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Abstract

Background: Despite its estimated high heritability, the genetic architecture leading to differences in cognitive
performance remains poorly understood. Different cortical regions play important roles in normal cognitive functioning and
impairment. Recently, we reported on sets of regionally enriched genes in three different cortical areas (frontomedial,
temporal and occipital cortices) of the adult rat brain. It has been suggested that genes preferentially, or specifically,
expressed in one region or organ reflect functional specialisation. Employing a gene-based approach to the analysis, we
used the regionally enriched cortical genes to mine a genome-wide association study (GWAS) of the Norwegian Cognitive
NeuroGenetics (NCNG) sample of healthy adults for association to nine psychometric tests measures. In addition, we
explored GWAS data sets for the serious psychiatric disorders schizophrenia (SCZ) (n = 3 samples) and bipolar affective
disorder (BP) (n = 3 samples), to which cognitive impairment is linked.

Principal Findings: At the single gene level, the temporal cortex enriched gene RAR-related orphan receptor B (RORB)
showed the strongest overall association, namely to a test of verbal intelligence (Vocabulary, P = 7.7E-04). We also applied
gene set enrichment analysis (GSEA) to test the candidate genes, as gene sets, for enrichment of association signal in the
NCNG GWAS and in GWASs of BP and of SCZ. We found that genes differentially expressed in the temporal cortex showed a
significant enrichment of association signal in a test measure of non-verbal intelligence (Reasoning) in the NCNG sample.

Conclusion: Our gene-based approach suggests that RORB could be involved in verbal intelligence differences, while the
genes enriched in the temporal cortex might be important to intellectual functions as measured by a test of reasoning in
the healthy population. These findings warrant further replication in independent samples on cognitive traits.
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Introduction

Cognitive abilities (e.g. intelligence, memory, attention and speed

of processing) vary to a great extent in the population, considerably

affecting the life outcome of individuals. Despite being highly

heritable, with estimates ranging from 30–80%, little is known

about the genetic mechanisms involved in cognitive functioning

(reviewed in [1]). It is, however, widely accepted that a polygenic

mechanism underlies the differences in cognition, each genetic

factor having a very small effect size (reviewed in [1,2]). A recent

genome-wide association study (GWAS) showed, for the first time,

that common genetic variants account for ,40–50% of the

variation in human intelligence [3]. However, despite an extensive

search by linkage and association studies, only a limited number of

genes has so far been implicated in normal cognitive functioning

(e.g. ALDH5A1, APOE, COMT, BDNF, DCLK1) [1,4–9].

Cognitive dysfunction is one of the main clinical problems

observed in patients suffering from major psychiatric disorders, such

as schizophrenia (SCZ) and bipolar affective disorder (BP). High

heritability has been estimated for both SCZ and BP [10–12], and

common alleles of small effect are thought to increase susceptibility

to these complex disorders. However, for SCZ, some rare variants

(e.g. copy number variations) have also been linked to disease

susceptibility [13,14]. Although great efforts have been made over

the last decades to identify genetic factors causing susceptibility to

SCZ and BP, surprisingly few genes have so far been implicated

[15–22]. By considering cognition as an intermediate biological

phenotype (endophenotype) for major psychiatric illnesses, one

might come closer to identifying causative genetic factors. An

overlap in genetic factors linked to both cognition and psychiatric

disorders has already been observed (e.g. ZNF804A and DISC1)

[18,23], which supports the validity of testing the same genes in both

normal cognitive function and in psychiatric illnesses.

Several areas of the brain, in particular different cortical

regions, play important roles in normal cognitive functioning and

impairment, as well as in psychiatric disease. A network consisting

of areas in the dorsolateral prefrontal, parietal, anterior cingulate,

temporal and occipital cortices (parieto-frontal integration theory)

has been associated with differences in intellectual function [24].

The prefrontal cortex is particularly important for working

memory, attention and planning, and structural and functional

changes in this region have been linked to psychiatric disorders.

Regions within the temporal and occipital lobes have also been

implicated in cognitive abilities and psychiatric disorders, as these

regions are critical for early auditory and visual sensory

information processing and interpretation. In general, reduction

of cortical thickness has been observed in patients suffering from

SCZ and BP, particularly in the frontal and temporal lobes [25],

while total brain volume (gray and white matter) and cortical

thickness have been correlated to measures of intelligence [26,27].

Previously, we examined the global gene expression in the

frontomedial (FMCx), temporal (TCx) and occipital (OCx) cortices

from the normal adult rat brain, and identified distinct sets of

regionally enriched cortical genes [28,29]. While the overall gene

expression in the different cortical areas was highly similar, 65

genes showed marked regional enrichment (30, 24 and 11 genes in

the FMCx, TCx and OCx, respectively). Based upon the

assumption that genes highly or specifically expressed within a

certain region or organ are likely to reflect its functional

specialisation [28,30,31], and considering the implications of

different areas of the cortex in human cognition and psychiatric

disorders, we hypothesised that these enriched genes might serve

as candidates for individual differences in cognitive function and

for psychiatric disorders.

In this study, we used the regionally enriched cortical genes as

candidates to mine existing GWASs of relevant cognitive traits and

of SCZ and BP, taking a gene-based approach. First, we applied a

novel tool, LDsnpR, (Christoforou et al. under revision) to assign

single nucleotide polymorphism (SNP) marker information from

the GWAS data to their corresponding genes, and then to

subsequently score the genes. Applying this gene-based approach,

we tested the association of regionally enriched cortical genes to

normal cognitive functioning using a GWAS recently conducted

by our group (Christoforou et al. unpublished data). Next, we

analysed these genes, as gene sets, using gene set enrichment

analysis (GSEA) [32] to search for enrichment of association signal

in the aforementioned GWAS of cognition and in GWASs of

psychiatric disorders (SCZ and BP).

Materials and Methods

Candidate genes
Selection of candidate genes. Recently, we described sets of

genes that show differential expression in three different cortical

regions in the adult rat brain (FMCx, TCx and OCx) [29], based

on global gene expression analysis of several brain regions (three

cortical regions, as well as hippocampus, striatum and cerebellum)

and three non-CNS samples (liver, kidney and spleen) [28]. Sixty-

five genes were found to display enriched expression in certain

cortical regions (30, 24 and 11 genes in the FMCx, TCx and OCx,

respectively) [29]. The Ensembl Genome Browser (release 54) was

searched to identify the Ensembl ID for the human homologues to

the rat genes (http://may2009.archive.ensembl.org/) [33]. Three

genes were not represented in the Ensembl release 54 (i.e. two

unassigned Celera genes: rCG46329 and rCG41008; and Clec2l),

resulting in 62 genes eligible for the subsequent gene-based

analysis in cognition and psychiatric disorders (Table 1–3).

Expression and functional characterisation of candidate

genes. The expression pattern of the human homologues to the

rat genes were analysed in the Allen Human Cortex Study (Whole

Brain Microarray Survey) from The Allen Institute for Brain

Science [34] (http://humancortex.alleninstitute.org). Functional

characterisation of the human homologous genes was performed

using the Panther Classification System version 7 (http://www.

pantherdb.org/) [35,36], as previously described [28]. One gene

was not represented in Panther (i.e. HTR5B).

GWAS datasets
GWAS of cognition in the Norwegian Cognitive Neuro-

Genetics sample. The Norwegian Cognitive NeuroGenetics

(NCNG) sample consists of 670 healthy adult individuals of

Norwegian origin (214 males, 456 females), extensively tested for

cognitive abilities. The participants were between 18 to 79 years of

age (mean: 47.6), and were recruited through advertisements in

local newspapers to participate at the University of Bergen

(n = 171) and Oslo (n = 499) areas. In this study we focused on nine

different tests, covering four major cognitive functions, namely:

Intellectual function (The Vocabulary and Matrix Reasoning sub-

tests from the Wechsler Abbreviated Scale of Intelligence, and the

estimated Full-Scale Intelligence Quotient (FSIQ) [37]), memory

(the total numbers of words learned across five trials (CVLT-L)

and the delayed free recall score (CVLT-DR) from the California

Verbal Learning Test [38]), executive attention (the third

condition from the D-KEFS Color-Word Interference Test

(Stroop3) [39]) and attention (Cued Discrimination Task, CDT-

Valid, CDT-Invalid and CDT-Neutral [40]) (Table S1).

Correlation estimates between the psychometric tests are listed

in Table S2. The individuals were genotyped using the Illumina

Cortex Genes in Cognition and Mental Disorders
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platform (Human610-Quad), and after quality control, 554,225

SNPs were incorporated into the analysis. Further details on the

sample, genotyping and quality control can be found in Davies

et al. 2011 [3].

GWAS of BP and SCZ. We mined the following GWAS data

sets: for BP, we analysed the Norwegian Thematically Organized

Psychosis (TOP) Study BP sample (198 cases and 336 controls,

genotyped using the Affymetrix Genome-Wide Human SNP

Array 6.0) [41], the British Wellcome Trust Case Control

Consortium BP (WTCCC, 1,868 cases and 2,938 controls,

genotyped using Affymetrix GC500K) [42] and a German BP

GWAS (Bonn/Mannheim, 682 cases and 1,300 controls,

genotyped using Illumina’s HumanHap550v3) [20]: for SCZ, we

mined GWAS data from the Norwegian TOP SCZ (201 cases and

305 controls, genotyped using Affymetrix Genome-Wide Human

SNP Array 6.0) [43], the German part of a combined German-

Dutch SCZ GWAS (464 cases and 1,272 controls, genotyped

using Illumina’s HumanHap550v3) [19] and a GWAS on the

Danish sub-sample of the Scandinavian Collaboration on

Psychiatric Etiology (573 cases and 453 controls, genotyped

using Illumina’s Human610-Quad, [44]).

GWAS of non-psychiatric phenotypes. As a control for the

specificity of our analyses on cognitive traits and psychiatric

illnesses, we also analysed non-psychiatric phenotypes. We

performed GSEA on the non-psychiatric GWAS data sets from

the WTCCC: Crohn’s disease (1,748 cases), coronary heart disease

(1,926 cases), hypertension (1,952 cases), rheumatoid arthritis

(1,860 cases), type 1 diabetes (1,963 cases) and type 2 diabetes

(1,924 cases). The GWAS data sets from the WTCCC included

2,938 healthy controls common for the six disorders. The

individuals were genotyped using Affymetrix GC500K [42].

Methods

SNP to gene assignment using LDsnpR
In order to analyse the GWAS data on cognition, psychiatric

disorders and non-psychiatric phenotypes at the gene level, we

implemented a novel linkage disequilibrium (LD)-based SNP

Table 1. Overview of frontomedial cortex enriched genes analysed in this study.

HGNC Symbol Ensembl ID/54 Description

ADPRHL1 ENSG00000153531 ADP-ribosylhydrolase like 1

ADRA1B ENSG00000170214 Adrenergic receptor, alpha 1b

ALDH3B2 ENSG00000132746 Aldehyde dehydrogenase 3 family, member B2

C1QL3 ENSG00000165985 Complement component 1, q subcomponent-like 3

CADM1 ENSG00000182985 Cell adhesion molecule 1

CRIM1 ENSG00000150938 Cysteine rich transmembrane BMP regulator 1 (chordin like)

CRIP2 ENSG00000182809 Cysteine-rich protein 2

EFNB3 ENSG00000108947 Ephrin B3

EPHB6 ENSG00000106123 Eph receptor B6

FXYD6 ENSG00000137726 FXYD domain-containing ion transport regulator 6

GRP ENSG00000134443 Gastrin releasing peptide

HAP1 ENSG00000173805 Huntingtin-associated protein 1, transcript variant 2.

HCRTR1 ENSG00000121764 Hypocretin (orexin) receptor 1

HEBP1 ENSG00000013583 Heme binding protein 1

LDB2 ENSG00000169744 LIM domain binding 2

LMO4 ENSG00000143013 LIM domain only 4

NAGS ENSG00000161653 N-acetylglutamate synthase

NTF3 ENSG00000185652 Neurotrophin 3

PANX1 ENSG00000110218 Pannexin 1

PCDH17 ENSG00000118946 Protocadherin 17

PFKL ENSG00000141959 Phosphofructokinase, liver, B-type

PRKCDBP ENSG00000170955 Protein kinase C, delta binding protein

PRMT2 ENSG00000160310 Protein arginine N-methyltransferase 2

RSPO2 ENSG00000147655 R-spondin 2 homolog (Xenopus laevis)

RYR1 ENSG00000196218 Ryanodine receptor 1, skeletal muscle

ST6GALNAC5 ENSG00000117069 Sialyltransferase 7E

SULF2 ENSG00000196562 Sulfatase 2

TMEFF1 ENSG00000066697 Tomoregulin-1 Precursor (Transmembrane protein with EGF-like and one follistatin-like
domain)(TR-1)

ZCCHC12 ENSG00000174460 Zinc finger, CCHC domain containing 12

The 29 frontomedial enriched cortical genes [29] were used as candidates to search for association to nine test measures of cognitive functions [37–40], at the single
gene- and gene set-based level. The HUGO Gene Nomenclature Committee (HGNC) symbol, Ensembl Genome Browser (release 54) identification [33] and gene
description is shown.
doi:10.1371/journal.pone.0031687.t001
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binning tool, named LDsnpR (Christoforou et al. under revision).

This tool assigns SNP marker information and P-values from

GWAS data sets to individual genes based both on the

chromosomal position of the SNP and on the LD profile of the

SNP (positional- and LD-based-binning, respectively). Thus, a

SNP is assigned, or binned, to a gene if it is physically located

within the pre-defined boundaries of the gene, or if it is in LD with

another SNP (genotyped or not) that is physically located within

these boundaries of the gene. Gene bin definitions were based on

Human Ensembl release 54 (May 2009). They were further

Table 2. Overview of temporal cortex enriched genes analysed in this study.

HGNC Symbol Ensembl ID/54 Description

ARHGAP9 ENSG00000123329 Rho GTPase activating protein 9

ATOH7 ENSG00000179774 Atonal homolog 7 (Drosophila)

C1orf146 ENSG00000203910 Uncharacterized protein C1orf146

CA4 ENSG00000167434 Carbonic anhydrase 4

CABP1 ENSG00000157782 Calcium binding protein 1

CADPS2 ENSG00000081803 Ca2+-dependent activator for secretion protein 2

CD200R1 ENSG00000163606 CD200 receptor 1

COL13A1 ENSG00000197467 Collagen type XIII alpha-1 chain

GPR88 ENSG00000181656 G-protein coupled receptor 88

HHATL ENSG00000010282 Hedgehog acyltransferase-like

IKBKE ENSG00000143466 Inhibitor of kappaB kinase epsilon

JDP2 ENSG00000140044 Jun dimerization protein 2

KCNC1 ENSG00000129159 Potassium voltage gated channel, Shaw-related subfamily, member 1

KCNS1 ENSG00000124134 K+ voltage-gated channel, subfamily S, 1

LPHN2 ENSG00000117114 Latrophilin 2

LXN ENSG00000079257 Latexin

NEFM ENSG00000104722 Neurofilament, medium polypeptide

NEU2 ENSG00000115488 Sialidase 2 (cytosolic sialidase)

PLK5P ENSG00000185988 Plk5 polo-like kinase 5

RORB ENSG00000198963 RAR-related orphan receptor beta

SCN1A ENSG00000144285 Sodium channel, voltage-gated, type 1, alpha polypeptide

SCN4B ENSG00000177098 Sodium channel, voltage-gated, type IV, beta

The 22 temporal cortex enriched genes [29] were used as candidates to search for association to nine test measures of cognitive functions [37–40], at the single gene-
and gene set-based level. The HUGO Gene Nomenclature Committee (HGNC) symbol, Ensembl Genome Browser (release 54) identification [33] and gene description is
shown.
doi:10.1371/journal.pone.0031687.t002

Table 3. Overview of occipital cortex enriched genes analysed in this study.

HGNC Symbol Ensembl ID/54 Description

DCN ENSG00000011465 Decorin

GPR68 ENSG00000119714 G protein-coupled receptor 68

HTR5B ENSG00000125631 5-hydroxytryptamine (serotonin) receptor 5B

HTRA4 ENSG00000169495 Serine peptidase 4

IL12A ENSG00000168811 Interleukin 12a

IRF6 ENSG00000117595 Interferon regulatory factor 6

KLF5 ENSG00000102554 Kruppel-like factor 5

MAB21L1 ENSG00000180660 Mab-21-like 1 (C. elegans)

NR2F1 ENSG00000175745 Nuclear receptor subfamily 2, group F, member 1 (Nr2f1).

ODZ3 ENSG00000218336 Odd Oz/ten-m homolog 3 (Drosophila)

SATB1 ENSG00000182568 SATB homeobox 1

The 11 occipital cortex enriched genes [29] were used as candidates to search for association to nine test measures of cognitive functions [37–40], at the single gene-
and gene set-based level. The HUGO Gene Nomenclature Committee (HGNC) symbol, Ensembl Genome Browser (release 54) identification [33] and gene description is
shown.
doi:10.1371/journal.pone.0031687.t003
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extended 10 kb on either side to best capture potential regulatory

regions. The LD data was based on that of the CEU (CEPH (Utah

residents with ancestry from northern and western Europe))

sample from HapMap Phase II release 27. The pairwise LD

threshold was set at r2$0.8.

Gene scoring
The genes were scored with the minimum P-value observed

among all the SNPs within each ‘‘gene bin’’, adjusted for the

number of SNPs assigned to each gene with a modified version of

Sidak’s correction [45], as implemented in LDsnpR. This method

has been shown to perform as well as a powerful regression-based

method in correcting for the bias due to SNP number [46].

Furthermore, we performed PLINK’s permutation-based set

method [47] on an in house data set and demonstrated a high

correlation between the modified Sidak’s corrected P-values and

the permutation based P-values (r2.0.95, data not shown).

Results from gene- and gene set-based analysis, using raw

unadjusted (for SNP number) minimum P-values, are provided in

Tables S3, S4, and S5.

Gene Set Enrichment Analysis
The 62 FMCx-, TCx- or OCx- genes were analysed as gene sets

for enrichment of association signal in the GWAS data sets on

cognition, psychiatric- and non-psychiatric phenotypes, using

GSEA [32]. As described above, the GWAS SNPs were assigned

to ‘‘gene bins’’ and scored using the modified Sidak’s P-values.

The genes were organised into ranked lists, upon which the gene

sets were queried.

The candidate genes were treated as four separate gene sets.

Gene set 1: All cortex region enriched genes (FMCx, TCx and

OCx, n = 62), Gene set 2: FMCx enriched genes (n = 29), Gene set

3: TCx enriched genes (n = 22) and Gene set 4: OCx enriched

genes (n = 11) (Table 1–3). The GSEA 2.0 programme (http://

www.broadinstitute.org/gsea/index.jsp) [32] was used to analyse

the distribution of the candidate genes in the pre-ranked lists of

genes from the different GWAS data sets. The gene sets were

analysed in the ranked files, using weighted enrichment statistics

(p = 1) and 1,500 permutations. The analysis was repeated three

times to ensure consistency of results, and the false discovery rate

(FDR) q-values were extracted for each trait/GWAS. See Figure 1

for schematic overview of the different steps in the procedure.

Assessment of significance threshold
Gene Scores and multiple-testing correction. All reported

gene-based P-values are uncorrected for the multiple psychometric

traits and genes tested. Multiple testing correction in such a study

is not straightforward, particularly due to the correlated nature of

the test performed and the increased prior evidence supporting the

relevance of these tests. However, a threshold corrected for these

tests was determined as follows: Nine psychometric traits were

tested in the NCNG sample. These traits are highly correlated, as

shown in Table S2. Matrix Spectral Decomposition (matSpD;

http://gump.qimr.edu.au/general/daleN/matSpD/) was applied

to determine the equivalent number of independent traits tested,

using the pairwise correlations between the traits [48–51]. VeffLi

was estimated to be six, resulting in a Sidak-corrected threshold of

0.0085 required to keep the type 1 error rate at 5%. We further

adjusted this threshold conservatively to account for the 62 genes

tested, resulting in an experiment-wide threshold of 0.00014.

GSEA
We employed three approaches to assess the validity and

significance of our findings. First, we tested and compared with the

GWASs of the six non-psychiatric phenotypes in the WTCCC

[42]. Second, in addition to the cortical gene sets, we included a

gene set consisting of various ‘‘housekeeping genes’’, testing it

across all cognitive, psychiatric- and non-psychiatric phenotypes

(TaqMan endogenous controls from Applied Biosystems and a set

of genes from Warrington et al. [52], Gene set 5: Housekeeping

genes, n = 36, Table S6). Finally, for the significant gene sets, we

ran the GSEA on 100 random gene sets. The random gene sets

were generated using a pseudorandom number generator,

randomly selecting genes from the Ensembl 54 definition. They

Figure 1. Schematic overview of the method. SNP markers from GWAS data were assigned to single genes in a process termed ‘‘gene binning’’,
by implementing a novel LD-based tool (LDsnpR, Christoforou et al. under revision). Modified Sidak’s P-values were extracted for each gene (‘‘gene
bin’’) in the GWAS data sets. Single gene-based analysis of the differentially expressed cortical genes was performed by extracting the modified
Sidak’s P-values for the candidate genes from the NCNG GWAS. Gene set-based analysis of the differentially expressed cortical genes was performed
by extraction of the modified Sidak’s P-values, followed by GSEA of GWAS data on cognition, psychiatric disorders and non-psychiatric phenotypes.
GSEA: Gene set enrichment analysis, GWAS: Genome-wide association study.
doi:10.1371/journal.pone.0031687.g001
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were designed to mimic the significant gene sets, both with respect

to the number of genes and the number of GWAS SNPs assigned

to the genes (i.e. by LDsnpR) making up the gene set.

Results

Regionally enriched cortical genes show association to
cognitive abilities

Based on our initial study of regional enrichment of genes in

different parts of the rat neocortex, 62 genes were selected as

candidates (Table 1–3) to search for association to nine different

neurocognitive traits in the NCNG GWAS data set, covering four

major cognitive domains: intellectual function, memory, executive

attention and attention (Table S1). We took a candidate gene-

based approach to the analysis, using a novel tool, LDsnpR, to

assign SNPs to single genes based on chromosomal position and

LD. LDsnpR was further used to score the genes, using the

minimum P-value approach, adjusted for the number of SNPs in

the gene ‘‘bins’’ with a modified Sidak’s correction [45].

Several of the candidate genes displayed significant association

to test measures of cognitive functions at the nominal, uncorrected

significance level of 0.05 (Table 4–6, Table S7a–c), but none at the

experiment-wide threshold of 0.00014. The overall strongest

association in the analysis was observed between the TCx enriched

gene RAR-related orphan receptor B (RORB) and the measure of verbal

intelligence (Vocabulary, modified Sidak’s P = 7.7E-04). In

addition the FMCx enriched gene Huntingtin-associated protein 1

(HAP1) displayed strong association to the measure of verbal

intelligence (Vocabulary, modified Sidak’s P = 8.9E-04) and

nominal association to the full-scale measure of intellectual

Table 4. Gene-based analysis of frontomedial cortex enriched genes for association to cognitive abilities.

HGNC Symbol SNPs Intellectual function Memory
Executive
attention Attention

FSIQ Vocabulary Reasoning CVLT-L CVLT-DR Stroop3 CDT-Valid CDT-Invalid CDT-Neutral

ADPRHL1 13 0.0158 - 0.0422 - - - - - -

ADRA1B 19 - - - - - 0.0456 - - -

ALDH3B2 8 - - - - - - - - -

C1QL3 16 - - - 0.0312 - - 0.0021 0.0087 0.0022

CRIM1 81 - - - - - - - - -

CRIP2 2 - - - - - - - - -

EFNB3 5 - - - - - - - - -

EPHB6 13 - - - - - - - - -

FXYD6 25 - - - - - - - - -

GRP 14 - - - - - - - - -

HAP1 8 0.0326 8.9E-04 - - - - - - -

HCRTR1 11 - - - - - - 0.0111 0.0074 0.0070

HEBP1 21 - - - - - - - - -

CADM1 70 - - - - - - - 0.0356 -

LDB2 129 - - - - - - - - -

LMO4 7 - - - - - - - - -

NAGS 5 - - - - - - - - -

NTF3 13 - - - - - - - - -

PANX1 22 - - - - - - - - -

PCDH17 33 - - - - - - - - -

PFKL 15 - - - - - - - - -

PRKCDBP 9 - - - - 0.0466 - - - -

PRMT2 16 - - - - - - - - -

RSPO2 54 - - - - - - - - -

RYR1 30 - - - - - - - - -

ST6GALNAC5 30 - - 0.0269 - - - - - -

SULF2 70 - - - - - - - - -

TMEFF1 27 - - - - - - - - -

ZCCHC12 4 - - - - - - - - -

The frontomedial cortex enriched genes (n = 29) were analysed for allelic association to nine test measures from the NCNG GWAS: FSIQ: estimated Full-Scale
Intelligence Quotient, Vocabulary: Wechsler Abbreviated Scale of Intelligence, Vocabulary, Reasoning: Wechsler Abbreviated Scale of Intelligence, Matrix Reasoning,
CVLT-L: California Verbal Learning Test, Learning measure, CVLT-DR: California Verbal Learning Test, Delayed free Recall, Stroop3: the third condition from the D-
KEFS Color-Word Interference Test, CDT: Cued Discrimination Task, Valid, Invalid and Neutral [37–40]. The modified Sidak’s minimum P-value for each candidate
gene was extracted [45]. Only modified Sidak’s P-values,0.05 are reported. ‘‘-’’: non-significant P-value (i.e. P-values.0.05), HGNC: HUGO Gene Nomenclature
Committee, SNPs: number of SNPs assigned to each gene by LDsnpR.
doi:10.1371/journal.pone.0031687.t004
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Table 5. Gene-based analysis of temporal cortex enriched genes for association to cognitive abilities.

HGNC Symbol SNPs Intellectual function Memory Executive attention Attention

FSIQ Vocabulary Reasoning CVLT-L CVLT-DR Stroop3 CDT-Valid
CDT-
Invalid

CDT-
Neutral

ARHGAP9 9 - - - - - - - - -

ATOH7 10 - - - - - - - - -

CA4 12 - - - - - 0.0071 - - -

CABP1 17 - - - - - - 0.0193 0.0182 0.0408

CADPS2 91 - - - - - - - - -

COL13A1 106 - - - - - - - - -

GPR88 11 - - - - - - - - -

HHATL 12 - - - - - - - - -

IKBKE 20 - - - - - - - - -

JDP2 23 - - - - - - - - -

KCNC1 14 - - - - - - - - -

KCNS1 18 - - - - - - - - -

PLK5P 7 - - - - - - - - -

LPHN2 190 - - 0.0273 - - - - - -

LXN 15 - - - - - 0.0132 - - -

CD200R1 11 - - - - - 0.0335 - - -

NEFM 10 - - 0.0056 - - - - - -

NEU2 11 - - - - - - - - -

C1orf146 15 - - - - - - - - -

RORB 49 - 7.7E-04 - - - 0.0397 - - -

SCN1A 32 - - - - - - - - -

SCN4B 18 - - - - - - - - -

The temporal cortex enriched genes (n = 22) were analysed for allelic association to nine test measures from the NCNG GWAS. For trait abbreviations see Table 4.
Modified Sidak’s minimum P-value for each candidate gene was extracted [45], and only modified Sidak’s P-values,0.05 are reported. ‘‘-’’: non-significant P-value (i.e. P-
values.0.05), HGNC: HUGO Gene Nomenclature Committee, SNPs: number of SNPs assigned to each gene by LDsnpR.
doi:10.1371/journal.pone.0031687.t005

Table 6. Gene-based analysis of occipital cortex enriched genes for association to cognitive abilities.

HGNC Symbol SNPs Intellectual function Memory
Executive
attention Attention

FSIQ Vocabulary Reasoning CVLT-L CVLT-DR Stroop3 CDT-Valid
CDT-
Invalid

CDT-
Neutral

DCN 16 - - - - - - 0.0087 - 0.0365

GPR68 9 - 0.0449 - 0.0111 - - - - -

HTR5B 33 - - - - - - - - -

HTRA4 7 - - - - - - - - -

IL12A 20 - - - - - - - - -

IRF6 14 - - - - - - - - -

KLF5 11 - - - 0.0226 - - - - -

MAB21L1 13 - - 0.0110 - - - - - -

NR2F1 7 - - - - - - - - -

ODZ3 161 0.0486 - - - 0.0328 - - - -

SATB1 22 - - - - - - - - -

The occipital cortex enriched genes (n = 11) were analysed for allelic association to nine test measures from the NCNG GWAS. For trait abbreviations see Table 4.
Modified Sidak’s minimum P-value for each candidate gene was extracted [45], and only modified Sidak’s P-values,0.05 are reported. ‘‘-’’: non-significant P-value (i.e. P-
values.0.05), HGNC: HUGO Gene Nomenclature Committee, SNPs: number of SNPs assigned to each gene by LDsnpR.
doi:10.1371/journal.pone.0031687.t006
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function (FSIQ, modified Sidak’s P = 0.033). We also observed

that three of the candidate genes showed nominal association to all

the tests of attention (i.e. Complement component 1, q subcomponent-like 3

(C1QL3), Hypocretin (orexin) receptor 1 (HCRTR1) and Calcium binding

protein 1 (CABP1)).

Genes with preferential expression in the temporal
cortex show enrichment of association signal to the
Reasoning performance in GSEA

Next, we performed GSEA, to test the candidate genes for

enrichment of association signal in test measures of cognitive

functions. GSEA was originally developed to analyse the

distribution of genes identified from microarray experiments, but

has recently been implemented in the analysis of GWAS [32,53].

We divided the candidate genes into gene sets based on their

observed regional differences in expression (one set including all

the differentially expressed cortical genes regardless of region and

three gene sets composed of the genes enriched in the FMCx, TCx

or OCx). In addition, we included a gene set comprising various

‘‘housekeeping’’ genes (from Applied Biosystems list of TaqMan

endogenous controls and from Warrington et al. [52]). In order to

test whether the candidate gene sets would show an overall

enrichment for association to the nine cognitive test scores (Table

S1), we used the ‘‘gene bins’’ and their assigned modified Sidak’s

P-values generated by LDsnpR as described above (see Method

section for details and Figure 1).

We found that the TCx gene set showed significant enrichment

of association signal to a test measure of non-verbal intelligence

(Reasoning, FDR q-value = 0.06, cut-off FDR q-value set to 0.1,

Table 7, Figure S1). The gene set comprised of ‘‘housekeeping’’

genes, used as a control for the specificity of our analysis, did not

show significant enrichment to any of the neurocognitive tests.

Furthermore, in order to validate the observed enrichment of

association signal of the TCx genes (n = 22) in the test measure of

non-verbal intelligence, 100 random gene sets were generated.

Each of the hundred random gene sets comprised 22 arbitrary

genes, each gene containing the same number of SNPs assigned to

them, as the genes in the TCx gene set (see Methods for further

details). Each random gene set was analysed using GSEA in the

Reasoning GWAS, employing the same analysis statistics as

applied for the TCx gene set. None of the random gene sets

displayed significant enrichment of association signal (FDR q-

values ranging from 0.52 to 1.0, for FDR q-value details see Table

S8). This finding supports the robustness of the enrichment of

association signal observed for the set of TCx genes to the test of

non-verbal intelligence (Reasoning).

We also observed an enrichment of association signal for the

gene set comprising genes differentially expressed in the OCx and

a test measure of attention (CDT-Invalid, FDR q-value 0.04,

Table 7, Figure S1). Again, neither of the random gene sets

mimicking the OCx gene set showed enrichment of association

signal in the CDT-Invalid GWAS (FDR q-values ranging from

0.14 to 1.0, for FDR q-value details see Table S8), suggesting a

role for genes expressed in the OCx in performance of an attention

task.

GSEA of genes differentially expressed in the
frontomedial, temporal and occipital cortex in GWAS
data of psychiatric disorders and non-psychiatric
phenotypes

Since cognitive impairment constitutes a major endophenotype

in patients suffering from SCZ and BP, and several cortical regions

have been linked to disease susceptibility, we analysed the same

gene sets by GSEA in three BP GWASs (the Norwegian TOP BP

study, the British WTCCC BP and a German BP sample) and

three SCZ GWASs (the Norwegian TOP SCZ study, a German

SCZ sample and a Danish SCZ sample). In addition, we analysed

six non-psychiatric phenotype GWASs from the WTCCC as

controls (coronary heart disease, Crohn’s Disease, hypertension,

rheumatoid arthritis, type 1 diabetes and type 2 diabetes).

We found that the OCx gene set displayed enrichment of

association signal to the Danish SCZ sample (FDR q-value 0.04,

cut-off FDR q-value 0.1, Table 8, Figure S1). None of the cortical

gene sets were enriched in the two other SCZ, nor in the three BP

GWASs. When analysing the gene sets in the five non-psychiatric

phenotype GWASs, no enrichment of association signal was

observed (FDR q-value.0.1).

In this analysis, we also included a gene set consisting of

‘‘housekeeping’’ genes as a control for the specificity of our

analysis. We did not observe any enrichment of association signal

for this gene set in any of the psychiatric disorder or non-

psychiatric phenotype GWASs analysed (FDR q-value.0.1). As a

Table 7. GSEA of differentially expressed cortical genes in neurocognitive traits.

All Cortex Regions
(62)

Frontomedial
Cortex (29)

Temporal
Cortex (22)

Occipital Cortex
(11)

Housekeeping
genes (36)

Intellectual function FSIQ 0.95 0.91 1.00 0.84 0.77

Vocabulary 0.64 1.00 0.68 0.99 0.61

Reasoning 0.18 0.56 0.06 0.16 0.73

Executive attention Stroop3 0.76 0.87 0.59 0.93 0.52

Memory CVLT-L 0.24 0.38 0.31 0.11 0.27

CVLT-DR 0.84 0.95 0.62 0.86 0.82

Attention CDT-Valid 0.31 0.44 0.33 0.27 0.63

CDT-Invalid 0.52 0.52 0.39 0.04 0.52

CDT-Neutral 0.36 0.30 0.18 0.16 0.29

The differentially expressed cortical genes were analysed as gene sets for enrichment of association signal in nine traits from the NCNG GWAS data [37–40], using GSEA
[32]. Five gene sets were analysed; Gene set 1: combined list of all differentially expressed cortical genes, n = 62, Gene set 2: FMCx genes, n = 29, Gene set 3: TCx genes,
n = 22, Gene set 4: OCx genes, n = 11, and Gene set 5: ‘‘housekeeping’’ genes, n = 36 (control gene set, Table S6). The analysis was based on extraction of modified
Sidak’s minimum P-values [45], as implemented in LDsnpR. FDR q-value,0.1 was set as cut-off value for significant enrichment. For trait abbreviations see Table 4.
doi:10.1371/journal.pone.0031687.t007
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second control, GSEA was performed in the Danish SCZ GWAS

using 100 random gene sets, consisting of 11 arbitrary genes (as

previously described for the TCx and OCx gene sets in the test

measures of reasoning and attention, respectively). None of the

random gene sets displayed significant FDR q-values (FDR q-

values ranging from 0.68 to 1.0, for FDR q-values details see Table

S8). These findings support that the enrichment of association

signal observed between the OCx gene set and the Danish SCZ

GWAS was due to the genes contained in the OCx gene set, and

not as a result of unspecific association signals.

Functional annotation and gene expression patterns of
the regionally enriched cortex genes in human

The candidate genes analysed in this study were previously

predicted to have a significant over-representation for particular

biological processes and molecular functions in the rat, such as

signal transduction, developmental processes and receptor activity

[29]. In order to examine whether the candidate genes shared

similar functional annotations in human, we mapped the entire set

of regionally enriched genes, and in addition the gene sets composed

of differentially expressed genes in the FMCx, TCx or OCx

individually, to the Panther annotation categories. By comparing

the distribution of the candidate genes to the human reference gene

set provided (19,911 genes), we searched for significant over-

representations of particular biological processes and molecular

functions. Overall, the candidate genes were linked to cellular,

developmental and neurological system processes (Figure 2).

Furthermore, the candidate genes were found to be involved in

receptor activity, primarily in cation transmembrane transporter

activity and ion channel activity (Figure 2). Notably, the TCx gene

set showed the strongest over-representation for most of the

biological processes, and especially the molecular functional

annotation, as compared to the FMCx and OCx gene sets.

We next analysed the expression pattern of a sub-set of the

human homologues to the regionally enriched rat genes in the

Allen Human Cortex Study (i.e. selected genes showing significant

association in the NCNG sample). Although no quantitative

differential gene expression could be detected, the homologous

genes were expressed in corresponding regions in the human brain

(e.g. FMCx, TCx or OCx enriched genes were expressed in the

frontal, temporal or occipital lobe, respectively) (Figure S2A–C).

Discussion

Gene-based analysis of regionally enriched cortical genes
for association to cognition

At the global level, the gene expression in different cortical

regions is surprisingly similar, although highly specific functions

are attributed to distinct cortical regions. Genes displaying

differential expression in cortical regions might play an important

role for the specialised normal function attributed to certain areas

[29]. In this study, we used a novel set of differentially expressed

cortical genes, identified from microarray gene expression

profiling in the adult rat brain, to search for association at the

single gene level to neurocognitive traits in human. In addition, we

used a gene set-based approach to search for enrichment of

association signal to cognitive traits and psychiatric disorders.

By mining GWAS data from a sample of healthy adults

characterised by nine psychometric tests of cognitive function (the

NCNG sample), and scoring the genes using LDsnpR, we found

strong association between the TCx enriched gene RORB and a

test of verbal intelligence (Vocabulary). This circadian clock gene

has not previously been associated to cognitive abilities, but it is

worth noting that the gene was recently ranked as one of the top

candidate genes for susceptibility to BP in a large meta-analysis,

and in a pediatric cohort of individuals suffering from BP [54,55].

In the developing and adult rat brain, the gene is expressed in

several regions associated with processing of sensory information,

and behavioural changes (i.e. reduced anxiety and learned

helplessness-related behaviour) have been observed in Rorb2/2

Table 8. GSEA of differentially expressed cortical genes in psychiatric disorders and non-psychiatric phenotypes.

Origin of sample
All Cortex Regions
(62)

Frontomedial
Cortex (29)

Temporal
Cortex (22)

Occipital
Cortex (11)

Housekeeping
genes (36)

Bipolar Affective Disorder TOP* 0.26 0.24 0.26 0.87 0.81

German 0.82 0.49 0.75 0.67 1.00

WTCCC** 1.00 0.98 0.85 0.80 0.81

Schizophrenia TOP* 0.70 0.73 0.80 0.63 0.85

German 0.40 0.52 0.32 0.59 0.38

Danish 0.71 0.61 0.79 0.04 0.70

Non-psychiatric phenotypes,
WTCCC

CD** 0.65 0.75 0.50 1.00 1.00

CHD** 1.00 1.00 0.87 0.87 1.00

HT** 0.36 0.44 0.25 0.93 0.45

RA** 0.29 0.36 0.26 0.21 0.27

T1D** 0.68 0.89 0.84 1.00 1.00

T2D** 0.11 0.20 0.10 0.16 0.21

GSEA was used to analyse the differentially expressed cortical genes, as gene sets, for enrichment of association signal in three different BP GWASs (a German sample,
the Norwegian TOP sample and the British WTCCC BP sample [20,41,42]), three SCZ GWASs (the Norwegian TOP sample, the German part of a combined German-Dutch
SCZ GWAS and a Danish sample [19,43,44]) and six non-psychiatric phenotypes (from WTCCC; CD: Crohn’s disease, CHD: coronary heart disease, HT: hypertension, RA:
rheumatoid arthritis, T1D: type 1 diabetes and T2D: type 2 diabetes, [42]). The analysis was based on extraction of modified Sidak’s minimum P-values [45], as
implemented in LDsnpR. FDR q-value,0.1 was set as cut-off value for significant enrichment.
*: One FMCx gene was not represented in the data set.
**: Two FMCx genes were not represented in the data set.
doi:10.1371/journal.pone.0031687.t008
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mice [56,57]. The HAP1 gene also displayed a strong association

to the measure of verbal intelligence (Vocabulary), and in addition,

we observed a nominal association of HAP1 to the estimated full-

scale IQ (FSIQ). This gene has been shown to have an enriched

expression in neurons, and the encoded protein is thought to be

involved in intracellular trafficking and regulation of gene

transcription. Dysfunction of HAP1 has been linked to the

neuropathology in Huntington disease, a disease where cognitive

decline and psychiatric symptoms are often prominent (reviewed

in [58]). Furthermore, we observed that the two FMCx enriched

genes C1QL3 and HCRTR1, and the TCx enriched gene CABP1,

displayed significant association to all the tests of attention. Hcrtr1

has previously been shown to be involved in attentional processing

by activating the basal forebrain cholinergic system in rats

(reviewed in [59]). Interestingly, an association between HCRTR1

and major mood disorders was recently reported [60]. Neither

Figure 2. Functional characterisation of the human homologues to the rat regionally enriched cortical genes. Search for over- and
under-represented biological processes and molecular functions was performed by using Panther [35,36]. The significance of over- and under-
represented Panther classification categories in the complete list of candidate genes (i.e. all the cortical regions, column 2), the FMCx enriched genes
(column 3), TCx enriched genes (column 4) and OCx enriched genes (column 5), is illustrated by a heat map. The statistical significance of each gene
set (negative log P-value) is illustrated by colour intensity (red: over-represented, blue: under-represented, white: as expected). Number of genes in
each gene set is listed. The OCx gene HTR5B was not represented in Panther. The percentage of genes within a gene set that map to the given
category is indicated on the heat map, e.g. 59% of the 61 enriched genes map to the biological process ‘‘cellular process’’. The first column states the
overall distribution of a term among the 19,911 genes from the default human reference gene list, e.g. 31% of the 61 regional genes were expected
to map to ‘‘‘cellular process’’, hence this category is significantly over-represented among the regional genes. Exp: expected (based on default human
reference gene list), FMCx: frontomedial cortex, TCx: temporal cortex, OCx: occipital cortex, #: number of genes in each gene set, %: percentage of
genes.
doi:10.1371/journal.pone.0031687.g002
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C1QL3 nor CABP1 have previously been linked to cognitive

abilities. Notably, a reduction of neurons expressing CABP1,

accompanied by an increase in protein expression in the

remaining neurons, has been observed in post-mortem brain

tissue from patients suffering from SCZ [61]. While none of these

genes met the experiment-wide threshold of significance,

P = 0.00014, which conservatively corrects for the number of

traits and genes tested, these findings should be taken in the

context of the prior evidence conferred on these candidate genes

through the multiple relevant positive association, expression and

functional results.

Genes differentially expressed in the TCx show
enrichment of association signal to a test measure of
non-verbal intelligence in gene set-based analysis

In order to analyse whether the candidate genes as a group

would show an association to cognitive traits, we chose to analyse

them as gene sets, using GSEA in combination with the NCNG

GWAS dataset. We found that the TCx gene set showed a

significant enrichment of association signal to a test measure of

non-verbal intelligence (Reasoning). In addition to analysing the

gene set using modified Sidak’s P-value, we also applied random

gene sets that would mimic the TCx gene set in regard to number

of genes contained in the set, and also SNP number assigned to

each random gene. This analysis gave no significant enrichment of

association signal, and it is therefore likely that the observed

association is due to biological effects of the genes contained in the

TCx gene set, and not as a result of unspecific association signal.

We also included a gene set comprised of ‘‘housekeeping’’ genes in

the analysis. This gene set showed no enrichment of association

signal to any of the cognitive tests, further supporting the validity

of the finding.

The parieto-frontal integration theory network, consisting of the

dorsolateral prefrontal, parietal, anterior cingulate, temporal and

occipital cortices, is suggested to explain differences in cognitive

performances, including a test measure of reasoning [24]. The set

of TCx genes analysed in this study, could be involved in this

network, although the importance of the set of genes in intellectual

function remains to be explored.

In the GSEA, we also observed an enrichment of association

signal for the OCx gene set in one of the measures of attention

(CDT-Invalid). The random gene sets used as a control gave no

significant association, indicating that the observed enrichment

was not a result of spurious association. However, the OCx gene

set is fairly small (n = 11), and the finding could be a result of

inflated scoring. The GSEA program estimates an enrichment

score, and normalizes the score by taking the number of genes in

the gene set into account. For very small gene sets (n,10), the

probability of generating a false positive result will therefore

increase, and caution has to be exercised with respect to the

validity of this finding [32].

Genes differentially expressed in the occipital cortex
show enrichment of association signal to the Danish SCZ
sample, in gene set-based analysis

Since impairments of cognitive functions are observed in

individuals suffering from SCZ and BP, we also analysed the

differentially expressed cortical genes, as gene sets, in GWASs of

psychiatric illnesses, using GSEA.

We found that the OCx gene set displayed significant

enrichment of association signal in the Danish SCZ GWAS.

None of the cortical gene sets examined showed enrichment of

association in the other SCZ, nor in the three BP GWASs

analysed. In order to validate the findings, we generated 100

random gene sets mimicking the OCx gene set in regard to gene

number and SNPs assigned to each gene. We did not observe an

enrichment of association when analysing the random gene sets in

GSEA, which could indicate that the observed association signal

was due to the genes contained in the OCx gene set. In addition,

we tested the validity of the GSEA in psychiatric disorder GWASs,

by analysing the same candidate genes, as gene sets, in GWASs of

non-psychiatric phenotypes from the WTCCC [42]. None of the

gene sets showed enrichment of association signal. Furthermore,

we also analysed a set of ‘‘housekeeping’’ genes in the six

psychiatric disorders, and non-psychiatric phenotype data sets,

and found no significant enrichment of association. Taken

together the results could indicate an actual role for the genes

contained in the OCx gene set in SCZ. On the other hand, the

observed enrichment of association signal for the OCx gene set in

the Danish SCZ GWAS was not observed in the other SCZ

GWAS data sets examined. It is difficult to pinpoint the cause of

this discrepancy. It is possible that it represents a false-positive

finding. The OCx gene set comprised a small number of genes

(n = 11), increasing the risk of generating a false positive result

[32]. Alternatively, the genetic heterogeneity between the

Norwegian, German and Danish populations might explain the

observed differences [62]. This finding should anyway be

considered with caution, and further replication studies are

warranted.

Regionally enriched cortical candidate genes; translation
from rat to human

The candidate genes analysed in this study were identified from

microarray gene expression profiling of the adult rat brain as

differentially expressed genes in certain cortical regions. Despite

the substantial difference in size, connectivity and cortical fields,

some features of cortical organisation have been conserved in

major groups of mammals [63,64]. Areas within the OCx (i.e.

primary and second visual areas), somatosensory areas and regions

within the TCx (primary auditory area) are known to share

common cortical fields in a large group of mammals [64]. The

similarity in broad cortical field organisation is thought to be

caused by genetic factors specifying regional identity, inherited

from the common ancestor of all mammalian species [64].

Interestingly, a recent study showed that the genetically influenced

cortical regionalisation in the human brain was similar to the

regionalisation in rodents [65]. Furthermore, it has been

demonstrated that the regional gene expression in the adult

mouse anterior cortex, striatum and cerebellum showed very

similar gene expression compared to the anatomically and

functionally homologous human brain regions [66].

We found that the regionally enriched rat brain genes shared

similar over-representations of functional annotations in human,

as previously identified for the rat [29]. A sub-set of the human

homologous genes were also found to be expressed in correspond-

ing areas (i.e. human frontal, temporal or occipital lobes), as

observed in the rat. Moreover, some of the candidate genes have

previously been linked to psychiatric and neurological disorders

(e.g. RORB, HAP1, HCRTR1 and CABP1) [54,55,58,60,61],

further emphasising the potential importance of these candidate

genes in the human brain. On the other hand, some cortical areas

are not well conserved in all mammals, e.g. the human frontal/

prefrontal cortex, perisylvian cortex and the Broca’s area (the site

of speech generation). The prefrontal cortex is highly specialised in

humans, being linked to higher order thinking, certain cognitive

abilities and personality traits, whereas the frontomedial cortex

from rat is mostly involved in motor functioning. It is therefore not
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surprising that we did not observe an enrichment of association

signal to the FMCx gene set in GSEA.

Furthermore, the global gene expression in different cortical

areas in human brain has been shown to vary more between

individuals, than among regions within one individual [67]. Also,

the inter-individual variation is apparently larger among humans

than chimpanzees [67]. Rodents are a well established model

system for studying human biology, given the ethical and practical

limitations in using samples from the human brain. In rats, the

variance in inter-individual gene expression is substantially less,

and it therefore serves as a useful model for identifying

differentially expressed genes in the adult neocortex.

Conclusion
Our findings suggest an association between regionally enriched

cortical genes and intellectual function. RORB, a promising

candidate for susceptibility to BP, showed the overall strongest

association in the analysis to a test of verbal intelligence.

Moreover, we found that genes displaying preferential gene

expression in the TCx showed enrichment of association signal to

a test of non-verbal intelligence. We suggest that the TCx genes

may be important to intellectual function in the healthy adult

population. A replication of the findings is, however, essential to

establish whether the TCx differentially expressed genes play a

role in the neuronal mechanisms of intelligence.

Supporting Information

Figure S1 GSEA plots for gene sets displaying enrich-
ment of association signal. The upper part of the plots

illustrates the running enrichment score for the gene sets, while the

middle part of the plot illustrates the position of the individual

genes (within the gene set) in the ranked list of genes. An

accumulation of genes (black vertical lines) to the left on the x-axis

indicate enrichment of association signal, reflected by the q-value

(cut-off value,0.1, displayed in the upper right corner in each

plot). The bottom part of the plots illustrates the value of the

ranking metric. Upper panel: TCx gene set in a test measure of

non-verbal intelligence (Reasoning). Middle panel: OCx gene set

in a test measure of attention (CDT-Invalid). Lower panel: OCx

gene set in the Danish SCZ. The corresponding GSEA plots for

the ‘‘housekeeping’’ gene set are included.

(TIF)

Figure S2 Cortical expression patterns of the human
homologues to the regionally enriched rat genes. The

Whole Brain Microarray Survey in the Allen Human Cortex

Study from the Allen Institute for Brain Science [34] was explored

using Brain Explorer 2, in order to analyse the gene expression

pattern of a sub-set of the candidate genes (i.e. selected genes

showing significant association in the NCNG). Each sample from

the microarray survey had been mapped to a 3D illustration of the

MR picture of the donors (two donors in total). Orientation of the

donor brains are indicated above the panels and also in the upper

right part of each expression analysis picture. The left and middle

panels illustrate the gene expression in either the frontal (A),

temporal (B) or occipital (C) lobe, only. The right panel illustrates

the overall gene expression in the cortex (all cortical regions

selected). Red or green colour indicates high or low relative gene

expression, respectively, compared to the different samples/

structures in the brain. The human homologues to the rat genes

were expressed in corresponding regions in the human brain (e.g.

FMCx, TCx or OCx enriched genes were expressed in the frontal

(A), temporal (B) or occipital (C) lobe, respectively).

(TIF)

Table S1 Psychometric tests in the NCNG sample. The

individuals included in the NCNG sample underwent a battery of

psychometric tests. The main references for the nine different tests

focused on in the present study are listed.

(DOC)

Table S2 Correlation between the psychometric tests in
the NCNG. Correlation estimates for the nine cognitive tests in

the NCNG sample. For trait abbreviations see Table S1 and S3.

(DOC)

Table S3 Gene-based analysis of regionally enriched
cortical genes for association to cognitive abilities using
uncorrected minimum P-values. The cortical enriched genes

were analysed for allelic association to nine tests from the NCNG

GWAS [37–40]: FSIQ: estimated Full-Scale Intelligence Quo-

tient, Vocabulary: Wechsler Abbreviated Scale of Intelligence,

Vocabulary, Reasoning: Wechsler Abbreviated Scale of Intelli-

gence, Matrix Reasoning, CVLT-L: California Verbal Learning

Test, learning measure, CVLT-DR: California Verbal Learning

Test, Delayed free Recall, Stroop3: the third condition from the

D-KEFS Color-Word Interference Test, CDT: Cued Discrimi-

nation Task, Valid, Invalid and Neutral. The minimum P-

value for each candidate gene was extracted, without adjusting for

the number of SNPs assigned. Only uncorrected minimum P-

values,0.05 are reported. ‘‘-’’: non-significant P-value, HGNC:

HUGO Gene Nomenclature Committee, SNPs: number of SNPs

assigned to each gene by LDsnpR. Table S3a: Frontomedial cortex

enriched genes, n = 29, Table S3b: Temporal cortex enriched genes, n = 22,

and Table S3c: Occipital cortex enriched genes, n = 11.

(DOC)

Table S4 GSEA of differentially expressed cortical
genes in neurocognitive traits using uncorrected mini-
mum P-values. The differentially expressed cortical genes were

analysed, as gene sets, for enrichment of association signal in nine

tests measures of cognitive functions [37–40] from the NCNG

GWAS data, using GSEA [32]. Five gene sets were analysed: gene

set 1: combined list of all differentially expressed cortical genes,

n = 62, gene set 2: FMCx genes, n = 29, gene set 3: TCx genes,

n = 22, gene set 4: OCx genes, n = 11, and gene set 5:

‘‘housekeeping’’ genes, n = 36 (control gene set, Table S6). The

analysis was based on extraction of minimum P-values, without

correcting for the number of SNPs assigned to each gene in the

GWAS data sets. FDR q-value,0.01 was set as cut-off value for

significant enrichment. ‘‘*’’: Nominal P-value,0.0006 (1/number

of permutations (1,500) in the analysis). For trait abbreviations see

Table S1 and S3.

(DOC)

Table S5 GSEA of differentially expressed cortical
genes in psychiatric disorders and non-psychiatric
phenotypes using uncorrected minimum P-values. GSEA

was used to analyse the regionally enriched cortical genes, as gene-

sets, for enrichment of association signal in three different BP

GWASs (German, TOP and WTCCC [20,41,42]), three SCZ

GWASs (the German part of a combined German-Dutch SCZ

GWAS, TOP and a Danish SCZ sample [19,43,44]) and six non-

psychiatric phenotypes (from WTCCC; CD: Crohn’s disease, HT:

hypertension, RA: rheumatoid arthritis, CHD: coronary heart

disease, T1D: type 1 diabetes and T2D: type 2 diabetes [42]). The

analysis was based on extraction of minimum P-values, without

correcting for the number of SNPs assigned to each gene in the

GWAS data sets. FDR q-value,0.01 was set as cut-off value for

significant enrichment. The GSEA was performed 3 times, using

1,500 permutations and weighted enrichment statistics. Each run
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gave a slightly different FDR q-value, and the range for significant

results are listed: a: (0.0020–0.0046), b: (0.013–0.021), c: (0.0088–

0.014). *: One FMCx gene was not represented in the data set. **:

Two FMCx genes were not represented in the data set.

(DOC)

Table S6 Housekeeping genes used as a control gene set
in GSEA. HGNC symbol, Ensembl ID (Release 54) and

description of housekeeping genes (n = 36) used as a control gene

set in GSEA of the cognitive tests, psychiatric disorders and non-

psychiatric phenotypes. The genes are from Applied Biosystem’s

list of TaqMan endogenous controls and from a list of

housekeeping genes from Warrington et al. [52].

(DOC)

Table S7 Gene based analysis of regionally enriched
cortical genes for association to cognitive abilities
(corrected). The cortical enriched genes were analysed for

allelic association to nine traits [37–40] from the NCNG GWAS.

All modified Sidak’s P-values are listed. HGNC: HUGO Gene

Nomenclature Committee, SNPs: number of SNPs assigned to

each gene by LDsnpR. For trait abbreviations see Table S1 and

S3. Table S7a: Frontomedial cortex enriched genes, n = 29, Table

S7b: Temporal cortex enriched genes, n = 22, and Table S7c:

Occipital cortex enriched genes, n = 11.

(DOC)

Table S8 Validation of observed enrichment by random
gene sets. The validity of the observed enrichment signal of the

TCx gene set in the test measure of non-verbal intelligence

(Reasoning), and the OCx gene set in both one of the attention

tasks (CDT-Invalid) and the Danish SCZ sample, were analysed

using random gene sets mimicking the gene sets in respect to gene

set size and SNP markers assigned to each gene in the gene set.

The ten best q-values are reported. RGS: Random Gene Set.

FDR: False Discovery Rate.

(DOC)
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