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Abstract

Peritrichous bacteria exploit bundles of helical flagella for propulsion and chemotaxis. Here, changes in the swimming
direction (tumbling) are induced by a change of the rotational frequency of some flagella. Employing coarse-grained
modeling and simulations, we investigate the dynamical properties of helical flagella bundles driven by mismatched motor
torques. Over a broad range of distances between the flagella anchors and applied torque differences, we find a stable
bundled state, which is important for a robust directional motion of a bacterium. With increasing torque difference, a phase
lag in the flagellar rotations develops, followed by slippage and ultimately unbundling, which sensitively depends on the
anchoring distance of neighboring flagella. In the slippage and drift states, the different rotation frequencies of the flagella
generate a tilting torque on the bacterial body, which implies a change of the swimming direction as observed
experimentally.
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Introduction

Motile bacteria exploit bundles of rotating helical flagellar

filaments for propulsion and chemotaxis [1–4]. Various arrange-

ments of the flagella on the bacterial cell membrane have

developed in the evolutionary process [5]. The flagella of

peritrichous bacteria self-organize into bundles by (typically)

counterclockwise rotation of the flagella motors leading to nearly

straight swimming. To change the swimming direction, this

‘‘running’’ phase is interrupted by short periods of ‘‘tumbling’’ [6–

8]. A specific flagella design [9] implies a distinct tumbling

mechanism of a particular bacterium. In Escherichia coli bacteria,

clockwise rotation of one or several flagella leads to a polymorphic

transition, [10–14] disintegration of the bundle and bacterial

tumbling [1,15,16]. In contrast, the flagella of Rhizobium meliloti or

Rhizobium lupini are only capable of limited polymorphic transitions

and their motors are unidirectional [9,17,18]. These bacteria

modulate the rotation speed of individual motors to induce

tumbling [9,17].

The bundling process of bacterial flagella has been studied

experimentally [3,17,19–21], theoretically [22–24], and by

computer simulations [5,8,16]. An essential aspect of bundling

is synchronization of the flagella driven by motors of nonuni-

form strength. Synchronization of flagellar rotation is, aside

from bacterial motion, of fundamental importance for a broad

range of phenomena in biology [25–29], ranging from fluid

transport in the respiratory system [30], to embryonic left-right

asymmetry [31], and intercellular communication [32]. Thus, a

theoretical understanding of flagella synchronization is of

paramount importance. Synchronization in fluid systems can

be achieved by hydrodynamic interactions as demonstrated by

various studies [16,27,28,33–40]. In bacterial bundling, steric

interactions between the various flagella may also play an

important role due to the opposite rotation of the flagella bundle

and the cell body [16].

Much less is known about the tumbling mechanism of bacteria

in general, and for bacteria such as R. lupini or R. meliloti with

unidirectional motors in particular. In Ref. [17], bundle disinte-

gration has been observed when a flagellar filament slows down or

stops. However, tumbling should also be possible without complete

disintegration of the bundle, but might be more difficult to observe

experimentally.

Here, we study synchronization and unbundling of driven

flagella, properties which are of fundamental importance for

bacterial tumbling. Of particular interest is the dephasing of

flagella rotational frequencies with increasing torque difference

between the various flagella. Qualitatively, our results suggest

the following classification of the bundle dynamics. At small

torque differences, the bundle remains stable with a phase lag

between the various flagella. For very large torque differences,

the bundle disintegrates and the flagella rotated asynchronous

and independently; the phase differences of neighboring helices

are drifting. In between, there is an intermittent regime, where

phase slippage occurs, i.e., the synchronized rotational motion is

interrupted by events, where the flagellum with the larger

torque leaves the bundle, rotates faster, and rejoins the bundle.

The interval between individual slippages decreases with

increasing torque difference and ultimately drifting is obtained.

We predict that this slippage or drift leads to a tumbling motion

of the bacteria.
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Models

A hybrid mesoscopic simulation approach is adopted, combin-

ing molecular dynamics simulations for the bacterial flagella with

the multiparticle collision dynamics (MPC) approach, a mesoscale

hydrodynamics simulation technique, for the fluid [41–43]. This

hybrid method has been successful applied to study the dynamics

of various kinds of macromolecular and cellular systems

[35,40,44,45]. The bacterial flagellum is represented by a

coarse-grained macromolecular system embedded in a MPC fluid

with a helical sequence of Nm mass points of mass Mh [16] (cf.

Fig. 1). These points interact with each other by the following

bond, bending, and torsional potentials:

Ubond~
kbond

2

XNm

i~2

(DRi{Ri{1D{l0)2, ð1Þ

Ubend~
kbend

2

XNm

i~3

(cos hi{cos h0)2, ð2Þ

Utors~
ktors

2

XNm

i~4

(cos qi{cos q0)2: ð3Þ

Here, Ri denotes the position of bead i, and l0, h0, and Q0 are the

equilibrium bond length, bending angle, and torsional angle,

respectively. kbond , kbend , and ktors are the bond, bending, and

torsional rigidities, respectively. The repulsive and truncated

Lennard-Jones potential

ULJ (r)~4e
s

r

� �12

{
s

r

� �6
� �

H(21=6s{r) ð4Þ

is applied to account for excluded-volume interactions between the

mass points of the helices of distance r, with the size of a point s,

the energy e [16,46], and H the Heaviside step function. In

addition, one central bead and four peripheral beads are added in

a plane at the base of the helix (cf. Fig. 1). These five beads are

trapped in constraining harmonic potentials of the form,

Ur~
kcf

2
(r{rc)2, ð5Þ

where rc is either the equilibrium position of the central particle or

the z-coordinate of the peripheral beads; in the latter case, the x-

and y-coordinates are unconstrained. Hence, a flagellum is not

allowed to perform any translational motion but rotates around a

central bead driven by an external torque applied at two opposite

peripheral beads as illustrated in Fig. 1. The dynamics of the mass

points is described by Newton’s equations of motion, which are

integrated by the velocity-Verlet algorithm [46]. Symmetrical

forces are applied in counterclockwise direction when watched

from the distal end, which generate a torque M~2RhF pointing

into the positive z-direction, where Rh is the helix radius and F the

applied force.

MPC is a particle-based simulation approach, where the fluid is

represented by point particles, and naturally comprises thermal

fluctuations. The algorithm consists of alternating streaming and

collision steps. In the streaming step, the particles move

ballistically; in the collision step, the particles are sorted into

cubic cells of length a and their relative velocities, with respect to

the center-of-mass velocities of each cell, are rotated around a

randomly oriented axis by a fix angle a [16,43]. A constant

temperature is maintained locally by velocity rescaling at every

collision cell and every collision step [47]. The MPC parameters

are chosen as: average fluid particle number per collision cell

Nc~10, rotation angle a~1300, and collision time step

h=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ma2=(kBT)

p
~0:1, where T is the temperature, kB the

Boltzmann constant, and m the mass of a fluid particle, which

Figure 2. Single flagellum rotation frequency and swimming
speed. Mean values of the rotation frequencies (squares) and mean
induced fluid velocities (bullets) of a single helix for various applied
torques. The lines indicate the linear dependence on the torque.
doi:10.1371/journal.pone.0070868.g002

Figure 1. Model of a flagella bundle. The top part shows a side
view of two left-handed flagella, with average distance d , helix radius
Rh , and pitch P1~P. The bottom part shows a top view with the
external forces F generating a torque and the phase angles wi .
doi:10.1371/journal.pone.0070868.g001
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yields the solvent viscosity g~8:7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mkBT=a4

p
[16,48]. The

parameters for a flagellum are chosen as: mass of a flagellum

bead Mh~10m, helix radius Rh~2a, number of beads for a five-

turn helix Nm~78, equilibrium bond length l0~a~s, bending

angle h0~200, torsional angle Q0~1660, and e=kBT~1. The

bond stretching, bond bending, and torsional rigidities are

kbond l2
0=(kBT)~105, kbend=(kBT)~2|105, and ktors=(kBT)~

105, respectively. The constraining-force constant of the motor

part is kcf l2
0=(kBT)~104. The distribution of the bond stretching,

bending, and torsional energies follows the corresponding

Boltzmann distributions.

The adopted potential parameters and contour length yield a

five-turn helix with the pitch angle y~550. This closely resembles

the shape of a flagellum of R. lupini in the semi-coiled state [17].

The bending rigidity of a Salmonella flagellum has been determined

in Ref. [13]. A value of 3:5pN mm for the bending rigidity was

obtained by employing a model with a quadratic Kirchhoff-rod

potential for bending and twist, and comparing the theoretical

force-extension relation with the respective experimental data.

Moreover, the twist rigidity was found to be comparable with the

bending rigidity [13]. In order to link the parameters kbend and

ktors in Eqs. (2) and (3) with the experimental results for the

flagellum rigidities, we discretize the continuum bending and

torsional energies of the helical wormlike chain model [13,49] and

compare them with the potentials (2) and (3). Using the structural

parameters of R. lupini [17], we find that our kbend corresponds to

an approximately five times larger bending rigidity compared to

the experimental value for Salmonella. Since it has been argued that

the flagellum of R. lupini is stiffer than that of Salmonella [50], our

chosen value is in reasonable agreement with the biologically

relevant scales. The ratio between the bending and the torsional

rigidities in our model is approximately four. Hence, also the

torsional rigidity is on the order of magnitude of the biological

scale.

The flagella are placed in a cubic simulation box of side length

L=a~100 with periodic boundary conditions. When the flagella

start to rotate, they set fluid in motion until a stationary (mean)

fluid velocity is reached, where the flagella exert no net force on

the anchoring plane along its normal. This is equivalent to a free-

swimming bacteria with a non-rotating body. In our system, the

fluid velocity far away from the flagella corresponds to the

swimming velocity of the free swimmer, because the two systems

are just related by a Galilean transformation. This point will be

discussed in more detail below.

We have performed several test to validate the selected model

using a single flagellum. As expected and shown in Fig. 2, we find a

linear relation between the applied torque and the rotation

frequency of the helix. Since the helix is fixed at the anchoring

point, the fluid acquires a constant mean velocity in the stationary

state. This velocity also depends linearly on the applied torque, see

Fig. 2. The reference frequency v0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=(ma2)

p
~0:058 corre-

sponds to the rotation frequency of a bundle of three helices each

driven by the torque M~400kBT at the distance d=Rh~3. A

single helical flagellum exhibits only a few percent smaller rotation

frequency for the same torque.

Results and Discussion

Corresponding to the averaged number of experimentally

observed flagella for R. lupini [17], we study a system of three

helices with their anchoring points fixed on an equilateral triangle

of side length d. Figure 1 illustrates the initial parallel alignment

for two helices and the phase angles wi (in general, i~1, 2, 3). The

initial angles of the three helices are w1~w3~p and w2~0. To

study the bundle response to differences in the applied torques Mi

at the various helices, we utilize the fixed torque M1,3=kBT~400
of helices 1 and 3 and vary that of helix 2 in the range

200ƒM2=kBTƒ1100. The experimentally measured torques for

flagella of E. coli bacteria are in the range from 1300 pNnm to

4600 pNnm, i.e., (300{1200)kBT [7,51–53]. Thus, our simulated

torques cover approximately the same range at room temperature.

Flagella bundle stability
Figure 3(a) displays the phase-angle difference Dw12

(Dwij~wi{wj , i=j~1,2,3) as a function of time for various

torques M2. The time scale is normalized by the reference angular

velocity v0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=(ma2)

p
~0:058 of a bundle of three helices, as

already introduced in the previous section. For torques in the

range 320ƒM2=kBTƒ520, the helices form bundles and exhibit

a phase-locked synchronized rotational dynamics with the same

average angular frequency after a short time. As discussed in Ref.

[16], synchronization is achieved by hydrodynamic and steric

Figure 3. Phase slip, lag, and drift. (a) Phase angle difference Dw12

as a function of time for various applied torques on helix 2 and the
distance d=Rh~2:5. The torque M2=kBT is changed from 200 (top) to
920 (bottom) with an increment of 40; the constant torque is
M1,3=kBT~400. (b) Average phase lag SDlagT as a function of the

torque M2 . The red line indicates the fit Dlag~1:64|10{6�
(x{400)2{0:0021 � (x{400), where x~M2=(kBT). The blue line is
the tangent at M2=kBT~400. The inset provides an approximate
measure of the number of occurring slips during the time interval
v0tf ~580 as a function of the applied moment M2 .
doi:10.1371/journal.pone.0070868.g003
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interactions between the various helices. When the torque

difference DM~DM2{M1,3D exceeds a critical value, phase slips

occur. Here, flagella with the larger torque leave the bundle and

perform one additional rotation and then rejoin the bundle; this

corresponds to a change in phase difference by DDw12D~2p. With

increasing DM, the frequency of phase slips increases and

ultimately the drift state is reached, where DDw12D increases linearly

in time. The appearance of slips is governed by the interplay of

excluded volume interactions and elastic deformations of the

flagella as well as thermal fluctuations.

In the synchronized and bundled state, the helices exhibit a

phase lag Dlag:Dw12 mod(p), which depends on the torque

difference. The obtained phase lags exhibit considerable

fluctuations around the average. The magnitude of the average

SDlagT increases with increasing torque difference. As shown in

Fig. 3(b) by a quadratic fit function, SDlagT is asymmetric with

respect to M2=kBT~400 with a slower variation in the region of

large M2. This ‘‘asymmetry’’ appears due to the increase of the

bundle rotational frequency with increasing M2. The larger

frequencies imply stronger flows and therefore stronger hydrody-

namic interactions and tighter bundles.

The inset of Fig. 3 displays the quantity Ns~

(Dw12(tf ){Dw12(0))=(2p) for the fixed time interval tf , which is

an approximate measure of the number of occurring slips. For

momenta M2 in the vicinity of M1~M3, phase slips are rare.

However, we find a strong increase of slippage, when the torque

difference DM2{M1,3D exceeds a threshold.

Data for the bundling, slippage, and drifting states for different

torques and helix separations can be combined in a dynamic phase

diagram, as shown in Fig. 4. Interestingly, there is a broad range of

distances and torques, where stable bundles are obtained with no

slips over the total considered time interval v0tf ~5:8|102. The

bundles are evidently rather robust for d=Rh *; 4, and are able to

sustain considerable torque differences. The asymmetry of the

phase diagram with respect to the reference torque

M1,3=kBT~400 is a consequence of the stronger hydrodynamic

interactions at larger torques (cf. Fig. 3(b)). The stable bundle

regime is bounded by the intermittent slippage regime, where

DDw12D~2p for each individual slippage event. Since this part of

the diagram is also broad, the model system yields stable or nearly

stable bundles over a wide range of torques for all the considered

distances. For even larger distances and torque differences phase-

drift appears, where DDw12D§4p before a loose bundle might be

reformed. Naturally, a clear distinction between the various

regimes is difficult and the change from one to the other is gradual

rather than abrupt.

The phase diagram of Fig. 4 highlights a strong phase-locking

for bundles of flexible helical flagella. Even for distances as large as

d=Rh~4, phase locking occurs for torque differences as large as

DM=M1&1=3. This can be compared with the synchronization of

rigid, three-arm colloidal micro-rotators discussed in Ref. [38],

which can tolerate only torque differences of the order of

DM=M1&10{4 at much smaller distances of d=Rh~2:0 to 2:5.

This largely enhanced stability is due to the flexibility of the

bacterial flagella, which allows them to wrap around each other. A

high stability of the bundled state is very important for the

directional motion of a bacterium because of the substantial noise

inherent in biological systems, either originating from internal

sources like variations in motor activities, or from external sources

such as other swimming bacteria.

Intra-bundle distances
Slippage or drift of individual helices leads to partial or full

flagella unbundling, which is reflected in the distribution Pr of

distances between the equivalent beads of the various helices.

Figure 5(a) provides an example for the distributions at

z~P4~4P, where P is the pitch, and d=Rh~4. For equal

torques, we obtain a tight bundle with a narrow distribution and a

maximum at the single monomer diameter. As the torque

difference increases, the peak maximum shifts to large distances

and the width broadens. The inset of Fig. 5 shows distance

distributions for M2=kBTv400. Here, the maximum of Pr also

moves to large distances with increasing torque difference, but

saturation seems to be reached already at rather small DM,

much smaller than for M2=kBTw400. The mean values of the

distances between helical beads are shown in Fig. 5(b) as a

function of torque M2 at the points P3, P4, and P5 along the

bundle. Evidently, the helices form a tight bundle for equal

torques (Mi=kBT~400). As the torque difference DM increases,

the bundle disintegrates and the helices move apart. The

snapshots of Fig. 6 illustrate the bundle geometry for various M2

(see also videos S1 and S2). Interestingly, the bundle does not

completely disintegrate. The hydrodynamic interactions contin-

uously force the helices back into a bundle. Nevertheless,

generation of a large torque difference is an effective strategy to

impose helix unbundling.

Forces on the bacterial body by flagella rotation
In the stationary state, the flagella exert no net force on the

anchoring plane parallel to its normal for equal torques. Fluid is

pumped by the flagella until an stationary fluid velocity is reached

and the system is force free. For equal torques this applies also to

the individual flagella. However, the situation is changed for non-

zero torque differences, where the various helices exert different

forces on the anchoring plane. Figure 7 shows average forces for

various torque difference. For torques M2=kBTv400, helix 2
experiences a positive force SFzT, i.e., pointing along the positive

z-direction, and the other two experience a negative force, i.e.,

pointing in negative z-direction. The force orientation is reverse

for M2=kBTw400. However, the sum of the corresponding forces

in the z-direction still vanishes, as expected, i.e., the total system is

force free.

Figure 4. Phase diagram of bundle integrity. Phase diagram
indicating stable bundles (shaded), intermittent slippage (squares), and
drift states (bullets) for various flagella distances and torques on helix 2.
The torques on helices 1 and 3 are M1~M3~400kBT .
doi:10.1371/journal.pone.0070868.g004
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These forces are of various origin, depending on the bundling

state. When the helices are bundled and show a phase lag,

particularly for M2 *> M1, they mainly appear due to excluded-

volume interactions between the beads. The calculation of the

total Lennard-Jones force between the various helices approxi-

mately agrees with the total force SFzT&SFLJT. In contrast, for

unbundled helices, i.e., large torque differences, hydrodynamic

interactions yield a significant contribution to the forces. In case of

the slower rotating helix, the fast rotating helices create a fluid flow

which drags the other helix along, since the mean fluid velocity

originating from their rotation is faster than the fluid velocity due

to the rotation of the slow helix. The situation is reverted for a fast

rotating helix. Here, the correspondingly fast moving fluid is

slowed down by the other helices, which adds an additional drag

to the fast moving helix.

Since it is difficult to estimate the contribution of hydrodynam-

ics on the total force quantitatively in the time-dependent slippage

state, we confine the individual beads of the three helices in

harmonic potentials, such that the helices remain parallel aligned

along the z-axis. Explicitly, the potentials are

Uax~
kcf

2

XNm

i~1

(DRi{RchD{Rh)2, ð6Þ

where Rch has the same x- and y-component as the central bead rc

and the same z-component as Ri initially [16]. Thus, in this special

Figure 5. Bead distance distributions and mean distances. (a) Normalized bead-distance distribution functions Pr between helices at P4~4P,
P is the helical pitch (cf. Fig. 1), for the torque M2=kBT~400 (black), 500 (red), 600 (green), 700 (blue), and 800 (magenta) with M1~M3~400kBT .
The distance between anchored helix ends is fixed at d=Rh~4. The inset shows the distribution functions for M2=kBT~400 (black), 300 (red), and
200 (blue). (b) Average bead distances between the helices at P3 (black), P4 (red), and P5 (blue) (Pi~iP) as a function of the torque M2=kBT .
doi:10.1371/journal.pone.0070868.g005

Figure 6. Snapshots of helices for various torque differences.
Snapshots of side (top) and top (bottom) views for the torque
M2=kBT~200, 400, 600, and 800 (from left to right) at d=Rh~4. See
also videos S1 8 and S2 8 for M2=kBT~200 and 800, respectively.
doi:10.1371/journal.pone.0070868.g006

Figure 7. Average forces on bacteria body. Average forces per
monomer on the anchoring plane of three helices as a function of the
torque M2 for M1~M3~400kBT at d=Rh~3. The bullets indicated the
forces by helix two and the solid squares those by helix one and three.
The circles and open squares are the contributions by the correspond-
ing hydrodynamics forces for unbundled helices.
doi:10.1371/journal.pone.0070868.g007
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case, the helices rotate freely and do not form a bundle. Now, the

force exerted on the anchoring plane is of hydrodynamic origin

only. As shown in Fig. 7, this hydrodynamic force is comparable to

that by excluded-volume interactions and the sum is very close to

the total force obtained for free helix bundles for M2 significantly

smaller than M1~M3. We expect even more significant

hydrodynamic contributions for bundles in the slippage and drift

states.

For flagellated bacteria, different torques on the various

flagella should be the rule rather than the exception. Based in

our simulation results, we expect that the forces created by

torque differences in the bundled state lead to a wobbling

motion, because both, the body and the helices, rotate. In the

slipping state, the larger forces should give rise to a pronounced

helical swimming trajectory of a bacterium. In the case of

unbundling, either by reverse rotation or stopping of a motor,

the rotational motion of the body is strongly reduced, and a

large change in body orientation should be generated. Hence,

the different dynamical states of flagella (cf. Fig. 4)) imply

different swimming modes. A sampling of a larger spatial area is

achieved by helical paths in the bundled and slippage state,

whereas major directional changes are achieved in the

unbundled state.

An estimation of the change in the bacterial orientation DQ
during the time interval Dt by the forces +SFzT can be obtained

from the following simple arguments. The torque due to friction

with the fluid of the bundle and cell body is

Mf &g(L3zD3)DqQ=Dt [54], where D is the length of the cell

body and L the length of the bundle (cf. Fig. 8). This torque is

balanced by the torque M~SFzTd. Hence, for one period of the

bundle rotation, i.e., Dt~2p=v, we find DQ~

2pSFzTd=(gv½D3zL3�), with the bundle rotation frequency v.

For values obtained from the simulations, v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ma2=(kBT)

p
&0:05,

SFzTRh=M1~2, and the estimated parameters of the bacterial

geometry of R. lupini [17] of d=Rh&3, D=d~2, and L=d~6, we

find DQ&30 for a single flagellar rotation. This adds up to

approximately 150 after about five rotations, a value in reasonable

agreement with the rotation angle for R. lupini extractable from the

images in Fig. 3 of Ref. [17].

Summary
We have been investigating the properties of rotating bacteria

flagella, where individual flagella are driven by motor torques of

different strengths. In particular, we have focused on the

stability of the flagella bundle, an aspect which is important for

both, the swimming of an bacterium and its tumbling by partial

degradation of the bundle. Our coarse-grained mesoscale

simulations demonstrate that hydrodynamic interactions be-

tween flagella, short-range volume exclusion which prevents the

intersection of flagella on contact, and the flagellar flexibility

which allows for partial wrapping of flagella around each other,

are all essential ingredients in the bacterial tumbling process.

The interplay of these physical mechanisms not only cause

synchronization and bundling of rotating flagella, but also

guarantee the robustness of bundle formation in the presence of

small differences in motor torques, which is essential for directed

bacterial locomotion. For larger torque differences, the compe-

tition of hydrodynamic interactions with volume exclusion and

elastic deformation of the flagellum leads to slippage and drift,

which implies a reorientation of the swimming direction. It

would be interesting to search for flagellar slippage in motile

bacteria experimentally.

Supporting Information

Video S1 Flagella bundle of three helices with the motor
torques M1~M3~400kBT (green, blue) and M2~200kBT

(red).

(MPG)

Video S2 Flagella bundle of three helices with the motor
torques M1~M3~400kBT (green, blue) and M2~800kBT

(red).

(MPG)
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Figure 8. Bacterial reorientation. Illustration of the forces and
torques on a bacterium and the estimated change in orientation Dq.
F1~SFzT and F2 are the excess forces after the mean driving force has
been subtracted. The induced torque rotates the whole structure, which
gives rise to the drag forces FB on the cell body and FT on the tail.
doi:10.1371/journal.pone.0070868.g008
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