acid biosynthesis while SREBP-2 stimulates genes

involved in cholesterol biosynthesis. C. elegans and Drosophila

melanogaster, neither of which possess all of the enzymes required

for de novo cholesterol synthesis, each encode one SREBP isoform

required for efficient transcription of genes involved in fatty acid

synthesis [16,17]. Dietary supplementation of monounsaturated

fatty acids significantly improves growth of SREBP-deficient

larvae in both species [18,19].

The first step in the production of unsaturated fatty acids is

catalyzed by D9 desaturase, also known as stearoyl-CoA

desaturase (SCD), the enzyme necessary for the insertion of a

double bond into a saturated fatty acid. This step is now

recognized as a key control point in the regulation of fat

homeostasis. Monounsaturated fatty acids are preferred substrates
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for the biosynthesis of triacylglycerol, phospholipids, and choles-

terol esters [20]. In mice, SCD1 deficiency leads to reduced

adiposity resulting from increased energy expenditure and

decreased lipogenesis, as well as to resistance to diet-induced

weight gain [21]. C. elegans SCD deficiency produces a similar

phenotype. Three genes, fat-5, fat-6, and fat-7, encode D9

desaturases in C. elegans [22]. Strains carrying mutations in single

D9 desaturase genes show only subtle defects in fatty acid

composition, growth and fertility because expression the remain-

ing isoforms increases to compensate for the mutated activity. In

contrast, the fat-6;fat-7 double mutant strain displays slow growth,

reduced fertility, and reduced fat stores and increased expression

of genes involved in b-oxidation [23].

Regulation of metabolic homeostasis is very complex, and

anabolic and catabolic pathways are continuously being activated

or repressed in response to dietary input and energy needs.

Because stearoyl-CoA desaturase-deficient mice and nematodes

show an increase in fat oxidation and reduced fat storage, we

sought to reverse this phenotype by isolating suppressor mutations

in C. elegans that restore fat stores in the low-fat fat-6;fat-7 double

mutant strain. Suppressor screens are a powerful way to uncover

more information about how a particular gene product functions

in the context of other cellular proteins and pathways. We used

RNA interference (RNAi) to screen the large family of C. elegans

nuclear receptors for gene inactivations that suppress the low fat

and slow growth of stearoyl-CoA desaturase deficient nematodes.

We found that reduction of nhr-64 by RNAi increases fat stores

and improves the growth and brood size of fat-6;fat-7 double

mutants. In addition, inactivation of nhr-64 also partially

suppresses the SREBP mutation sbp-1 and increases fat stores in

wild type animals. The suppression of the slow growth and low fat

stores in the fat-6;fat-7 double mutants correlates with lower levels

of stearic acid (18:0) and decreased expression of several b-

oxidation genes, indicating that NHR-64 is an important regulator

of lipid homeostasis.

Results

Nuclear hormone receptor nhr-64 suppresses low fat of
stearoyl-CoA desaturase (SCD)-deficient C. elegans

C. elegans fat-6;fat-7 double mutants, like SCD1 deficient mice,

accumulate less fat than wild type and display developmental

defects that are due to defective biosynthesis of unsaturated fatty

acids [23]. Previous studies indicated that reduction of nhr-80 and

nhr-49 would enhance fat-6;fat-7 growth defects, since these two

NHRs are required for the induction of fat-5, which encodes a

palmitic acid-specific D9 desaturase activity that partially com-

pensates for fat-6 and fat-7 deficiency [10,11]. However, we

suspected that some NHRs may regulate other lipid metabolism

pathways that may compensate for the fat-6;fat-7 defects and

therefore improve the fat-6;fat-7 growth and fat storage defects. We

used feeding RNAi to inactivate over 200 genes encoding nuclear

hormone receptors. Suppression of the fat-6;fat-7 defects was

scored by examining lipid deposition using Nile Red staining and

monitoring growth rate and brood size of fat-6;fat-7 mutants.

We found that inactivation of the nuclear hormone receptor

gene nhr-64 led to higher fat stores in fat-6;fat-7 double mutants as

visualized by Nile Red staining of fixed animals (Figure 1A). To

verify our observation, we measured the fat content of nhr-64

worms by separating lipid classes using thin layer chromatography

(TLC) and quantifying them using gas chromatography (GC)

(Figure 1B). We confirmed our previous findings that fat-6;fat-7

double mutants have lower fat stores than wild type [23].

Inactivation of nhr-64 by RNAi increased the TAG content of

fat-6;fat-7 (TAG/total lipid ratio increased from 30.5% to 33.5%).

Furthermore, nhr-64RNAi showed a trend toward increased fat

stores compared to wild type. As expected, we found that nhr-80

and nhr-49 caused arrested growth and lethality in the fat-6;fat-7

strains.

We then quantified the effect of nhr-64RNAi on the growth rate

and brood size of fat-6;fat-7 double mutants (Figures 1C and 1D).

We counted the percentage of animals at various developmental

stages 72 hours after plating synchronized L1s on control bacteria

(EV) or on bacteria producing double-stranded RNA correspond-

ing to nhr-64 (nhr-64RNAi). After 72 hours of growth, less than 10%

of fat-6;fat-7 control animals had reached the adult stage.

However, greater than 50% of fat-6;fat-7 animals treated with

nhr-64RNAi had reached adult stage (Figure 1C). We then

transferred L4 animals from both EV and nhr-64RNAi plates to

corresponding fresh RNAi plates, and scored the number of eggs

laid. As reported previously [23], fat-6;fat-7 double mutants

produced a small fraction of the number of progeny produced

by wild-type nematodes (Figure 1D). In contrast, inactivation of

nhr-64 significantly increased the brood size of fat-6;fat-7 animals

by more than two fold, from an average of 55 progeny per worm

to an average of 127 progeny/worm. Inactivation of nhr-64 did not

cause growth, fertility, and other morphological changes in wild-

type nematodes (Figure 1C and 1D). Thus, the lipid metabolism

changes brought about by nhr-64RNAi are more apparent in the

fat-6;fat-7 double mutants than they are in a wild-type background.

Inactivation of nhr-64 suppresses low fat and slow
growth of sbp-1

Depletion of the C. elegans SREBP ortholog, sbp-1, results in

decreased fat stores, reduced fertility, slow growth, and larval

lethality [7,17,18,24]. Since fat-7 is a target of SBP-1, and dietary

oleic acid rescues some of the defects of sbp-1RNAi [18], we asked

whether inactivation of nhr-64 also suppresses the sbp-1mutation.

A strain carrying a sbp-1 deletion allele (ep79) was created by

excision of a Tc1 element, resulting in removal of the C-terminal

regulatory regions of the gene that deletes 2181 bp of the gene

(Figure S1A). This sbp-1(ep79) strain displays a phenotype very

similar to sbp-1RNAi. The animals grow slowly, and have

decreased fat stores and altered fatty acid composition compared

to wild type (Figures S1B and S1C), indicating that this deletion is

a reduction-of-function allele [7,17,18,24]. We treated sbp-1(ep79)

mutants with nhr-64RNAi and observed a faster growth rate than

the empty vector controls (Figure 2A). However, brood size did

not increase (Figure 2B). Consistent with previous reports

[7,17,18,24], sbp-1(ep79) mutant displayed fewer lipid droplets in

both intestinal and hypodermal cells compared to wild type, but

inactivation of nhr-64 increased the amount of TAG stores in

sbp-1(ep79) (Figure 2C). Our data indicate that nhr-64RNAi can

partially suppress the slow growth rate and low fat stores of sbp-

1(ep79) mutants.

nhr-64RNAi affects fatty acids composition of
monomethyl branched chain fatty acids and stearic acid

Because reduction of nhr-64 by RNAi increases fat stores in wild

type, fat-6;fat-7 double mutants, and sbp-1 mutants, we asked

whether inactivation of nhr-64 influences fatty acid composition.

We found reproducible changes in fatty acid composition of wild

type, fat-6;fat-7, and sbp-1 mutants treated with nhr-64RNAi

(Figure 3). In all three strains, we observed increases in the levels

of two monomethyl branched-fatty acids (mmBFAs), C15iso and

C17iso, in nhr-64RNAi treated worms, while levels of stearic acid

(18:0) decreased. The relative percentages of other fatty acids,

NHR-64 and Fat Homeostasis
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including levels of unusual polyunsaturated fatty acids produced

by fat-6;fat-7 double mutants [23] did not change.

Given the importance of C15iso and C17iso in the regulation of

growth and development in C. elegans [24,25], as well as the fact that

fat-6;fat-7 and sbp-1 mutants have low levels of C15iso and C17iso

[23,24], we suspected that improved growth and higher fat stores of

fat-6;fat-7 double mutants treated with nhr-64RNAi might be a

consequence of increased levels of C15iso and C17iso. However,

dietary supplementation with a range of concentrations of C15iso,

C17iso, or a combination of both fatty acids did not improve growth

rate or fat stores of fat-6;fat-7 double mutants, even though the

dietary supplementation successfully increased the levels of C15iso

and C17iso in the worms (data not shown). Alternatively, optimal

levels of stearic acid (18:0) may be critical for proper fat storage,

growth, and reproduction [10]. We found that the decrease in 18:0

correlates with improved growth and increased fat storage in the fat-

6;fat-7 and sbp-1 mutants treated with nhr-64(RNAi).

Two nhr-64 deletion mutations produce truncated NHR-
64 with residual transcriptional activity

To confirm the suppression of fat-6;fat-7 double mutants by

inactivation of nhr-64, we examined two available nhr-64 deletion

mutants, ok1957 and tm1106. Both nhr-64(ok1957) and nhr-

64(tm1106) mutants appear similar to wild type, with no obvious

changes in growth rate, brood size, and fat storage. The only

phenotype shared by the deletion mutants and the nhr-64RNAi

were specific fatty acid composition changes, most notably the

higher levels of C15iso and C17iso fatty acids (Figure S2A). We

generated both nhr-64;fat-6;fat-7 triple mutant strains and found

that, growing on E. coli OP50, neither deletion mutant was able to

suppress the fat storage and growth defects in fat-6;fat-7 double

mutants. In fact, the triple mutant strains were indistinguishable

from the fat-6;fat-7 double mutants with respect to fat stores,

growth rate, and brood size. The triple mutants did contain higher

C15iso and C17iso levels than fat-6;fat-7, but only a slight

Figure 1. Inactivation of nhr-64 by RNAi increases fat stores, growth rate, and brood size of fat-6;fat-7 double mutants grown on E.
coli strain HT115. Values determined to be significantly different from worms treated with empty vector, *P,0.05, **P,0.01. (A) Inactivation of nhr-
64 increased Nile Red staining of fixed wild type and fat-6;fat-7 double mutants. Images were captured at using identical settings and exposure time
for each image. Animals shown are young adults. Anterior is left, posterior is right. (B) Inactivation of nhr-64 increased the triacylglycerol/total lipid
(TAG/TL) ratio in fat-6;fat-7 double mutants. Total lipids were extracted from three independent biological replicates and separated into
triacylglycerol and phospholipid fractions using thin layer chromatography and quantified using gas chromatography. Error bars are standard
deviation. (C) Improved the growth rate of fat-6;fat-7 double mutants treated with nhr-64RNAi and empty vector control (EV). The graph shows the
percentage of animals that reached adult stage 72 h after plating synchronized L1 larvae onto RNAi plates seeded with E. coli strain HT115 carrying
empty vector (EV) or nhr-64RNAi. The experiment was repeated twice, each time using 100-150 animals. Error bars show the range of the two
experiments. (D) Inactivation of nhr-64 led to increased brood size in fat-6;fat-7 double mutants. The number of progeny produced by individual fat-
6;fat-7 and wild-type animals treated with either empty vector (EV) or nhr-64RNAi was counted. Data shown are the average brood size of 10–15
individuals. Error bars are standard error.
doi:10.1371/journal.pone.0009869.g001
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reduction in 18:0 (Figure S2B and data not shown). Furthermore,

treating the nhr-64;fat-6;fat-7 strain with RNAi corresponding to

the full-length nhr-64 coding sequence led to improved growth

rate, increased brood size, and reduced 18:0 content.

We considered the possibility that our nhr-64 RNAi construct

might target other nuclear hormone receptors, and that suppres-

sion was due to reduction of more than one NHR. However, the

predicted sequence of nhr-64 revealed that the closest homolog,

nhr-69 shows merely a 42% identity, with no stretches greater than

11 nucleotides of identity. Furthermore, we observed no

improvement of fat storage, growth rate, and brood size of fat-

6;fat-7 when treated with RNAi corresponding to nhr-69.

In order to more directly address the issue of off-target effects of

nhr-64RNAi, we constructed an additional RNAi feeding construct

corresponding to 1,184 base pairs of the nhr-64 gene. We chose the

region of nhr-64 which is deleted in the nhr-64(ok1957) and nhr-

64(tm1106) mutant strains, so that the feeding RNAi would not be

able to deplete any residual nhr-64 transcript that may be present in

the deletion mutants. We found that while the truncated nhr-64RNAi

construct was able to suppress the slow growth and low brood size of

fat-6;fat-7 to a similar degree as the full-length nhr-64RNAi construct,

it had no affect on the growth rate or brood size of the nhr-64;fat-

6;fat-7 strain (data not shown). Thus, it is unlikely that off target

RNAi is occurring and we sought to test whether the protein

produced by the truncated nhr-64 gene may be partially functional.

The first three exons of nhr-64 encode a predicted DNA binding

domain (DBD) and the remaining 5 exons encode a predicted

ligand binding domain (LBD) [26,27]. While part of the predicted

LBD is deleted in both nhr-64 mutations (Figure 4A), transcripts

generated by the deletion mutants are predicted to contain exon 8,

which encodes the C-terminal activation domain 2 (AF-2), a

region crucial for transcriptional activity [28,29]. This domain is

conserved in nhr-64, including amino acids required for efficient

transcriptional activation (Figure S3). Furthermore, the AF-2

domain is expected to be translated in the mutant strains because

both deletions permitted the reading frame to be unchanged.

Indeed, RT-PCR analysis showed not only that the expression of

nhr-64 was significantly reduced by nhr-64 RNAi compared to

empty vector background (Figure 4B), but that the mutant nhr-64

strains express shorter nhr-64 transcripts at similar levels as wild

type (Figure 4C). Sequence analysis revealed that transcripts

produced by both nhr-64 deletion strains contain the DNA binding

domain (DBD) and in-frame, intact sequence of exon 8, including

an intact AF-2 domain.

To determine if NHR-64 can function as a transcriptional

activator, we tested activity in yeast using the GAL4BD expression

system. We fused the full-length NHR-64 and truncated NHR-64

lacking the putative transcriptional activation domain, together

with yeast GAL4BD, and expressed the fusion proteins in yeast. If

NHR-64 has transcriptional activity, it will interact with the

GALBD to bind the promoter and activate expression of the HIS

reporter gene. This allows the yeast strain carrying the NHR-64

fusion protein to grow on selective media lacking histidine. We

found that yeast containing the GALBD::NHR-64 fusion protein

grew on media lacking histidine, while yeast containing the

GALBD construct alone, as well as yeast carrying the truncated

NHR-64 lacking the AF-2 domain, were unable to grow on media

without histidine (Figure 4D). Furthermore, the fusion protein

corresponding to the ok1957 deletion of NHR-64 was also able to

grow on media lacking histidine, although the yeast did not grow

as well as those carrying the wild-type NHR-64 fusion protein

(Figure 4D). These results show that NHR-64 possesses transcrip-

tional activating activity, and that this activity depends on the C-

terminal transactivation domain. Furthermore, the deleted NHR-

64, lacking part of the LBD, retains residual transcription activity.

This finding offers an explanation as to why the nhr-64 deletion

mutants do not show the extent of suppression of fat-6;fat-7 low fat

stores or slow growth as treatment with nhr-64(RNAi).

Potential gene targets of NHR-64
Because NHR-64 displays transcriptional activation activity, we

explored potential target genes by using real time quantitative RT-

Figure 2. Inactivation of nhr-64 suppressed the growth rate and fat storage but not brood size of sbp-1(ep79) mutant. For all panels,
white bars are sbp-1(ep79); empty vector and black bars are sbp-1(ep79);nhr-64(RNAi) grown on E. coli strain HT115. (A) Inactivation of nhr-64 improved
the growth of sbp-1(ep79) animals. The number of animals that reached adult stage were counted 75 h after plating synchronized L1 larvae. 500–600
worms were scored for each genotype. Error bars are SEM. (B) The average number of progeny produced by individual sbp-1(ep79) animals treated
with either empty vector (EV) or nhr-64RNAi, n = 25 individuals for each treatment. Error bars are SEM. (C) Inactivation of nhr-64 increased the
triacylglycerol/total lipid ratio in sbp-1 mutants. Total lipids were extracted from two independent biological replicates and separated into
triacylglycerol and phospholipid fractions using thin layer chromatography and quantified using gas chromatography. Error bars show the range of
two independent biological replicates.
doi:10.1371/journal.pone.0009869.g002
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PCR to measure the expression of 89 genes predicted to be

involved in fat metabolism. L4 stage wild-type worms were fed

bacteria expressing double stranded RNA corresponding to nhr-64

or empty vector controls [10,23]. We found reproducible changes

in 14 of the genes, with six showing decreased expression and eight

showing increased expression in nhr-64RNAi worms compared to

empty vector controls (Figure 5A and Table S1). A major gene

expression change consistent with higher de novo fat synthesis in nhr-

64 worms is a 4.5 fold increase in expression of pod-2 (W09B6.1),

which encodes acetyl-CoA carboxylase, the rate limiting step of

fatty acid biosynthesis [30]. Increased expression of acetyl-CoA

carboxylase, together with subtle increases in expression of elo-5

(1.7 fold) and elo-6 (1.4 fold), are consistent with higher levels of

C15iso and C17iso observed in the nhr-64RNAi animals. Although

the yeast studies provide evidence that NHR-64 is a transcriptional

activator, nuclear receptors may also act as repressors, depending

on their interactions with ligands, corepressors, or binding

partners [26,27].

One potential target of NHR-64 activation is F08A8.4, which

encodes a protein homologous to acyl CoA oxidase, an enzyme

that participates in oxidation of fatty acids in peroxisomes [31].

F08A8.4 is expressed three fold lower in nhr-64RNAi worms than

in WT worms. Furthermore, when it is depleted by RNAi, fat

droplets in wild type and in wild type and fat-6;fat-7 increase

(Figure 5B). Importantly, RNAi of F08A8.4 also improved the

growth rate of fat-6;fat-7 double mutants (Figure 5C). Another

gene with reduced expression in nhr-64RNAi is also predicted to act

in peroxisomes. The pmp-2 gene encodes a protein similar to ABC

transporters predicted to transport long-chain fatty acids into

peroxisomes.

We then fed worms E. coli expressing double stranded RNA

corresponding to the genes encoding the other six acyl-CoA

oxidase isoforms, as well as on the two peroxisomal bifunctional

enzymes ech-8 and ech-9, and finally on dhs-28, a recently

characterized component of peroxisomal fatty acid oxidation that

is required for the biosynthesize of daumone, the dauer-inducing

pheromone. There was no improvement of fat-6;fat-7 growth rate

or fat stores when these mutants were treated with RNAi

corresponding to the additional acyl-CoA oxidases, either of the

bifunctional enzymes, or dhs-28. These studies indicate that

F08A8.4 is a key, regulated enzyme in the peroxisomal b-

oxidation pathway.

Four acyl-CoA synthetase genes, acs-1, acs-2, acs-4, and acs-5

also show decreased expression in nhr-64 RNAi treated worms.

Acyl-CoA synthetases activate fatty acids for b-oxidation, but also

for synthetic processes such as fatty acid desaturation, fatty acid

elongation, phospholipid synthesis and TAG synthesis [32]. It is

thought that various isoforms expressed in particular organelles

and tissues play specific roles in channeling fatty acids into

degradative or synthetic pathways. Previous studies have shown

that the expression of acs-2 is activated by NHR-49 in

mitochondria, where its activity promotes b-oxidation[10].

Similarly, inactivation of acs-4 represses serotonin-induced fat

reduction, indicating that ACS-4 also activates fatty acids for b-

oxidation [33].

Finally, several genes predicted to encode components of b-

oxidation machinery, including an enoyl-CoA hydratases, an acyl

CoA oxidase, and a thiolase showed increased expression in nhr-

64RNAi nematodes compared to controls. This gene expression

pattern seems contradictory to the high fat stores in nhr-64RNAi,

however, given the complexity and redundancy of the fat-

regulatory system, it is plausible that these genes are activated

indirectly to compensate for metabolic changes induced by the

depletion of NHR-64.

Discussion

Energy homeostasis depends on proper control of the balance

between fat synthesis and fat oxidation. Stearoyl-CoA desaturase

deficient worms (fat-6;fat-7 double mutants), as well as SREBP

deficient worms (sbp-1 mutants) have lower fat stores, slower

growth, and reduced fertility compared to wild type. In addition,

the fat-6;fat-7 strain displays increased expression of multiple genes

encoding proteins that are predicted to function in fat oxidation

pathways [23]. Depleting nhr-64 by RNAi leads to higher fat stores

and improved growth and reproduction in fat-6;fat-7 and sbp-1

mutants, as well as to subtle changes in fatty acid composition and

fat storage in wild-type animals (Figures 1–3). Because depletion of

nhr-64 leads to increased expression pod-2 (acetyl-CoA carboxyl-

ase), the rate limiting step of fatty acid synthesis, and also to higher

levels of the momonmethyl branched chain fatty acids C15iso and

C17iso (Figure 5A), one function of NHR-64 may be to act as a

repressor of fat synthesis. Indeed, higher levels of C15iso and

C17iso may be indicative of higher levels of endogenous fat

synthesis [34]. At the same time, depletion of nhr-64 causes

increased expression of acyl-CoA oxidase, which functions in

peroxisomal fat oxidation. Depletion of this acyl-CoA oxidase itself

causes higher fat stores in wild type and fat-6;fat-7 animals, and

improves the growth rate of fat-6;fat-7 (Figure 5). Experiments in

yeast support the assertion that NHR-64 can function as a

transcriptional activator (Figure 4D).

One model to explain the suppression of fat-6;fat-7 by nhr-64 is

that the two are acting in parallel pathways, with each pathway

having an opposite effect on the fat storage/fat oxidation balance.

Because reducing stearoyl-CoA desaturase activity drives the

balance toward oxidation, and reducing NHR-64 activity drives

the balance back toward storage, a more optimal outcome will

occur when activity of both pathways is reduced. An alternative

model is that 18:0 (which accumulates to high levels in fat-6;fat-7

mutants), or a signal derived from it, may activate NHR-64 to

promote increased fat oxidation in peroxisomes. Indeed, mam-

malian nuclear receptors such as PPAR-a and PPAR-c are

activated by fatty acids or their derivatives [26,27] and structural

analysis of the ligand binding domain of HNF4a revealed long

chain fatty acids bound in the ligand binding pocket [35,36].

Even though the nhr-64 deletion mutants contain elevated

levels of monomethyl branch chain fatty acids, which may

suggest increased fat synthesis, the mutants failed to suppress the

low fat stores or slow growth of fat-6;fat-7 double mutants. The

fact that the nhr-64 deletion strains fail to increase the fat stores

in the fat-6;fat-7 double mutants growing on these strains

indicates that the truncated NHR-64 protein may retain the

ability to activate transcription of the peroxisomal fat oxidation

genes. Therefore, decreased fat oxidation in nhr-64 depleted

fat-6;fat-7 mutants may be the key process necessary for the

Figure 3. Inactivation of nhr-64 by RNAi influences fatty acid composition. Treatment with nhr-64RNAi led to increased levels of mono-
methyl branched fatty acids C15iso and C17iso and reduced levels of C18:0 in (A) wild type (B) fat-6;fat-7 double mutants and (C) sbp-1(ep79) mutants.
Values are obtained from total lipids measured by gas chromatography (GC), worms were grown on E. coli strain HT115. Data shown are the average
of three or four determinations of total fatty acids, each from two or three independent biological replicates; error bars represent the standard error.
All comparisons shown were determined to differ significantly, P,0.05.
doi:10.1371/journal.pone.0009869.g003
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Figure 4. Partial suppression and partial transcriptional activation activity of an nhr-64 deletion mutant. (A) Simplified scheme of nhr-
64 gene structure. White arrows are exons and black lines are introns. DBD: DNA binding domain; LBD: ligand binding domain. RNAi: RNA
interference; AF-2: transactivation domain. (B) The expression of nhr-64 in L4s WT animals treated with nhr-64RNAi or EV control. Data were the
average of two independent biological repeats and quantified with GeneSnap software. (C) The transcripts of nhr-64 in WT (1110 bp), nhr-
64(ok1957) mutation (665 bp) and nhr-64(tm1106) mutation (771 bp). Ladder: 1 kb DNA ladder (Fisher Scientific). (D) Demonstration of
transcriptional activation activity of WT and truncated NHR-64. Deletion of exon 8 (pBD::NHR-64D8) abolished the ability of NHR-64 to grow on
selective SD medium without both tryptophan and histidine (SD-trp-his), indicating lack of transcriptional activation activity. The protein predicted
to be synthesized by the nhr-64(ok1957) deletion mutant (pBD::NHR-64ok) retains the ability to grow on SD-trp-his selective medium, indicating
residual transcriptional activation activity.
doi:10.1371/journal.pone.0009869.g004
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suppression of the low fat stores and slow growth in the stearoyl-

CoA desaturase-deficient strain.

Notably, depletion of NHR-64 by RNAi not only increased fat

stores in fat-6;fat-7 and sbp-1 mutants, but also permitted a faster

growth rate in both strains. One contributor to the low fat

phenotype of stearoyl-CoA deficiency in mice and nematodes is

likely to be increased fat oxidation [21,23]. Our studies suggest

that fatty acid oxidation is reduced in the absence of NHR-64,

and therefore the fats that avoid oxidation may be available as an

energy source for organismal growth. Alternatively, the altered

fatty acid composition, especially reduced 18:0 in nhr-64(RNAi);

fat-6;fat-7 compared to fat-6;fat-7 may allow for faster growth

because of a more optimal membrane lipid composition. Both fat-

6;fat-7 and sbp-1 strains have greatly reduced fecundity. It is

interesting that nhr-64 depletion led to the the production of more

viable embryos in the fat-6;fat-7 strain, but it did not improve

Figure 5. NHR-64 affects transcription of metabolic genes. (A) Quantitative RT-PCR was use to investigate the expression of 89 metabolic
genes in L4 stage nematodes treated with nhr-64RNAi compared to empty vector controls. Worms were grown on E. coli strain HT115. For full list of
genes tested, see Table S1. Data shown are the average of three or four biological determinations. (B) Fat staining of fixed wild-type and fat-6;fat-7
young adults treated with RNAi corresponding to F08A8.4 shows that depletion of the acyl-CoA oxidase encoded by F08A8.4 leads to increased fat
stores. Anterior is left and posterior is right. (C) Inactivation of F08A8.4 in fat-6;fat-7 double mutants resulted in increased growth rate. The number of
worms that had reached adult stage in a population were counted 72 hours after plating synchronized L1 stage larvae. The experiment was repeated
three times, each time with 100–200 worms. Error bars are SEM.
doi:10.1371/journal.pone.0009869.g005
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fecundity of the sbp-1 strain. This suggests that increased fat stores

per se is not sufficient to overcome the reproductive defects in the

sbp-1 strain.

NHR-64 is the third member of the expanded family of C.

elegans HNF4 nuclear receptors shown to regulate lipid metabo-

lism. NHR-49 and NHR-80 are both necessary for efficient

transcription of stearoyl-CoA desaturase genes and are therefore

required for maintaining proper fatty acid composition [10,11].

NHR-64 is one of five C. elegans NHRs that shows relatively strong

similarity to the NHR-49 ligand binding domain (LBD), and, of

these five, only NHR-64-LBD was shown to interact with the

transcriptional mediator subunit MDT-15 in a yeast two-hybrid

assay [37]. MDT-15 also interacts with SREBP, and the fatty acid

composition analysis C. elegans depleted of MDT-15 by RNAi

reveals a severe deficiency in unsaturated fatty acids [18,37].

Combining fat-6 mutants with nhr-49 or sbp-1 leads to lethality due

to the lack of compensatory up-regulation of fat-5 and fat-7 genes

(our unpublished observations), however, this study reveals that

depletion of nhr-64 leads to suppression of the fat-6;fat-7 low fat

and slow growth phenotypes, and that the improved growth rate

and lower fat stores correlates with lower stearic acid content.

Thus, various members of the C. elegans HNF4 nuclear receptor

family are capable of responding in opposite ways to maintain

optimal lipid homeostasis. Opposing activities of nuclear receptors

are critical for ensuring lipid homeostasis in mammals, for

example, PPARa promotes b-oxidation of fatty acids, while

PPARc promotes adipocyte differentiation and fat storage [38].

We have identified NHR-64 as a novel regulator of fat

homeostasis in C. elegans. These studies underscore the complexity

of compensatory mechanisms that occur in animals to balance fat

storage, growth, and reproductive efficiency. We propose that

NHR-64 inhibits de novo fat synthesis, and under certain

conditions, acts to promote fat oxidation in peroxisomes. Proper

function of NHR-64 maintains optimal fat stores for growth and

reproduction.

Materials and Methods

Worm strains, growth conditions and RNAi
Nematode growth media was used to maintain C. elegans with

the E. coli (OP50) as food at 20u unless specifically noted. The wild-

type strain was N2. The strains used in this study were: RB1592

nhr-64(ok1957), BX211 nhr-64(tm1106), CE541 sbp-1(ep79), BX156

fat-6(tm331);fat-7(wa36), BX212 nhr-64(tm1106);fat-6(tm331);fat-

7(wa36), BX202 nhr-64(ok1957);fat-6(tm331);fat-7(wa36). Dietary

fatty acid supplementation experiments used freshly prepared

plates as described in [39]. RNAi was performed by feeding

bacterial strains from the Ahringer C. elegans RNAi library,

obtained from Gene Services (Source Bioscience) [40]. The empty

vector (L4440) in the Ahringer library HT115 E. coli strain was

used as the negative control for RNAi experiments. The nhr-64

deletion RNAi construct was made by amplifying 1,184 base pairs

of C. elegans genomic DNA corresponding to the region of nhr-64

that is deleted in the nhr-64(ok1957) and nhr-64(tm2206) strains,

using the forward primer (CTCGTAAACAGGCGACCACA)

and the reverse primer (AATCGGTAAGCCGTTCA). The

amplified sequence was cloned into the ‘‘double T7’’ plasmid

pPD129.36 [41] and transformed into E. coli HT115.

Fatty acid composition and lipids analysis
Fatty acid composition of adult nematodes was determined as

previously described [11,23,42]. For determination of triacylgly-

cerol and phospholipids, lipid extraction and thin-layer chroma-

tography was performed as described in [7] and [39].

Nile Red staining of fixed nematodes
L4s or young adults nematodes were washed off of growth

plates, fixed and stained with Nile Red as described in [43].

Images were captured using identical settings and exposure time

for each image.

Growth rate analysis
Eggs were isolated from gravid adults using hypochlorite

treatment and hatched in M9 buffer overnight, and then plated

onto NGM plates seeded with E. coli strain HT115 carrying empty

vector or nhr-64RNAi. The number of worms that reached adult

stage was scored 3 days later.

Fertility analysis
L1 larvae were plated onto RNAi plates seeded with E. coli

strain HT115 carrying empty vector or nhr-64RNAi and allowed to

develop to L4 stage. At this time 10–15 L4 worms were transferred

individually to fresh RNAi plates. Worms were transferred daily

until they did not produce any more progeny. Two or three days

after removal of the adult, the number of live progeny was

counted.

Quantitative RT–PCR analysis
The Quantitative RT-PCR protocol was modified from Brock

et al. [23]. Generally, L4s nematodes grown on E. coli HT115 were

harvested and RNA was prepared using TRIzol Reagent

(Invitrogen, San Diego). A DNA-FREE RNA kit (Zymo Research)

was used for DNase treatment and purification. After quantifica-

tion, 1 mg of total RNA was used in a reverse-transcription

reaction with SuperScript III (Invitrogen) to generate cDNA.

Primer sequences for the metabolism genes were obtained from

Marc Van Gilst [10]. The PCR mixture consisted of 0.3 mM

primers, cDNA, ROX, and 16 SYBR green mix (Invitrogen

Platinum SYBR green qPCR Supermix UDG). The quantitative

RT–PCR (QRT–PCR) was run and monitored on a MX3000P

machine (Stratagene, La Jolla, CA). Relative abundance was

determined using the DDCt method and the reference genes tbb-2

and ubc-2 to control for template levels.

RT-PCR of nhr-64
Total RNA was prepared and cDNA was generated as previously

described. The following primers were used to amplify the full-

length nhr-64 cDNA. Forward primer: 59-CACCATGACACTG-

GAAGAAAAAG-39; reverse primer:59-TTATTGATGGCACA-

TAATTGG-39. Polymerase chain reaction (PCR) was carried out

using the TaKaRa Ex Taq system (Takara Bio Inc, Japan), which

included 10 mM (2.5 mM each) (dNTPs), 106 Ex Taq Buffer

(20 mM Mg2+ plus), and 5 U/mL TaKaRa Ex Taq polymerase. Each

25 microliter PCR reaction mix contained 16Ex Taq buffer, 1 mM

total concentration of TaKaRa dNTP mixture, 0.5 U TaKaRa Ex

Taq, and 1.0 mM of each primer, 100 ng cDNA as template. PCR

conditions were 1 cycle of 3 min at 95uC, followed by 22 cycles of

40 sec at 95uC, 20 sec at 50uC, and 2 min at 72uC, and finishing

with 10 min incubation at 72uC.

Transcription activity of NHR-64
Wild-type and truncated NHR-64 without exon 8 were

amplified by PCR using TaKaRa Ex Taq system (Takara Bio Inc,

Japan) and mixed-stage mixed-stage WILD-TYPE C. elegans

cDNA as template. Truncated NHR-64(ok) was amplified from

mixed-stage nhr-64(ok1957) mutant cDNA as template (primer

sequences are available upon request). The resulting cDNAs were

sequenced and subcloned into pENTR/D-TOPOH vector (In-
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vitrogen), and then transferred to modified pBD-GAL4 Cam

Vector (Stratagene) by RL recombination reaction, to generate

plasmids expressing individual GAL4-DBD-NHR-64, GAL4-

DBD-NHR-64D8 and GAL4-DBD-NHR-64(ok) fusions. Plasmids

were transformed into yeast strain YRG-2, which contains LacZ

and HIS3 reporter genes, using standard PEG3350/LiAc

methods. SD medium without tryptophan and histidine were

used to select the transcriptional activity.

Supporting Information

Figure S1 Characterization of sbp-1(ep79). (A) Simplified scheme

of sbp-1 gene structure. White arrows are exons and black lines are

introns. sbp-1 consists of 13 exons. Exon 6 of sbp-1 encodes a helix-

loop-helix (HLH) domain indicated by red rectangle and ep79

deletion removed 2181 base pairs indicated by blue rectangle.

(B) Fatty acid composition of wild type and sbp-1(ep79). Only fatty

acids showing significant differences with wild type are shown.

MMBC = monomethyl branch chain fatty acids (sum of C15iso

and C17iso). (C) Relative amount of triacylglycerol/total lipid

in sbp-1(ep79) compared to wild type. Total lipids were extracted

from nematodes grown on E. coli strain OP50 and separated

into triacylglycerol and phospholipid fractions using thin

layer chromatography, fractions were quantified using gas

chromatography.

Found at: doi:10.1371/journal.pone.0009869.s001 (1.21 MB TIF)

Figure S2 Fatty acid composition of an nhr-64 mutant grown on

E. coli strain OP50. (A) The nhr-64(ok1957) mutant strain contains

increased levels of C15iso and C17iso and decreased C18:0

compared to wild type. (B) The fat-6;fat-7;nhr-64(ok1957) triple

mutant strain contains increased levels of C15iso and C17iso and

decreased C18:0 compared to the fat-6;fat-7 double mutant strain.

Values shown are mean and SEM of four determinations. The

difference in mean amount of all fatty acids shown were found to

be statistically significant by student’s T test (P,0.05).

Found at: doi:10.1371/journal.pone.0009869.s002 (0.87 MB TIF)

Figure S3 Amino acid alignment of HNF4 genes. Shown are

human HsHF4 (NP_849180), mouse MmHF4(NP_032287),

Drosophila DeHF4 (NP_476887), and C. elegans NHR-

64(AAC24283). DBD: DNA binding domain; LBD: ligand

binding domain. E: Glutamic acid residue; L: Leucine residue.

Sequences of amino acid covered with gray color are encoded by

exon 8. The glutamic acid residue (E) and leucine residue (L)

marked by red are highly conserved in human, mouse, and

Drosophila and C. elegans.

Found at: doi:10.1371/journal.pone.0009869.s003 (1.41 MB TIF)

Table S1 Genes analyzed in quantitative RT-PCR experiments.

Found at: doi:10.1371/journal.pone.0009869.s004 (0.11 MB

DOC)

Acknowledgments

We thank Kyleann Brooks for technical assistance. Some of the C. elegans

strains used in this work were obtained from the Caenorhabditis Genetics

Center.

Author Contributions

Conceived and designed the experiments: BL JLW. Performed the

experiments: BL. Analyzed the data: BL. Contributed reagents/materi-

als/analysis tools: BL KF LK. Wrote the paper: BL JLW.

References

1. Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ (2001) Nuclear receptors and

lipid physiology: opening the X-files. Science 294: 1866–1870.

2. Magner DB, Antebi A (2008) Caenorhabditis elegans nuclear receptors: insights

into life traits. Trends Endocrinol Metab 19: 153–160.

3. Watts JL (2009) Fat synthesis and adiposity regulation in Caenorhabditis elegans.

Trends Endocrinol Metab 20: 58–65.

4. Antebi A, Yeh WH, Tait D, Hedgecock EM, Riddle DL (2000) daf-12 encodes a

nuclear receptor that regulates the dauer diapause and developmental age in C.

elegans. Genes Dev 14: 1512–1527.

5. Ludewig AH, Kober-Eisermann C, Weitzel C, Bethke A, Neubert K, et al.

(2004) A novel nuclear receptor/coregulator complex controls C. elegans lipid

metabolism, larval development, and aging. Genes Dev 18: 2120–2133.

6. Motola DL, Cummins CL, Rottiers V, Sharma KK, Li T, et al. (2006)

Identification of ligands for DAF-12 that govern dauer formation and

reproduction in C. elegans. Cell 124: 1209–1223.

7. Ashrafi K, Chang FY, Watts JL, Fraser AG, Kamath RS, et al. (2003) Genome-

wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature 421:

268–272.

8. Yamagata K, Furuta H, Oda N, Kaisaki PJ, Menzel S, et al. (1996) Mutations in

the hepatocyte nuclear factor-4alpha gene in maturity-onset diabetes of the

young (MODY1). Nature 384: 458–460.

9. Palanker L, Tennessen JM, Lam G, Thummel CS (2009) Drosophila HNF4

regulates lipid mobilization and beta-oxidation. Cell Metab 9: 228–239.

10. Van Gilst MR, Hadjivassiliou H, Jolly A, Yamamoto KR (2005) Nuclear

hormone receptor NHR-49 controls fat consumption and fatty acid composition

in C. elegans. PLoS Biol 3: e53.

11. Brock TJ, Browse J, Watts JL (2006) Genetic regulation of unsaturated fatty acid

composition in C. elegans. PLoS Genet 2: e108.

12. Van Gilst MR, Hadjivassiliou H, Yamamoto KR (2005) A Caenorhabditis

elegans nutrient response system partially dependent on nuclear receptor NHR-

49. Proc Natl Acad Sci U S A 102: 13496–13501.

13. Briggs MR, Yokoyama C, Wang X, Brown MS, Goldstein JL (1993) Nuclear

protein that binds sterol regulatory element of low density lipoprotein receptor

promoter. I. Identification of the protein and delineation of its target nucleotide

sequence. J Biol Chem 268: 14490–14496.

14. Horton JD, Shah NA, Warrington JA, Anderson NN, Park SW, et al. (2003)

Combined analysis of oligonucleotide microarray data from transgenic and

knockout mice identifies direct SREBP target genes. Proc Natl Acad Sci U S A

100: 12027–12032.

15. Goldstein JL, DeBose-Boyd RA, Brown MS (2006) Protein sensors for

membrane sterols. Cell 124: 35–46.

16. Seegmiller AC, Dobrosotskaya I, Goldstein JL, Ho YK, Brown MS, et al. (2002)

The SREBP pathway in Drosophila: regulation by palmitate, not sterols. Dev

Cell 2: 229–238.

17. McKay RM, McKay JP, Avery L, Graff JM (2003) C elegans: a model for

exploring the genetics of fat storage. Dev Cell 4: 131–142.

18. Yang F, Vought BW, Satterlee JS, Walker AK, Jim Sun ZY, et al. (2006) An

ARC/Mediator subunit required for SREBP control of cholesterol and lipid

homeostasis. Nature 442: 700–704.

19. Kunte AS, Matthews KA, Rawson RB (2006) Fatty acid auxotrophy in

Drosophila larvae lacking SREBP. Cell Metab 3: 439–448.

20. Flowers MT, Ntambi JM (2008) Role of stearoyl-coenzyme A desaturase in

regulating lipid metabolism. Curr Opin Lipidol 19: 248–256.

21. Ntambi JM, Miyazaki M, Stoehr JP, Lan H, Kendziorski CM, et al. (2002) Loss

of stearoyl-CoA desaturase-1 function protects mice against adiposity. Proc Natl

Acad Sci U S A 99: 11482–11486.

22. Watts JL, Browse J (2000) A palmitoyl-CoA-specific delta9 fatty acid desaturase

from Caenorhabditis elegans. Biochem Biophys Res Commun 272: 263–269.

23. Brock TJ, Browse J, Watts JL (2007) Fatty acid desaturation and the regulation

of adiposity in Caenorhabditis elegans. Genetics 176: 865–875.

24. Kniazeva M, Crawford QT, Seiber M, Wang CY, Han M (2004) Monomethyl

branched-chain fatty acids play an essential role in Caenorhabditis elegans

development. PLoS Biol 2: E257.

25. Kniazeva M, Euler T, Han M (2008) A branched-chain fatty acid is involved in

post-embryonic growth control in parallel to the insulin receptor pathway and its

biosynthesis is feedback-regulated in C. elegans. Genes Dev 22: 2102–2110.

26. Mangelsdorf DJ, Evans RM (1995) The RXR heterodimers and orphan

receptors. Cell 83: 841–850.

27. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, et al. (1995) The

nuclear receptor superfamily: the second decade. Cell 83: 835–839.

28. Barettino D, Vivanco Ruiz MM, Stunnenberg HG (1994) Characterization of

the ligand-dependent transactivation domain of thyroid hormone receptor.

Embo J 13: 3039–3049.

29. Durand B, Saunders M, Gaudon C, Roy B, Losson R, et al. (1994) Activation

function 2 (AF-2) of retinoic acid receptor and 9-cis retinoic acid receptor:

presence of a conserved autonomous constitutive activating domain and

influence of the nature of the response element on AF-2 activity. Embo J 13:

5370–5382.

NHR-64 and Fat Homeostasis

PLoS ONE | www.plosone.org 10 March 2010 | Volume 5 | Issue 3 | e9869



30. Rappleye CA, Tagawa A, Le Bot N, Ahringer J, Aroian RV (2003) Involvement

of fatty acid pathways and cortical interaction of the pronuclear complex in
Caenorhabditis elegans embryonic polarity. BMC Dev Biol 3: 8.

31. Poirier Y, Antonenkov VD, Glumoff T, Hiltunen JK (2006) Peroxisomal beta-

oxidation–a metabolic pathway with multiple functions. Biochim Biophys Acta
1763: 1413–1426.

32. Coleman RA, Lewin TM, Van Horn CG, Gonzalez-Baro MR (2002) Do long-
chain acyl-CoA synthetases regulate fatty acid entry into synthetic versus

degradative pathways? J Nutr 132: 2123–2126.

33. Srinivasan S, Sadegh L, Elle IC, Christensen AG, Faergeman NJ, et al. (2008)
Serotonin regulates C. elegans fat and feeding through independent molecular

mechanisms. Cell Metab 7: 533–544.
34. Perez CL, Van Gilst MR (2008) A 13C isotope labeling strategy reveals the

influence of insulin signaling on lipogenesis in C. elegans. Cell Metab 8:
266–274.

35. Dhe-Paganon S, Duda K, Iwamoto M, Chi YI, Shoelson SE (2002) Crystal

structure of the HNF4 alpha ligand binding domain in complex with
endogenous fatty acid ligand. J Biol Chem 277: 37973–37976.

36. Wisely GB, Miller AB, Davis RG, Thornquest AD, Jr., Johnson R, et al. (2002)
Hepatocyte nuclear factor 4 is a transcription factor that constitutively binds

fatty acids. Structure 10: 1225–1234.

37. Taubert S, Van Gilst MR, Hansen M, Yamamoto KR (2006) A Mediator

subunit, MDT-15, integrates regulation of fatty acid metabolism by NHR-

49-dependent and -independent pathways in C. elegans. Genes Dev 20:

1137–1149.

38. Desvergne B, Michalik L, Wahli W (2004) Be fit or be sick: peroxisome

proliferator-activated receptors are down the road. Mol Endocrinol 18:

1321–1332.

39. Watts JL, Browse J (2006) Dietary manipulation implicates lipid signaling in

the regulation of germ cell maintenance in C. elegans. Dev Biol 292:

381–392.

40. Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, et al. (2003) Systematic

functional analysis of the Caenorhabditis elegans genome using RNAi. Nature

421: 231–237.

41. Timmons L, Court DL, Fire A (2001) Ingestion of bacterially expressed dsRNAs

can produce specific and potent genetic interference in Caenorhabditis elegans.

Gene 263: 103–112.

42. Watts JL, Browse J (2002) Genetic dissection of polyunsaturated fatty acid

synthesis in Caenorhabditis elegans. Proc Natl Acad Sci U S A 99: 5854–5859.

43. Brooks KK, Liang B, Watts JL (2009) The Influence of Bacterial Diet on Fat

Storage in C. elegans. PLoS One 4: e7545.

NHR-64 and Fat Homeostasis

PLoS ONE | www.plosone.org 11 March 2010 | Volume 5 | Issue 3 | e9869


