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Abstract

New strains of influenza spread around the globe via the movement of infected individuals. The global dynamics of
influenza are complicated by different patterns of influenza seasonality in different regions of the world. We have released
an open-source stochastic mathematical model of the spread of influenza across 321 major, strategically located cities of the
world. Influenza is transmitted between cities via infected airline passengers. Seasonality is simulated by increasing the
transmissibility in each city at the times of the year when influenza has been observed to be most prevalent. The
spatiotemporal spread of pandemic influenza can be understood through clusters of global transmission and links between
them, which we identify using the epidemic percolation network (EPN) of the model. We use the model to explain the
observed global pattern of spread for pandemic influenza A(H1N1) 2009–2010 (pandemic H1N1 2009) and to examine
possible global patterns of spread for future pandemics depending on the origin of pandemic spread, time of year of
emergence, and basic reproductive number (R0). We also use the model to investigate the effectiveness of a plausible
global distribution of vaccine for various pandemic scenarios. For pandemic H1N1 2009, we show that the biggest impact of
vaccination was in the temperate northern hemisphere. For pandemics starting in the temperate northern hemisphere in
May or April, vaccination would have little effect in the temperate southern hemisphere and a small effect in the tropics.
With the increasing interconnectedness of the world’s population, we must take a global view of infectious disease
transmission. Our open-source, computationally simple model can help public health officials plan for the next pandemic as
well as deal with interpandemic influenza.
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Introduction

Air travel has greatly accelerated the spread of influenza and

other diseases transmitted by person-to-person contact. Countries

with a higher volume of airline travel to and from Mexico

experienced earlier outbreaks of pandemic H1N1 2009 [1,2].

Mathematical and computer models including a global transpor-

tation network have been used to explore the spread of pandemic

influenza [3–5]. However, the transportation network alone is not

sufficient to predict the dynamics of an influenza pandemic.

Influenza has long been observed to peak in the winter months

in the temperate northern hemisphere (i.e., north of the Tropic of

Cancer) and temperate southern hemisphere (i.e., south of the

Tropic of Capricorn) [6]. However, seasonality of influenza has

not been sufficiently studied in the tropics, where it has been

observed to peak during the rainy season or have no distinct

seasonality [7,8]. Previous models used simple functions to

increase transmission during the winters of the temperate northern

and temperate southern hemispheres but assumed constant

transmissibility in the tropics (the region between the Tropic of

Cancer and the Tropic of Capricorn). Though these models can

replicate the annual peaks of influenza in the winters of the highly

populated temperate northern and the less populated temperate

southern hemispheres, they may not accurately reflect the

dynamics in the tropics, an important region which may be the

source of new pandemic influenza strains [9–11]. Our model

attempts to model the seasonality of influenza in the tropics with

greater accuracy and to understand the implications of influenza

dynamics in the tropics for the public health response to a future

pandemic.

Our model includes 321 major cities on six continents, the

airline travel among them, and influenza seasonality data when

available. This model includes more detailed within-host influenza

dynamics, more detailed influenza vaccine behavior, and more

detailed seasonality data for tropical regions than other models.

Nonetheless, it is a relatively simple model that does not require

specialized computing resources to use. Since it is open source, it

can be used by anyone in the research or public health

communities. Here, we use the model to explore the timing and

spread of influenza on the global scale as a function of

transmissibility (i.e., the basic reproductive number, R0), the origin

of pandemic spread, and the time of year of emergence. Then,

assuming that it takes roughly six months to make and to distribute

vaccine, we investigate the effectiveness of the currently recom-

mended vaccination strategies.
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Methods

Mathematical Model
The model has two layers: a set of within-city models and a

global model that links them through the air transportation

network. We first describe the within-city model and then the

global model. It is written in Python 2.6.2 ( http://www.python.

org) using the SciPy and NumPy packages [12]. The code is

available at http://www.csquid.org/software/globalmodel/.

Within each city, susceptibles are divided into subpopulations and

risk groups. Subpopulation membership is used to determine

transmission probabilities, and risk group membership is used to

determine morbidity and mortality. In our simulations, we have two

subpopulations, children (age v15 years) and adults (age §15 years),

each with two risk groups (low and high risk). Since we focus on

influenza transmission rather than morbidity and mortality, there is

only a single risk group. The population of each city is divided into

susceptible, infectious, and removed compartments, which have

subcompartments to keep track of subpopulation, risk group,

vaccination status, and symptom status (Text S1). Upon infection,

each person is assigned to become asymptomatic or symptomatic. He

or she is then assigned uniformly at random to one of the six viral load

trajectories (Text S1 and Figure S1). On all trajectories, infection lasts

six days but infectiousness varies with symptom status and viral load.

In our simulations, infected persons become symptomatic with

probability
2

3
, and asymptomatic infecteds are half as infectious as

symptomatic ones. Infected persons transmit infection according to a

next-generation matrix scaled to achieve a within-city R, the

reproductive number that is R0 during influenza season and may be

lower at other times of the year according to local influenza seasonality

(Text S1). In our simulations, the transmission probabilities are tuned

to obtain a next-generation matrix proportional that from [13], where

the child-to-child transmission is 1.8, adult-to-adult transmission is 0.2,

and the child-to-adult and adult-to-child transmissions are 0.5 (see

Eqn 9 in Text S1). This ensures that child-child influenza transmission

is most intense, adult-adult transmission is least intense, and child-

adult and adult-child transmission are intermediate. Using all of this

information and the effects of vaccination (described below), a system

of discrete time and state-space stochastic equations (Text S1) governs

spread of influenza within cities in one-day time steps. Major

parameters are summarized in Table S1.

In the model, vaccination can reduce susceptibility to infection

(by 1{VES per infectious contact), infectiousness following

infection (by 1{VEI), and the probability of becoming symptom-

atic after infection (1{VEP). In our simulations, we use vaccine

efficacy estimates for a well-matched seasonal influenza vaccine:

VES~VEI~0:4 and VEP~0:67, in accordance with [14]. These

efficacies are not reached immediately upon vaccination, and we

define the vaccine efficacy ratio function to be the proportion of full

vaccine efficacy attained t days after vaccination. As in [15], this

function is governed by three parameters: h1 determines the shape

of the increase in vaccine efficacy during the first 13 days, level is

the maximum vaccine efficacy achieved after the first dose, and h2

determines the shape of the increase in vaccine efficacy after the

second dose (which is assumed to be given 21 days after the first

dose). The underlying vaccine efficacy ratio function is:

VE(t,level,h1,h2)~

0 if t[({?,0�
level| t

14

� �exp(h1)
if t[(0,14)

level if t[½14,21�
levelz(1{level) t{21

7

� �exp(h2)
if t[(21,28)

1 if t[½28,?)

8>>>>>><
>>>>>>:

ð1Þ

In the intervals (0,14) and (21,28), the function is concave for

negative h, convex for positive h, and linear for h~0 (Figure 1).

VES(t), VEI(t), and VEP(t) are obtained by multiplying VE(t) by

the VES, VEI, and VEP, respectively. In our simulations, we use

h1~h2~0, level~0:5.

The global model links together the 321 within-city models,

allows travel between them, and controls seasonality. It records the

total number of susceptibles, incident infections, infections, and

recovereds in each time step, and (optionally) can store a matrix

for each time step showing the number of travelers from each city

to every other city. All cities are divided into two age groups: 0–14

years old and 15+ years old. The proportion of the population in

each age group in each city is determined by the proportion of the

population under 15 in the corresponding country [16]. All cities

are assumed to have the same next-generation matrix at peak

seasonal transmission. For each city X , we have the average

number of persons who travel to each other city in the model per

day. We divide this by the population of X to get a probability of

traveling from X to each other city in the model at each time step

(Text S1). Symptomatic individuals are 75% less likely to travel

( see sensitivity analysis in Figure S4). For efficiency, only infected

travelers are tracked in the model. Infected visitors to a city are put

into the infected compartment corresponding to their vaccination

time, symptom status, viral load trajectory, and day of illness. They

progress through the infected compartments and travel to other

cities just like the other infected persons in the destination city.

Upon recovery, they return immediately to their home city.

Because of the short infectious period of influenza, we assumed

that infected travelers would not have the opportunity to return

before recovering. A city’s population may experience small and

temporary fluctuations in size because of travel, but the number of

travelers is much smaller than the population size.

Seasonality of influenza in the model
Transmissibility for each city rises and falls in an annual cycle in

the model (Figure 2). In the model, a country is always either in-

season and transmission is high (i.e., R~R0) or out-of-season (i.e.,

RvR0). For cities north of the Tropic of Cancer, influenza

transmission was assumed to be high (R~R0) from September 15

Figure 1. Vaccine efficacy over time. Vaccine efficacy rises over
time, reaching maximum efficacy after 28 days. The model assumes that
all individuals who receive their first dose vaccine will receive a second
exactly 21 days later.
doi:10.1371/journal.pone.0019515.g001

ð1Þ
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to June 1 each year and low otherwise (R~Rmin), except for cities

that are known to deviate from this pattern. Likewise, influenza

transmission was assumed to be high from April 15 to October 15

for cities south of the Tropic of Capricorn (Figure S2). For

temperate regions, we assumed that transmission was Rmin outside

of influenza season. For regions known to have year-round

transmission, we assumed that transmission was Rminz0:75|

(R0{Rmin) outside of influenza season. In other parts of the tropics,

we assumed that transmission was Rminz0:5|(R0{Rmin) outside

of influenza season.

Seasonality of influenza transmission is likely to be caused by a

variety of factors, from annual weather cycles to social factors [17].

We collected data on influenza season in various parts of the world

from the literature (Table S2). For large regions, influenza

epidemics peak about two months after they start [18], so if the

timing of the peak of influenza is known for a country, then we

assumed that the influenza season started about two months

earlier. If epidemic curves were shown and there was an obvious

peak of influenza activity, we defined the influenza season to cover

the peak as well as the periods elevated activity before and after the

peak. For regions in the tropics for which there was no influenza

activity data available, we assumed that influenza season coincided

with the rainy season. A few countries, such as China, India, and

Brazil, are known to have different influenza seasons in different

regions, and we tried to infer the season for each city when

possible. The seasonality used for each city in the model is

summarized in Figure S3.

Mapping global influenza transmission
To better understand the global transmission of influenza, we

identified clusters of cities within which transmission occurs

rapidly. To do this, we started with the epidemic percolation

network (EPN) of the global model (Text S2). The EPN is a

directed random graph that represents the final outcomes of a

stochastic epidemic model [19,20]. Informally, the EPN is a graph

where we draw directed edges from each person i to all persons i
would infect if the population were entirely susceptible. If an

epidemic begins with the infection of person i, all persons who can

be reached from i by following a series of edges—the out-

component of node i in the EPN—will be infected. Thus, the EPN

gives us a final outcome of the epidemic model for any given set of

initial infections.

The EPN for the entire global model would include hundreds of

millions of nodes and edges. To map the global spread of infection,

we collapsed the full EPN into a city-to-city EPN with a directed

edge from each city A to all cities that can be reached directly from

Figure 2. Seasonality in the model affects epidemic dynamics. The maps in the top row depict the relative transmissibility of influenza in the
model on (A) July 10 and (B) November 10. Each city in the model is plotted with a dot size proportional to the city’s population and colored red
when influenza is highly transmissible, blue when influenza is least transmissible, and orange for intermediate levels of transmissibility. The influenza
season in the temperate northern and temperate southern hemispheres occurs during their respective winters, hence the large proportion of red
dots in the south on July 10 and red dots in the north on November 10. The Tropics of Cancer and Capricorn are plotted as dashed horizontal lines.
Seasonality in the tropics does not follow this pattern, and may have multiple peaks, often corresponding to the rainy season. The maps in the
bottom row show the prevalence of influenza in each city in a simulation in which the pandemic began in Mexico City on April 1. The size of each red
dot is proportional to the prevalence of influenza in each city. (C) In July, prevalence is high in several cities in South America. (D) In November,
prevalence is high across the temperate northern temperate regions. Large epidemics can only occur when the seasonal transmissibility in a city
permits.
doi:10.1371/journal.pone.0019515.g002
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A (Text S2). The weight of each edge AB is proportional to the

expected number of directed edges in the EPN pointing from

persons in city A to persons in city B, assuming that all cities are

transmitting at their peak seasonal R0. This resulted in a network

with 321 nodes and 53,534 weighted links. We simplified this

network with an information-theoretic clustering algorithm [21]

based on finding a two-level code that minimizes the expected

code length required to describe the path of a random walker on

the city-to-city EPN (Text S2). We used the Map Generator

software package at www.mapequation.org [22] to perform the

clustering algorithm and generate the map.

Results

The model fit the observed spread of pandemic H1N1 2009

when the simulated epidemic was started with R0~1:85 in

Mexico City in late March 2009 (see Movie S1, Table S4, and

Text S3). In a sensitivity analysis, we found that later epidemic

start dates required higher values of R0 for the pandemic to spread

to the northern hemisphere at the appropriate time (Figure S5).

Figure 2C shows a snapshot of the simulated global spread on July

10, 2009, as the pandemic had swung to the temperate southern

hemisphere as well as the tropics, and Figure 2D shows the state of

the pandemic on November 10, 2009, as the pandemic was just

passing peak activity in much of the temperate northern

hemisphere. In addition, we modeled global transmission of a

strain for influenza more like the Hong Kong influenza A(H3N2)

pandemic of 1968–1969 with R0~1:45 (see Movie S2, Table S5,

and Text S3). The model did not fit the observed data as well,

probably because the pandemic took multiple seasons to reach

certain regions (Figure S6).

Network structure of global influenza transmission
The clustering algorithm identified 13 clusters connected by 146

directed edges. Table 1 summarizes characteristics of the clusters,

and Table S3 lists the cities in each cluster. ‘‘Flow’’ is the steady-

state proportion of time that a random walker on the city-to-city

EPN spends within the cluster, ‘‘outflow’’ is the steady-state

probability that a random walker within the cluster jumps to a city

in a different cluster. To measure the relative importance of the

cities within each cluster to the global transmission of influenza, we

divided the cluster’s flow by the number of cities it contains,

normalizing so the average value over all clusters equals one. This

is called the ‘‘per-city flow’’ in the table. Figure 3 shows the 13

nodes in their approximate geographical locations and the 36

edges across which the most inter-cluster influenza transmission

occurs, which account for 90% of all transmission between

clusters.

The map captures several important features of global spread of

influenza. The major population centers in the temperate northern

hemisphere are highly connected, resulting in a narrow epidemic

curve with a single peak. Connections between clusters in the

tropics and the temperate southern hemisphere are not as dense,

resulting in wider epidemic curves with multiple peaks. The Hong

Kong and Southeast Asia cluster plays a larger role in the spread

of influenza than would be expected based on the number of cities

it contains. The North/Central America+Caribbean and Eur-

ope+North/West Africa clusters have high flow per city but

relatively low outflow probabilities. The Hong Kong and

Southeast Asia cluster has both high flow per city and a high

outflow probability. Its tropical location allows it to serve as a

bridge between the Northern and Southern Hemispheres. The

map indicates that pandemics starting within season in the

temperate northern hemisphere, North and West Africa, or the

Caribbean would quickly spread throughout those regions but

diffuse much more slowly to other parts of the globe. Epidemics

originating in China are linked to North America and Europe

primarily through Japan and Southeast Asia.

Global patterns of pandemic influenza spread
To investigate the most plausible global patterns for pandemic

influenza spread, we model the initial outbreak to occur at

different key geographic locations, times of the year, and values of

R0. In Figure 4, we show plots of the global spread for pandemics

starting in Hong Kong, Ho Chi Minh City, Cairo and Mexico

City. Hong Kong was the first city to experience a large epidemic

in the Hong Kong influenza pandemic in 1968. Both Egypt and

Vietnam have experienced considerable avian influenza A(H5,N1)

Table 1. Global transmission cluster characteristics.

Cluster # of cities Flow1 Outflow2 Flow per city3

Europe and North/West Africa 85 0.309 0.187 1.30

North/Central America and Caribbean 64 0.296 0.106 1.65

Middle East and South Asia 34 0.071 0.324 0.74

Hong Kong and Southeast Asia 16 0.065 0.459 1.45

China and North Korea 24 0.056 0.231 0.84

Russia and Central Asia 41 0.051 0.403 0.44

Japan 7 0.041 0.406 2.10

Australia, New Zealand, and Pacific Islands 15 0.037 0.254 0.88

South America 12 0.028 0.257 0.84

Southern/Eastern Africa 12 0.022 0.360 0.64

South Korea and Mongolia 5 0.017 0.473 1.24

Colombia 5 0.005 0.470 0.63

Greenland 2 0.001 0.683 0.24

1Steady-state proportion of steps spent in the cluster by a random walker.
2Steady-state probability that a random walker in the cluster jumps to a different cluster.
3Flow divided by number of cities, normalized so the average value equals one.
doi:10.1371/journal.pone.0019515.t001
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human cases where reassortment events could lead to a pandemic

strain.

The scenario most similar to the Hong Kong pandemic of

1968–1969 is shown in the plot for Hong Kong starting on June 1

in Figure 4A. In this case, we see two peaks in the temperate

southern hemisphere countries because the first wave out of Hong

Kong does not go to completion before the end of the influenza

season in many of these countries (Movie S2). If initial spread

comes out of Hong Kong earlier in the year (i.e., March or April),

then most of the temperate southern hemisphere peaks during the

winter of the first year. In all these cases, a single peak occurs in

December in the temperate northern hemisphere countries. The

epidemics in the tropics tend to peak in multiple clusters between

August and January. A similar pattern occurs if the pandemic

starts in Ho Chi Minh City rather than Hong Kong.

For pandemics starting in Mexico City or Cairo, with R0~1:4,

two peaks occur in the temperate southern hemisphere if the

pandemic starts on April 1, but only one peak occurs if the

pandemic starts on March 1. The epidemics in the temperate

northern hemisphere and the tropics are roughly the same as when

the pandemic started in Hong Kong or Ho Chi Minh City. If the

pandemic strain starts spreading on May 1 or June 1, there is no

pandemic at all. In this case, we are past the temperate northern

hemisphere influenza season and infected travelers arrive too late

in the temperate southern hemisphere influenza season to sustain

transmission there.

Figure 4B shows simulations of pandemics having initial spread

in the same four cities for a more transmissible virus with R0~1:8.

In these cases, the pandemic is much larger and faster than when

R0~1:4 and the patterns of spread are similar regardless of when

and where the pandemic spread starts. The case where pandemic

spread starts in Mexico City on April 1 is closest to the pandemic

H1N1 2009 situation. In this case, there is only a single first peak

in the temperate southern hemisphere in July and a large peak in

the temperate northern hemisphere in late October. As in the case

when R0~1:4, there is no subsequent pandemic when spread

starts in Mexico City on June 1.

Effect of a global vaccination strategy
For our modeling, we assume that pandemic vaccine is available

180 days after the appearance of the pandemic strain. For

pandemic H1N1 2009, substantial quantities of vaccine became

available in October, 2009, roughly five to six months after the

recognition of the pandemic strain in late April, 2009. In the US,

the epidemic peaked in October, just as the vaccine was arriving.

We assumed that all vaccine was delivered and administered at

once, and more realistic rollouts would result in a slower and

possibly less efficacious global mass vaccination campaign.

We used the per capita GDP from 2007 [23] to determine how

much vaccine each country would be able to obtain. Wealthy

countries (per capita GDP w$25,000 in year 2000 dollars) cover

50% of their populations. Other developed countries (per capita

Figure 3. Map showing influenza transmission clusters. Clusters represent groups of cities within which transmission of influenza is rapid;
transmission between clusters is slower. The map shows all 13 clusters and the 36 directed edges across which the most inter-cluster transmission
occurs, which account for 90% of all inter-cluster influenza transmission. The area of each cluster is proportional to the steady-state proportion of
time a random walker on the city-to-city EPN spends in the cluster. The proportion of each cluster contained in its border ring equals the probability
that a random walker within the cluster jumps to a city in a different cluster, so the proportion contained in the interior is equal to the probability that
a random walker within the cluster jumps to another city in the cluster. The width of each edge is proportional to the steady-state proportion of
jumps between clusters that cross it. For emphasis, the color of cluster interiors and border rings gets darker with increasing area and the color of the
edges gets darker with increasing width.
doi:10.1371/journal.pone.0019515.g003

The Global Transmission and Control of Influenza

PLoS ONE | www.plosone.org 5 May 2011 | Volume 6 | Issue 5 | e19515



Figure 4. Prevalence of influenza over time in simulated pandemics with various starting locations, dates, and transmissibilities. In
each plot, the infection prevalence (%) for the cities in the three regions of the globe are plotted: North (cities north of the Tropic of Cancer, in red), South
(cities south of the Tropic of Capricorn, in blue), and tropics (cities between the two tropics, in green). Each plot shows the results from a single
simulation. (A) Simulated pandemics with R0~1:4 were started in Hong Kong (first column), Ho Chi Minh City (second column), Mexico City (third
column), and Cairo (fourth column). The epidemics were started on March 1, April 1, May 1, and June 1 and plotted in the first, second, third, and fourth
rows, respectively. (B) Plots of simulated pandemics with R0~1:8, organized as in panel A. Note that the y-axis has a different scale than panel A.
doi:10.1371/journal.pone.0019515.g004
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GDP w$10,000) cover 25% of their populations. The remaining

countries cover 10%, many relying on the World Health

Organization’s vaccine distribution plan. See Table S6 for a

summary of vaccine coverage in the model for individual countries.

To reduce mortality and morbidity, vaccine should first be

distributed to children and individuals at high risk of complications

from influenza infection [24,25]. We assume that 10% of children

are and 17% of adults are at high risk [26]. In the simulations, we

prioritize high-risk children, followed by high-risk adults, healthy

children, then healthy adults. We assume that a maximum of 50%

of any group will get vaccinated. Therefore, if a country can cover

50% of its population, then 50% of each of these risk groups is

covered. If a country can cover 25% of its population, then 50% of

the high-risk children and adults are covered, 50% of the healthy

children, and about 10–13% of healthy adults. If a country can

cover 10% of its population, then 50% of the high-risk children

and adults are covered, about 5% of healthy children, and no

healthy adults. This strategy results in lower overall attack rates as

compared to a strategy in which everyone has the same priority

(Figure S8).

Table 2 shows the results for such a vaccination campaign for

several of the pandemic scenarios shown in Figure 4. The row for

the pandemic starting in Mexico City on April 1, with R0~1:8
gives the scenario closest to pandemic H1N1 2009. In this case, the

model predicts about 1.2 billion eventual influenza illnesses with

no vaccination and about 930 million had vaccination been

carried out as described above. The biggest impact of vaccination

would have been in the temperate northern hemisphere, reducing

the illness attack rate from 16% to 9%. Such a vaccination

campaign would have little effect on the epidemic in the temperate

southern hemisphere, and a small effect in the tropics. Movie S3

gives a dynamic view of the effect of such vaccination. This

vaccination plan has the biggest beneficial effect in the temperate

northern hemisphere if the pandemic strain begins spread from

Mexico City or Cairo in March or April. For the temperate

southern hemisphere, this vaccination strategy would have the

biggest beneficial effect if the R0 is lower, at 1:4, and if the

beginning of pandemic spread is in Hong Kong in May or June, or

Cairo in April. In general, the tropics benefit most only when the

other regions gain a benefit as well.

Discussion

Our analysis of the global spread of pandemic influenza gives

some insight into the spread of genetically drifting interpandemic

strains of influenza. The cities in our model include about 620

million individuals, or about one tenth of the world’s population.

These geographically distributed major population centers should

be enough to represent the overall dynamics of a global epidemic,

in which influenza strains travel via infected passengers from

epidemic regions to those just coming into influenza season.

Previous modeling studies have shown that air travel governs the

rapid dynamics of epidemic spread around the globe, and that

other modes of transport govern the slower local regional diffusion

Table 2. Potential global impact of mass influenza vaccination (averages from 10 simulations for each scenario).

illness attack rate, %

Origin R0 Start date Intervention Ill, Millions Total North South Tropics

Hong Kong 1.4 May Baseline 745 11 10 11 13

Vaccination 432 6 5 6 10

Jun Baseline 732 11 10 11 13

Vaccination 541 8 7 6 10

1.8 May Baseline 1234 18 16 19 22

Vaccination 1159 17 14 18 22

Jun Baseline 1214 18 16 17 22

Vaccination 1205 18 16 16 21

Mexico City 1.4 Mar Baseline 762 11 10 13 14

Vaccination 400 6 3 12 10

Apr Baseline 738 11 10 10 13

Vaccination 355 5 3 9 9

1.8 Mar Baseline 1168 17 14 20 22

Vaccination 1057 16 12 20 22

Apr Baseline 1232 18 16 20 23

Vaccination 926 14 9 20 22

Cairo 1.4 Mar Baseline 782 11 10 12 14

Vaccination 429 6 4 10 11

Apr Baseline 754 11 10 10 13

Vaccination 384 6 3 7 10

1.8 Mar Baseline 1133 17 14 20 22

Vaccination 1028 15 11 20 22

Apr Baseline 1232 18 16 20 23

Vaccination 922 14 9 20 22

doi:10.1371/journal.pone.0019515.t002
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of disease [27–29]. Our more detailed treatment of influenza

seasonality in the tropics contributes greatly to the realism of the

model without increasing its computational complexity.

Although SE Asia has often been the source of new strains of

seasonal influenza, the next pandemic may arise in other parts of

the world, as was demonstrated by pandemic H1N1 2009 in early

2009. One of the more alarming scenarios would be a newly

reassorted H1N1/H5N1 influenza with high transmissibility and

virulence. Therefore, we considered regions with potential person-

to-person transmission of H5N1 [8].

The cluster map of global influenza transmission in Figure 3

helps explain several important features of our simulation results.

In all of the scenarios we simulated, pandemics peaked in the

temperate northern hemisphere during the fall/winter of the first

year (Figure 4), as has been observed historically. The temperate

northern hemisphere is highly connected by air travel and may

share a common winter influenza season, so influenza prevalence

peaks across much of this region appear to be synchronized [30].

In the temperate southern hemisphere, epidemics may peak in the

fall/winter of either (or both) the first or second year, depending

on when the epidemic starts and how transmissible it is. The

tropics, which do not have a single unifying influenza season and

are less densely connected, has unsynchronized epidemic peaks.

Epidemics with a high R0 are likely to burn out in one season,

while those with lower transmissibility may take multiple seasons

to reach the more remote parts of the world. In particular, South

America is not well-connected to most of the world in our model

(Figure 3). Its strongest links are with the North and Central

America cluster and the Europe and North/West Africa cluster,

where most cities are out of season during the southern influenza

season. This path of transmission from Asia to the temperate

northern hemisphere, and much later to South America agrees

with phylogenetic analyses of influenza strains around the world

[11,31]. How these strains evolve each season after they leave the

tropics is open to debate [10,31,32].

To duplicate the observed global dynamics for pandemic H1N1

2009, we set the value of R0 to 1.8, at the higher end of the

estimated range of 1.3–1.7 from early spread in Mexico and the

US [15] but consistent with another global model of pandemic

H1N1 [4]. Our model predicts that parts of the globe already

invaded by pandemic H1N1 2009 will not experience substantial

further epidemics (see panel for Mexico City and April in

Figure 4B), unless the virus begins genetic drift under immune

pressure. Following pandemic years, increasing levels of popula-

tion immunity change the age-specific transmission patterns of

circulating strains. Further study will be needed to build reliable

global simulation models of interpandemic strains. In addition, our

models predicted that the temperate northern hemisphere would

have had considerable reduction in the influenza illness attack

rates had vaccine been distributed in the quantities indicated, i.e.,

rapid 50% coverage, on October 1. However, that was not the

case. In the US, small quantities of vaccine arrived in early

October, ramping up to about 20% coverage by December, 2009.

We estimate that the effect of vaccination in the US reduced the

illness attack rate from about 23% to about 20%. Thus, vaccine

would have to be delivered in a more timely fashion and with

higher coverage in the US and other countries to have the

effectiveness predicted by our model.

The model uses many simplifying assumptions to be tractable,

and it may be misspecified in ways that bias our results. Recent

models have begun to incorporate more realistic networks of

human movement, including ground transportation [4,29]. The

addition of commuting patterns do not substantially change the

timing of the epidemic peaks [29], but this level of detail may be

required to simulate the dynamics of epidemics at finer resolutions

[28]. The fact that our model is open-source and computationally

simple enough to run easily on a laptop makes it more accessible to

the public health community than proprietary, computationally

intensive models. Our model uses the same next-generation model

in all cities. Regional differences in population structure and in the

behavior of children and adults, including hygiene, socializing, and

propensity to travel, may influence the global spread of influenza.

We have performed a simple sensitivity analysis for age structure

(see Figure S7), but this is an area that needs further exploration.

We suspect that more accurate next-generation matrices in the

cities of our model would increase the relative importance of

influenza transmission in the tropics, which includes many

countries with very young population. This, in turn, makes

accurate modeling of seasonality even more crucial for obtaining

realistic simulation results.

The factors that influence the seasonality of influenza are not

well understood, so we used the observed influenza activity from

past seasons to define periods of high transmissibility. One

problem with this approach is that the model predictions do not

take into account the conditions of a particular year. A more

detailed model would allow seasons to be delayed or truncated by,

for example, climate and school calendars [33,34]. Although it

would be conceptually easy add such conditions to the model, the

amount and availability of required data are significant obstacles.

Nonetheless, we believe that the tropical seasonality of influenza in

our model is an important improvement on earlier efforts.

The single-strain model that we present here is suitable for

pandemics, in which there is little pre-existing immunity in the

population. However, the dynamics of seasonal influenza are

determined by multiple competing strains, cross-protection,

antigenic drift, and waning immunity. None of this is captured

in our model, which may limit its use in planning a public health

response to inter-pandemic influenza spread.

The transmission cluster map captured several important

features of global influenza transmission, and we believe it is a

new and useful way to understand the behavior of complex

epidemic models. The clustering algorithm could be modified in

several ways that might improve the identification of transmission

clusters. The current algorithm was not designed specifically to

understand infectious disease transmission, so it is insensitive to the

effects of seasonality and to the population within each city.

Improving the identification of transmission clusters and under-

standing their use in the design of global vaccination strategies are

important extensions of the research presented here.

We investigated a likely global distribution of pandemic

influenza vaccine within current possible constraints using an

open-source model that we developed to capture the essential

features of global influenza transmission while remaining

computationally simple enough to be used by any researcher.

We show that such strategies are marginally effective for certain

regions of the planet depending on the location, timing and

transmissibility of the new pandemic strain. The modeling

structure and clustering algorithm used for Figure 3 could be

used to develop optimal vaccine distribution if global strategies

were possible for limited quantities of vaccine. This would be an

important next step for the control of both pandemic influenza

and interpandemic influenza, and it is a subject of future research

and planning.

Supporting Information

Movie S1 Animation of a simulated pandemic H1N1
2009-like pandemic. The simulation was initialized with 1,000

The Global Transmission and Control of Influenza

PLoS ONE | www.plosone.org 8 May 2011 | Volume 6 | Issue 5 | e19515



infected individuals in Mexico City on March 29 with R0~1:85.

Red dots on the map indicate cities with infected individuals, with

the size of the dot proportional to prevalence. Light blue arcs

indicate that an infected person travels to a city with no infected

individuals. On the right, infection prevalence is plotted for three

regions: North (cities north of the Tropic of Cancer, in red), South

(cities south of the Tropic of Capricorn, in blue), and tropics (cities

between the two tropics, in green).

(MPG)

Movie S2 Animation of a simulated pandemic begin-
ning in Hong Kong. The simulation was initialized with 1,000

infected individuals in Hong Kong on June 1 with R0~1:4.

(MPG)

Movie S3 Animation of simulated pandemics beginning
in Mexico, with or without vaccination. The simulation was

initialized with 1,000 infected individuals in Mexico City on April

1 with R0~1:8. The top panels show a map and the prevalence of

infection when there is no vaccine available, while the bottom

panels correspond to the simulation in which vaccine was

administered on September 1. In countries in which the per

capita GDP was over $25,000 in 2007, 50% of the population was

vaccinated. In countries in which the per capita GDP was less than

$25,000 but over $10,000, 25% of the population was vaccinated.

10% of the population was vaccinated in the remaining countries.

(MPG)

Figure S1 The six viral load trajectories. Data from

[35,36].

(EPS)

Figure S2 The locations of the 321 cities in the global
transportation network. Dot size is proportional to popula-

tion. Red points are north of the Tropic of Cancer, blue points are

south of the Tropic of Capricorn, and green dots are between the

two tropics.

(EPS)

Figure S3 Influenza seasons in the model. Each row of

symbols represents the seasonality of a single city over the course

of a year, with the exception of the first row, which represents all

cities north of Lahore, Pakistan. Cities labeled in red are Northern

(above Tropic of Cancer), those in green are in the tropics, and

those in blue are Southern. Red triangles represent high

transmissibility (influenza season) in a temperate region, R~R0.

Blue triangles are low transmissibility (out-of-season) in a

temperate region, R~Rmin. Orange triangles represent high

transmissibility in a tropical region, R~R0. Green triangles are

(relatively) low transmissibility in a tropical region, R~Rminz
R0{Rmin

2
. Magenta circles are moderate transmissibility in a tropical

region, R~Rminz0:75|(R0{Rmin).

(EPS)

Figure S4 Sensitivity of the model results to the
symptomatic vs healthy travel ratio. Top panel: The model

was run for a pandemic H1N1-like scenario, starting on March 29

with 1,000 individuals infected with a strain with R0~1:85. The

symptomatic to healthy travel ratio was varied from 0% to 100%.

For each value of this ratio, the simulation was run 10 times, and

the epidemic peak for each country is plotted as a ‘‘+’’. When the

ratio is 0%, infected travelers only travel when they will not

become symptomatic, which caused epidemics to peak later in

countries. When the ratio is 100%, symptomatic travelers travel

just as often as healthy individuals, causing epidemics to peak early

in the southern hemisphere and late in the northern hemisphere.

Bottom panel: The model was run using the 1968–69 air travel

network and ‘‘Hong Kong’’-like parameters (pandemic starting

with 1,000 individuals in Hong Kong with R0~1:45 on May 24).

The peak time for Sydney, Australia, was most affected by the

symptomatic to healthy traveler ratio. At high values, the epidemic

peaked during the first season, while at increasingly lower values

the epidemic peak would occur more frequently during the second

season.

(EPS)

Figure S5 Fitting the model to pandemic H1N1 2009.
Top panel: Estimates of R0 and the pandemic start date. We

varied R0 in increments of 0.05 and the pandemic start date (day

on which 1,000 people are infected in Mexico City) in increments

of one week. We ran the simulation once for each combination of

values. The numbers in the plot are the x-square values. Dots are

yellow where pw0:5, orange where pw0:95, and red where

pw0:999. Bottom panel: Influenza prevalence in the model for the

2009–2010 H1N1 pandemic. We assumed that the pandemic

started with 1,000 infected individuals in Mexico City on March

29 with R0 = 1.85. Model predictions are by city, so a country is

the sum of its cities. The peak day for each country in a single

simulation is in the legend.

(EPS)

Figure S6 Fitting the model to the 1968–69 Hong Kong
pandemic. Top panel: Estimates of R0 and the pandemic start

date. We varied R0 in increments of 0.05 and the pandemic start

date (day on which 1,000 people are infected in Hong Kong) in

increments of one week. We ran the simulation twice for each

combination of values and chose the results with the smaller

errors. The numbers in the plot are the Chi-square values. Dots

are yellow where pw0:0001 and orange where pw0:05. Bottom

panel: Influenza prevalence in the model for the 1968–1969

pandemic. We assumed that the pandemic started with 1,000

infected individuals in Hong Kong on May 24 with R0 = 1.45.

(EPS)

Figure S7 Sensitivity of the model results to population
age structure. Top panel: The model was run for a pandemic

H1N1-like scenario, starting on March 29 with 1,000 individuals

infected with a strain with R0~1:85. In the default scenario (in

black), the fraction of children in the population of each country

was based on [16]. In the alternative scenario (in red), the

population was not divided into children and adults. The

simulation was run 10 times for each scenario, and the epidemic

peak for each country is plotted. Bottom panel: The model was

run using the 1968–69 air travel network and ‘‘Hong Kong’’-like

parameters (pandemic starting with 1,000 individuals in Hong

Kong with R0~1:45 on May 24). The peak time for Sydney,

Australia, was most affected by the symptomatic to healthy

traveler ratio. At high values, the epidemic peaked during the first

season, while at increasingly lower values the epidemic peak would

occur more frequently during the second season.

(EPS)

Figure S8 The effect of vaccination on influenza prev-
alence in the model by hemisphere. Top: For a 1968–1969-

like pandemic, we assumed that it began with 1,000 infected

individuals in Hong Kong on June 1 with R0 = 1.4 and

vaccination occurred 180 days later in late November. Bottom:

For a 2009-like pandemic, we assumed that the pandemic started

with 1,000 infected individuals in Mexico City on April 1 with

R0 = 1.8 and vaccination occurred 180 days later in late

September. Solid lines are for no vaccination, dashed lines plot

‘‘Universal’’ vaccination (everyone has the same priority), and

dotted lines plot vaccination that prioritizes high risk individuals
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and children. The color of the line indicates region. Small

differences between scenarios might be due to stochastic effects.

Each plot shows a single stochastic realization.

(EPS)

Table S1 Model parameters.

(PDF)

Table S2 Influenza season data from the literature.

(PDF)

Table S3 Cities in the 13 transmission clusters from the
global model, in decreasing order of flow.

(PDF)

Table S4 Observed and simulated pandemic H1N1 2009
epidemic peaks. Observed data was from influenza A virology

surveillance data from Flunet.

(PDF)

Table S5 Observed and simulated 1968–1969 pandemic
peaks. Observed data is from [3].

(PDF)

Table S6 Vaccine availability in different countries in
the model.
(PDF)

Text S1 Model.

(PDF)

Text S2 Mapping global influenza transmission.

(PDF)

Text S3 Pandemic simulations.

(PDF)
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