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Abstract

Low levels of the Survival Motor Neuron (SMN) protein produce Spinal Muscular Atrophy (SMA), a severe monogenetic
disease in infants characterized by muscle weakness and impaired synaptic transmission. We report here severe structural
and functional alterations in the organization of the organelles and the cytoskeleton of motor nerve terminals in a mouse
model of SMA. The decrease in SMN levels resulted in the clustering of synaptic vesicles (SVs) and Active Zones (AZs),
reduction in the size of the readily releasable pool (RRP), and the recycling pool (RP) of synaptic vesicles, a decrease in active
mitochondria and limiting of neurofilament and microtubule maturation. We propose that SMN is essential for the normal
postnatal maturation of motor nerve terminals and that SMN deficiency disrupts the presynaptic organization leading to
neurodegeneration.
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Introduction

SMN (Survival Motor Neuron) is a protein that participates in

the assembly of small nuclear ribonucleoproteins (snRNPs)

[1,2,3,4]. SMN is encoded by two genes, SMN1 that produces

Full-Length SMN (SMN-FL), and SMN2 that produces a

truncated form of SMN (SMND7) and a small amount of SMN-

FL [5,6,7]. Spinal Muscular Atrophy (SMA), a severe autosomal

recessive genetic disease in infants characterized by motor

impairment and premature lethality [8], caused by mutations or

loss of SMN1 and retention of SMN2 [9]. The severity of the

disease depends on the amount of SMN-FL produced by SMN2.

SMN is expressed ubiquitously, nevertheless, abnormally low

levels of SMN mainly affect motor neurons innervating proximal

muscles, however the specific role of SMN in motor neurons

remains unknown. Two main hypothesis have been postulated,

first SMN deficiency is proposed to disturb relevant RNA

processing in motor neurons [4,10,11,12,13,14,15,16]; second,

SMN is proposed to have specific functions in axon guidance and

synapse maturation which are independent of its role in snRNP

biogenesis [12,13,14,16,17,18,19,20]. Interestingly, SMN is found

not only in soma but also in axons [21] as well as at growth cones

in cultured motor neurons [22]. SMN localizes in granules that are

bi-directionally and rapidly transported [23,24]. In fact, SMN has

been shown to transport b-actin mRNA along the axon in

embryonic neurons in culture [19,25,26].

A role for SMN in axonal guidance seems to be relevant in

embryonic mouse motor neurons in culture, and in lower

vertebrates SMA models [18,19,20,23,27,28,29,30]. However, in

SMA mouse models most neuromuscular junctions (NMJs) are

normally innervated at early postnatal ages [31,32,33], suggesting

that in higher vertebrates in vivo neurite outgrowth and path finding

occur appropriately. On the other hand, in mouse models of SMA a

series of alterations at the level of the NMJ have been reported,

ranging from neurofilaments accumulation [32,34,35,36] and

immaturity of the postsynaptic site [32,33,35,36] to reduced

neurotransmitter release [35,36,37]. Some of these alterations have

been proposed to be due to a deficiency in axonal transport [38].

New findings supporting this hypothesis show that polymerized

tubulin levels are decreased in sciatic nerves from SMA-like mice,

while stathmin, a microtubule-destabilizing protein, is upregulated

in this mouse model [39].

Here, to better understand the alterations of neurotransmis-

sion at the NMJ we undertook a comprehensive functional and

morphological study in a SMA mouse model (SMND7, [40]). We

have explored the organization of synaptic vesicles (SVs), active

zones (AZs) and mitochondria within the terminal at P7 and P14,

the time points at which functional alterations have already been

reported [36]. In addition, we investigated the relationship

between SVs and the cytoskeleton (neurofilaments, actin and

microtubules). These observations have been combined with

electrophysiological estimates of the size and kinetics of the

readily releasable pool (RRP) of SVs. We present evidence that

SVs and AZs are clustered, the RRP size and the mitochondrial

pool size are reduced, and microtubules are highly disorganized

in SMN-deficient presynaptic terminals. Taken together these

results suggest that SMN is essential for the normal postnatal

organization and maintenance of the presynaptic motor

terminal.
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Results

Synaptic vesicles are anomalously clustered and less
abundant in SMN-deficient motor terminals

To get insight into the postnatal presynaptic maturation process

in SMN-deficient terminals, we first examined SVs organization in

young mice (P7 and P14) in the TVA muscle, one of the most

affected in this disease [33,36]. We explored both the total area of

the terminal covered by SVs and the SVs spatial organization

using antibodies against the vesicular ACh transporter (VAChT),

conjugated with fluorescent secondary antibodies.

In wild-type (WT) mice, at the beginning of the NMJ postnatal

maturation period (first week of life), SVs were observed to be

grouped in small clusters (Fig. 1A), but by the second week, as WT

NMJs matured, SVs appeared to spread out and covered larger

areas of the terminal (Fig. 1C). In SMN-deficient terminals,

however, SVs remained clustered during this period (Fig. 1 B & D).

As the size of the NMJ was smaller in mutants (Fig. 1E), the

areas covered by SVs were normalized to the area of the

postsynaptic terminal. The total surface area of the terminal

covered by SVs was ,30% smaller in SMN-deficient terminals

(n = 37 NMJs from 3 mice) than in WTs (n = 38 NMJs from 3 mice)

at P7 (Fig. 1F; P,0.0001). At P14, this difference increased to

almost 50% (Fig. 1F; P,0.0001; WT: n = 52; SMND7: n = 58

terminals).

In addition, the size of SV clusters was smaller in mutants than

in WTs, both at P7 (,30%; P = 0.02) and P14 (75%; P,0.0001)

(Fig. 1G). Remarkably, in mutants no change in cluster size, or in

the number of cluster per terminal, took place during the second

week of life, while in littermate controls the clusters size increased,

and the number of clusters diminished (Fig. 1G & H).

To test whether the clustering of SVs observed in the TVA

muscle of SMA mutants with anti-VAChT antibodies were also

seen with another vesicle marker, a double staining of SVs using

antibodies against VAChT, and the synaptic vesicle protein 2

(SV2) was performed. The vesicular fluorescence patterns

observed with anti-VAChT (green) were also seen with anti-SV2

(blue), both in WT, and in mutant terminals (Fig. S1). Quantitative

analysis of the immunofluorescence signals indicated that the

colocalization indexes of these two markers were ,0.9 in both

types of mice (Fig. S1). These data corroborate the smaller size of

the clusters in SMA mutant terminals, and rule out the existence of

an atypical vesicle population devoid of the vesicular transporter.

The synaptic vesicle pools and the vesicle release
probability are decreased in SMA

Electrophysiological recordings have shown that quantum

content of evoked End Plate Potentials (EPPs) is reduced in

SMA terminals [35,36,37]. This, combined with the reduced area

of immunolabeled SVs (Fig. 1), led us to examine the size of the

RRP of SVs (docked vesicles) by functional analysis.

Figure 2 shows representative WT (A) and SMND7 (B) EPPs

evoked by a stimulus train (20 Hz, 5 s) recorded in the TVA

muscle. During the initial part of the train, peak EPP amplitudes

follow a characteristic pattern consisting of a small amount of

facilitation followed by an exponential decline, corresponding to

the depletion of vesicles in the RRP [41,42]. Normally, these

phases are followed by a steady-state period (plateau) of matched

balance between vesicle consumption and refilling of release sites

(Fig. 2A). In SMA mutant terminals, however, rarely was there a

plateau and, instead, EPP amplitudes were highly variable

(Fig. 2B), suggesting the inability of mutant synapses to adjust

their neurotransmitter release to a constant rate or their low

release probability.

To examine the size of the RRP, the quantum content for each

stimulus was calculated by dividing the corrected mean EPP value

[43] by the mean miniature (mEPP) size. Then, the RRP was

estimated, by plotting quantum content against accumulated

quantum content (Fig. 2C & D), and drawing a straight line

through the declining phase [41]; the x-axis intercept of the fitted

points gives an estimate of the RRP size, with the assumption that

during the first 10–15 shocks most of the release comes from the

RRP. The mean RRP size was significantly reduced (by 35%) in

SMA mice (SMA: 515654; n = 22 terminals, 6 mice; WT:

787667; n = 23 terminals, 5 mice; P = 0.003) (Fig. 2E). The

vesicle release probability (Pr) was also decreased in mutants

(0.04960.007, n = 23 in 5 WT mice, and 0.03260.003, n = 22 in 6

mutant mice; P = 0.026) (Fig. 2F), suggesting that the reduced

quantum content [36] was due to a reduction in both the RRP size

and the Pr.

In addition, the total number of quanta released during the 5

second train was about 58% less in mutants (955688 quanta,

n = 16) than in WT littermates (22586355 quanta, n = 16)

(P = 0.002), due to the lower quantum content and to a higher

level of synaptic depression in mutant terminals, indicating that it

also existed a reduction in the recycling pool (RP) of SVs.

Mobilization of vesicles to the readily releasable pool is
not altered in SMA

The refilling of the RRP takes place by mobilization of new

vesicles from the recycling pool (RP) and/or by the recycling of

vesicles from nearby regions after undergoing a previous round

of exocytosis. A variation of the Elmqvist & Quastel method

[41] was used to estimate the kinetics of the RRP depletion and

refilling (see methods and [42]). When we compared the time

constant of the RRP exhaustion in WT and mutants

(discontinuous blue line in Fig. 2I & J), no significant difference

was found (WT: 0.960.1 s; n = 16 terminals, 3 mice ; SMND7:

1.160.1 s; n = 16 terminals, 4 mice; P = 0.12) (Fig. 2G);

similarly, the mean half-time taken for vesicles to refill the

RRP (discontinuous red line in Fig. 2I & J), was not significantly

different in mutants (1.460.1 s, n = 16) than in WTs (1.260.1,

n = 16; SMND7; P = 0.17), (Fig. 2H). These data suggest that the

depletion kinetics of vesicles at AZs, and the availability of new

vesicles for successive rounds of exocytosis were not slowed in

mutants.

Mitochondria are diminished but well co-localized with
synaptic vesicles in SMA

Some of the roles of presynaptic mitochondria are to provide

ATP for synaptic transmission, ion pumps, and assembly of actin

cytoskeleton involved in the clustering of SVs and mitochondria

themselves. Another role of mitochondria is regulation of

intraterminal Ca2+ levels, providing an especially important

buffering action during trains of action potentials. Therefore, a

reduction in the number of mitochondria, alteration in their

spatial distribution, or impairment of their functional capacities,

may decrease their Ca2+ buffering capability and produce toxic

Ca2+ overloads. To assess whether an alteration in mitochondria

spatial distribution, or density was present in SMN deficient

terminals, the TVA muscle was incubated with mitotracker

(400 nM), a cell-permeant probe that is sequestered by functioning

mitochondria and retained during cell fixation [44].

Figure 3A-D (central panels) shows representative examples of

the distribution of mitotracker labeled mitochondria in motor

terminals. Quantification of the number of mitotracker spots per

terminal showed no significant differences between WT and

SMN Is Essential for Motor Terminal Maturation
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Figure 1. Synaptic vesicles in motor terminals of SMND7 mice are reduced and anomalously distributed. Representative en face views of NMJs
from the TVA muscle stained with BTX-Rho (red), which binds specifically to postsynaptic AChRs, and anti-VAChT (green), which labels synaptic vesicles.
Images are Z-stack projections. A & B. Terminals of WT and SMND7 mice, respectively, at P7. C & D. At P14, the postsynaptic apparatus and SVs appeared
less mature in mutants (D) than in WTs (C), and SVs in mutants appeared in compact clusters while they distribution in WT terminals were predominantly
diffuse. E. Mean postsynaptic areas were significantly smaller in mutants than in WT terminals, both at P7 and P14. F. The area of VAChT stained vesicles
(normalized to the postsynaptic size) was smaller in SMND7 than in WT motor terminals. G. The mean size of vesicle clusters in SMND7 was smaller than in
WT at P7 and P14. H. The mean number of SV clusters was larger in SMND7 terminals at P14. Scale bar: 5 mm; *: P,0.05; **: P,0.005; ***: P,0.0005.
doi:10.1371/journal.pone.0026164.g001

SMN Is Essential for Motor Terminal Maturation
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mutants (WT: 22.962.1 spots/terminal, n = 18 terminals; mutant

23.563.1, n = 19 terminals) (P = 0.9). The total area stained by

mitotracker per terminal, however, was about half in mutants

(19.462.7 mm2; n = 20) as compared to WT terminals

(38.864.9 mm2; n = 22; P = 0.002). Normalization of these areas

to postsynaptic surface area also gave significantly smaller values in

mutants (WT: 0.2960.03; mutant: 0.1960.02; P = 0.01). This

difference was mainly due to the smaller size of the mitotracker

Figure 2. RRP and Pr are reduced in motor terminals from the SMND7 TVA muscle. A & B. Representative traces of EPPs during 5 s trains
of stimuli at 20 Hz in WT and SMA mice (P14), res pectively. C & D. Examples showing the technique for the estimation of RRP size by the x-intercept
of the fitted points. E–H. Mean RRP size, vesicle release probability, depletion time constant, and refilling half time, in WT and SMND7 terminals. I & J.
Representative examples for the estimation of the kinetic properties of the recruitment process in WT and SMND7. * P,0.05; **: P,0.005.
doi:10.1371/journal.pone.0026164.g002

SMN Is Essential for Motor Terminal Maturation
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Figure 3. Mitochondrial density in SMA presynaptic terminals is reduced. A–D. The upper panels (A & C) show Z-stack projections while the
lower panels (B & D) show single confocal sections. The staining from left to right are: BTX-A647 (grey), SVs (green), mitotracker (red), merge of SV and
mitochondria. Data are from the TVA muscle (P14). E. Nearest neighbor distributions of SV clusters and mitochondrial regions (calculated from their
respective center of mass), in WT and mutants terminals. F. Relationship between mean areas covered by SV and mitochondria in WT (blue symbol)
and SMND7 (red symbol) terminals. Scale bars A-D: 5 mm; insets: 600 nm.
doi:10.1371/journal.pone.0026164.g003

SMN Is Essential for Motor Terminal Maturation
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spots (WT: 1.7260.36 mm2, n = 360 spots; mutant: 0.8960.1 mm2,

n = 214 spots. P = 0.03) in mutants.

Next, we explored the spatial relationship between mitotracker

spots and SV clusters. In most cases, as in the illustrated examples,

mitochondria (red) appeared near SV clusters (green) in both WT

(Fig. 3A & B) and mutant terminals (Fig. 3C & D). Moreover, in

many cases a core of mitochondria was clearly surrounded by a

SV rim (Fig. 3A–D, right panels), reminiscent of the donut-like

structures described in the calyx of Held [45,46]. Quantification of

this co-clustering was done by measuring the nearest-neighbor

distances between SV clusters and mitochondria spots. Nearest-

neighbor distances were determined by fitting each of the red and

green spots to a 2D Gaussian distribution, and using the peak (x,y)

of each distribution. The results in nine mutant terminals (202

measurements) and 13 WT terminals (282 measurements), showed

that in mutants SVs and mitochondria were, as in controls, closely

associated (Fig. 3E). Even more, the percent of red-green spots

nearest distances within 1 mm were larger in mutants (41%) than

in WT (31%) (P = 0.0006), as expected for the smaller sizes of SV

and mitochondria cluster in mutants (Fig. 3F).

Taken together, these results show that in mutant terminals the

close spatial relationship between mitochondria and SV clusters

was not lost, but revealed a reduction in the amount of functional

mitochondria.

Active zones are reduced and clustered in SMA
Given the reduction on the RRP size found in mutants (Fig. 2),

we wondered whether the number of AZs per terminal was

reduced in comparison with littermate controls. To identify AZs,

an antibody against bassoon, a scaffolding protein of AZs [47], was

used in the TVA muscle.

Typically, AZ number and distribution change during the

postnatal maturation period. Fig. 4A shows, at P7, two typical

examples of the lower abundance and differential distribution of

bassoon spots in mutant (lower panel) compared with WT (upper

panel) terminals. At P14, these apparent differences were even

clearer. In the examples shown in Figure 4B the total number of

bassoon spots counted in each nerve terminal were 273 in the WT

(central upper panel) and 139 in the mutant (central lower panel),

which resulted in 1.29 and 0.69 bassoon spots/mm2, respectively.

On average, at this age, the number of bassoon spots per terminal

was 208620 (n = 20), in WT and 102612 (n = 15), in mutants

(Fig. 4D) (P = 0.0002), and their density 1.160.1 bassoon spots/

mm2 in WT, and of 0.760.1 in mutants (Fig. 4E) (P = 0.009). In

addition, while in WTs bassoon spots appeared regularly

distributed within the terminal (cf., Fig. 4B, central panel), in the

mutants spots were apparently grouped and co-clustered with SVs

(cf., Fig. 4B, lower central and right panels). Figure 4C illustrates

bassoon spots in another mutant terminal, now in a planar

projection; bassoon spots were clearly associated with SV clusters

and, in some cases, a SV cluster was surrounded by a group of

bassoon spots (Fig. 4C, inset).

The spatial distribution of the bassoon spots was quantified by

nearest neighbor analysis performed on whole terminals. Fig. 4F

shows the distance between bassoon spots (centers of 2D gaussian

fits) from three WT (left) and three mutant (right) terminals. In

both, the shape of the distribution were quasi normal-shaped. The

average nearest neighbor separation in WTs (876627 nm; n = 694

particles) was not significantly different (P = 0.27) to that in

mutants (921629 nm; n = 399 particles). These results indicate

that in mutants AZs were regularly spaced but they were missing

in some areas, following the anomalous clustering of SVs within

the terminal.

Neurofilament accumulation follows synaptic vesicle
reduction

NF accumulation is a hallmark of many neurodegenerative

diseases [48], including SMA mouse models [32,33,34,35,36].

Therefore, to better understand the pathophysiology of this

process the spatial distribution of the NFs, and the relationship

between NFs and the clusters of SVs were studied in the TVA

muscle during the first and second week of postnatal life.

Interestingly, at P7, SV aggregates localized along the NF

trajectory, both in WT and mutant terminals (Fig. 5A & B). In

many cases, NFs ended in loop-like structures about 1.35 mm in

diameter (arrows), which hosted clusters of SVs (Fig. 5A & B,

insets). These structures, which are characteristic of cytoskeletal

immaturity [49,50], were equally frequent in mutant and WT

terminals at this age (mean number of loops/terminal: 4.460.6,

n = 38 versus 460.4, n = 37; P = 0.45).

At P14, the spatial localization of SVs along the NF trajectory

persisted in mutants (Fig. 5D) while it was less obvious in WT

terminals (Fig. 5C). Also, at this age the loops were rare (0.960.2

loops/terminal, n = 52) and small (1.260.1 mm in diameter, n = 20) in

WT terminals (Fig. 5C, inset), while they were significantly more

frequent (2.960.3 loops/terminal, n = 48) (P,0.0001), and enlarged

(1.760.1 mm diameter, n = 20) (P = 0.0014) in mutants (Fig. 5D, inset).

The mean area of the terminal occupied by NFs was 1.7-fold

higher in mutant than in WT terminals at P14 (P,0.0001; n = 38)

but was not significantly different at P7 (Fig. 5E). Given the

apparent reduction in SVs at this age, the surface ratio between

NFs and vesicles was ,3.5-fold larger in mutants than in controls,

while it was only 1.5-fold larger at P7 (Fig. 5F).

These results indicate that NF postnatal maturation was

interrupted in mutants and, in addition, suggest that the amount

of NF protein was not down regulated as in controls, resulting in

their accumulation during the second postnatal week. The data

also show that NF accumulation followed the decrease in SVs.

F-actin and synaptic vesicles are closely associated in
SMA

Filamentous actin (F-actin) is a prominent cytoskeletal element

in nerve terminals. The F-actin-based network [51] may

participate in creating a scaffold for SV clustering, and/or in

supporting ordered vesicle mobility. In addition, it has been

suggested that F-actin anchors synaptic vesicles to AZs by a labile

link formed with synapsin, a vesicle protein [52,53].

SMN deficiency produces defects in beta-actin mRNA axonal

transport, and a decrease in actin protein content in growth cones

of motoneurons in culture [19]. We explored F-actin content and

distribution in presynaptic TVA motor terminals of SMA mutant

mice. F-actin was revealed by binding to fluorescent Phalloidin-

Alexa 647, which binds to all isoforms of F-actin but not to

monomeric actin [54]. In addition, to gain insight into the role of

F-actin in the organization of SVs, the distributions of F-actin

relative to SVs were also examined.

F-actin was localized in the sub-plasmalemmal region and deep

into the cytoplasm forming a thin network. Figure 6A shows a WT

terminal with F-actin labeled with phalloidin (upper panel), SVs

labeled with VAChT antibodies (green), and postsynaptic

receptors labeled with BTX-Rho (red, lower panel). In Figure 6B

a typical terminal from a mutant mouse is shown (left panel,

phalloidin image; central panel, anti-VAChT and BTX-Rho

merged). In some cases, F-actin was also clearly visualized in the

axon (Fig. 6B, arrow in right panel). In WT and mutant mice, F-

actin filaments run parallel to the major axis of the terminal and

SV clusters are positioned along them.

SMN Is Essential for Motor Terminal Maturation
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Figure 4. AZs in SMA motor terminals are reduced but well associated to SV clusters. A. NMJs at P7 labeled with anti-bassoon (left), and
BTX-Rho (right), in a WT (upper panels) and mutant (lower panels) muscle. In WT bassoon spots are abundant throughout the terminal, while in the
mutant spots are scarce. B. NMJs at P14, bassoon and postsynaptic receptors labeled as in A, SVs labeled with anti-VAChT (right), in a WT (upper

SMN Is Essential for Motor Terminal Maturation
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The association between SV clusters and actin could be better

visualized in transverse single confocal slices. Figure 6C (WT) and

6D (mutant) show two representative examples showing F-actin

surrounded SV clusters forming ring-like structures, similar to

actin rings described in the lamprey reticulospinal giant synapse

[55]. Interestingly, the diameter of F-actin rings surrounding SVs

were apparently smaller in mutant than in WT terminals, as could

be appreciated by their respective line intensity profiles across SVs

and phalloidin loops (Fig. 6E). However, these structures were not

visualized frequently enough for statistical analysis. Thus, the

percentage of the terminal area occupied by phalloidin, normal-

ized to the postsynaptic area, was quantified (Fig. 6F). In WT

mice, although the area of the terminal covered by phalloidin was

apparently larger than in mutants (WT: 4169%, n = 6 terminals;

mutants: 3464%, n = 6 terminals), this difference did not reached

statistical significance (P = 0.5).

Severe alteration of microtubules organization in SMA
Microtubules provide rails for the transport of organelles by

means of microtubule-associated motor proteins. To examine the

microtubule organization in the nerve terminal of controls and

SMND7 mutants an acetylated tubulin antibody, which marks

polymerized tubulin, was used.

In axons from the TVA muscle, no difference in tubulin

distribution between WT and mutant mice was observed at P9-

P11, suggesting that axon guidance and fasciculation apparently

were not affected in SMND7 mutant mice (Fig. 7A). In the

presynaptic terminals, however, the organization of polymerized

tubulin differed in WT and mutant mice (Fig. 7B). In most WT

terminals, microtubules appeared grouped in thick and thin

bundles (left panel). Nevertheless, in most mutants microtubules

appeared scattered all over the terminal, instead of fasciculated,

and with a punctuate appearance (right panel). We quantify the

percent of terminals containing branched-like, scattered-like, and

mixed patterns (Fig. 7D). In WT mice, the branched-like pattern

was the most frequent (74%), and no scattered-like ones were

observed. In mutants, on the other hand, the majority of terminals

showed a mixed pattern (,54%), and only 18% showed a normal

branched pattern.

Quantification of the tubulin stained area per terminal gave no

significant differences between controls and mutants

(81.0963.81 mm2, n = 32 terminals, vs. 76.4963.72 mm2, n = 33;

P = 0.39). However, when these values were normalized to the

postsynaptic areas, mutants showed to have a relative greater

amount of microtubules than controls (0.4460.02 vs. 0.3760.02),

(P = 0.0083) (Fig. 7E).

To explore whether the anomalous organization of microtu-

bules in SMND7 terminals was due to the immaturity of the

presynaptic terminal, we looked at the distribution of microtu-

bules at an early age (P4). Interestingly, microtubules appeared

scattered and punctuated in WT terminal at this age (Fig. 7C,

left panel), similar to the pattern in mutants from P4 to P11

(Fig. 7 B & C, right panels), suggesting a defect in the

rearrangement of microtubule architecture during the postnatal

period in mutants.

The above results, together with the other presynaptic defects in

the TVA muscle, raised the question of how specific this

phenotype is. Therefore, we explored the NMJs in the LAL, a

muscle in which SMND7 postsynaptic sites have been described to

mature almost at the same pace as in control mice [33], with the

exception of NMJs in the caudal band which are more vulnerable

to low SMN levels [33,36]. In the rostral band, at P7, postsynaptic

area (Fig. 8 B), SV content (Fig. 8C), and SV cluster size (Fig. 8D)

were not different in WT and mutant mice (P = 0.74 and P = 0.50;

n = 21 & 24 terminals, respectively), while the last two parameters

were significantly reduced in mutants at P14 (Fig. 8C & D),

(P = 0.0003 and P = 0.006, respectively). In the caudal part,

however, vesicle parameters were already decreased at P7 and

did not increase with age (Fig. 8F & G). Interestingly, evoked

neurotransmitter release (quantal content) was not statistically

different in control and mutants (WT: 10.2160.74 and mutants:

7.4861.22; P = 0.07; Fig. 8H) in the rostral part of the muscle at

P14. These findings also show that the defect in presynaptic

differentiation is not secondary to a blockade of postsynaptic

differentiation.

Discussion

The mechanisms underlying the postnatal maturation of pre-

and postsynaptic specializations are finely controlled to assure

reliable spatial and temporal transmission of information in and

from the nervous system. At the end of the synaptic maturation

process optimal juxtaposition of postsynaptic receptors and

presynaptic neurotransmitter release sites is achieved. From the

presynaptic side, the key elements to regulate are the position and

density of proteins and organelles within the terminal. How this

process is controlled, however, remains obscure. Here, we report

that SMN-deficient mice present presynaptic defects in SVs,

mitochondria, AZs, NFs and microtubules, as well as in

neurotransmission, with a pattern compatible with a deficiency

in presynaptic differentiation.

In the TVA muscle of SMN-deficient mice SVs remained

clustered at P7, contrary to what happened in control mice where

SVs dispersed and occupied larger areas of the terminal. In

addition, SMN-deficient motor nerve terminals stopped accumu-

lating SVs at P7, resulting in a 50% decrease in vesicles in mutants

compared to controls at two week of age (Fig. 1F). This last finding

was in agreement with the decrease in size of the synaptic vesicles

pools found electrophysiologically at this age (Fig. 2). Strikingly, in

the rostral band of the LAL these alterations appeared about a

week later (Fig. 8). In the Tibialis anterior (TA) and in the Extensor

digitorum longus (EDL) muscles two different ultrastructural studies,

in the same SMA mouse model, also found a decrease in SVs

density [35,56]. Conversely, in the diaphragm no significant

difference in vesicle number has been found [57]. Moreover, the

size of the pool of SVs ready to be released (RRP) has been

reported to be comparable in SMND7 and littermate controls in

the EDL (Ling et al., 2010), a mildly SMA affected distal muscle.

However, here we found that the RRP size was decreased in the

TVA in mutant mice (Fig. 2), in agreement with the ultrastructural

observation of a similar decrease in docked vesicles in nerve

terminals from TA muscle [35]. Therefore, there seems to exist a

correlation between the degree of muscle pathology and the

variability in SV content.

panels) and mutant (lower panels) TVA muscle. In WT bassoon spots appear distributed evenly throughout the terminal, while in the mutant spots
are clumped in groups that co-localize with SVs. C. Planar projection of a mutant NMJ stained with anti-bassoon (magenta), BTX (grey) and anti-
VAChT (green) showing clustering of SVs and bassoon spots. D–E. Mean number of bassoon spots per terminal (left graph), and per mm2 (right graph)
in WT (n = 15) and SMND7 (n = 20) fibers. F. Distribution of bassoon spots interdistance (nearest neighbors) in three WT (n = 694) and three SMND7
(n = 399) fibers. Scale bars: 5 & 1 (insets) mm. ** (P = 0.009); *** (P = 0.0002).
doi:10.1371/journal.pone.0026164.g004
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In the present experiments we also found a ,50% reduction of

total active mitochondrial surface in mutant presynaptic terminals

(Fig. 3), with no apparent alteration in their spatial organization

close to SV clusters. Previous evidence also suggests that

mitochondrial defects are present in SMA nerve terminals. For

example, in the TA muscle mitochondrial density is reduced by

half in mutants while their morphology is normal [35,20]. In the

diaphragm, however, presynaptic mitochondria are smaller in

mutants than in wild-type littermates, while no differences are

found at the postsynaptic site [32]. In the TVA, the amount of

Ca2+-dependent asynchronous neurotransmitter release during

prolonged stimulation is increased, which might suggest an altered

regulation of bulk [Ca2+] by the mitochondria [36]. Mitochondrial

dysfunction has also been reported when Smn is knocked down in

cultured neuronal cells, a cell model of SMA [58]. Mitochondrial

defects have been demonstrated in other motor neuron diseases,

including ALS [59,60] and Spinal and Bulbar Muscular Atrophy

[61].

Beside the reduction and clustering of SVs and mitochondria in

SMA mutant terminals, we also found a reduction in the density of

AZs (visualized with anti-bassoon antibodies), together with an

alteration in their distribution (Fig. 4). This, together with the

decrease in the RRP size (Fig. 2), may explain the drop in

neurotransmitter release as evidenced by estimation of the quantal

content [35,36]. A smaller number of AZs might be caused by a

deficiency of presynaptic P/Q- and N-type voltage-dependent

calcium channels in the nerve terminal [62,63]. In motoneurons in

culture from SMN deficient embryos, N-type calcium channels

have been described to be diminished at growth cones [64]. It

could be of interest, therefore, to explore this possibility at motor

terminals of postnatal mutant mice in the future.

It is interesting to note the parallels between the decrease in

SVs, mitochondria and AZs in SMN deficient nerve terminals

(Figs. 1, 3 & 4). The association between mitochondria and SVs is

relevant for ATP-dependent functions such as refilling of SVs with

neurotransmitter. On the other hand, the close relationship

between AZs and SVs is essential for the efficient refilling of the

release sites. In addition, the proximity of mitochondria to the

plasma membrane may also support SV cycling. Thus, in SMN

deficient terminals, the reduction of these organelles could be

partially responsible for the functional impairment of the synapse.

It is difficult to discern, however, whether the decrease in

mitochondrial density is a consequence of the decrease of the

SV pools. Other possibilities are also feasible, for example, a

malfunction of the control mechanisms that maintains an

appropriate pool of mitochondria within the presynaptic terminal.

The interactions of mitochondria and SVs with the cytoskeleton

are crucial for localization and maintenance of these organelles at

their sites of action. For example, the subcellular localization

(docking process) of mitochondria is likely based on F-actin

filaments [65,66], in turn regulated through the RhoA/formins

pathway [67]. Finally, a deficiency in the microtubule-based

anterograde transport of mitochondria, SVs and AZ precursors, is

also plausible. A fault in the microtubule network itself, or in the

motor proteins responsible for those cargos, may cause this

phenotype. In support of this possibility, it has recently been

reported that there is a decrease in polymerized tubulin at distal

axons of SMN deficient terminals and less amount of mitochon-

dria in the motor neurons [39].

For all these reasons we also studied the cytoskeleton (NFs, actin

filaments, and microtubules) in SMND7 motor terminals.

Previously, it has been reported that NFs accumulated in motor

axons and in the terminals of SMA mouse models

[32,33,34,35,36]. The importance of NF accumulation in the

SMA pathogenesis is difficult to determine. NF overpacking may

impair axonal transport of vesicles to terminals. However, we

found that SV content in nerve terminals of the TVA muscle was

already reduced at one-week of age (Fig. 1F), a time at which

abnormal NF accumulation was not apparent (Fig. 5E), suggesting

that NF accumulation is a late event in the disease progression. In

addition, we also found a marked tendency of intraterminal NFs to

end in balls in SMA mutants at P14 (Fig. 5D), a sign of immaturity

that suggests impairment in NF assembly and turnover.

A defect in axonal transport in SMN-deficient animal models

cannot, nevertheless, be discarded. SMN has been implicated in

the axonal transport of mRNA of beta-actin and other cargoes

necessary for motor neuron integrity and function [19,26]. In

nerve terminals, F-actin is known to play important roles in SV

recycling [55,68] and, probably, in the tethering of SVs at AZs

[69]. Therefore, even a small decrease in actin content in SMA

motor terminals (Fig. 6), may affect one or more functions related

to the transport or the stability of these organelles. Although this

hypothesis is attractive, however, a newly generated motor neuron

specific beta-actin conditional knock-out mouse does not present

an altered phenotype at the NMJ [70].

Recently, it has been reported that microtubule polymerization

is disrupted in Smn-deficient NSC34 cells in culture, that the

amount of acetylated tubulin is about one third of controls in

sciatic nerves of SMA mice and that the number of axonal

microtubules per axon is reduced by 25% in mutant mice [39]. We

here found that the presynaptic motor terminals of SMND7 mice

show a reduction and an abnormal distribution of microtubules

(Fig. 7), compatible with the arrest of postnatal maturation at the

presynaptic terminal. The scattering of microtubules in mutant

terminals might, in turn, contribute to the delayed organization of

the synaptic organelles.

In summary, our data show that SMN is essential for postnatal

maturation of SVs, AZs, mitochondria and the cytoskeleton at the

motor nerve terminal. We also suggest that this disruption in the

presynaptic architecture might limits synaptic transmission in most

affected muscles. These results, together with data from others

showing delay in the maturation of the postsynaptic terminal,

failure of muscle fiber growth, and a decrease in synaptic inputs to

spinal motor neurons [37,71,72], support a possible role of SMN

in neuromuscular development. Future investigations in this

direction, therefore, may help to better understand the patho-

physiology of this disease.

Materials and Methods

Mouse model
Mouse lines were kindly provided by Dr. A. Burghes.

Experimental mice were obtained by breeding pairs of SMA

Figure 5. NF accumulation in SMA terminals occurs at a late stage of the disease. A–D. Left panels: NF staining (magenta) showing ring-
like structures. Discontinuous lines (Panel B) mark dim NF labeling. Right panels: Merged images showing the spatial relationship between SVs and
NFs. Note that at P7 SV clusters were near NFs, either inside the loops (arrows) or along their paths (A & B), while SVs were around the compact ring-
like structures, at P14. Data are from TVA muscles of WT and SMND7 mice. Scale bar: 5 mm. Images are Z-stack projections. E. NF area, normalized to
postsynaptic area, in P7 and P14 WT and mutant terminals. F. Surface ratio between NFs and SVs in WT and mutants at both ages. *: P,0.05;
**: P,0.005; ***: P,0.0005.
doi:10.1371/journal.pone.0026164.g005
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Figure 6. F-actin and SVs are closely associated in SMA motor terminals. Data are from the TVA muscle (P14) A–B. Representative examples
of the distribution of F-actin (grey) in a WT (A) and a mutant (B) terminal. The same terminals are also shown stained for SVs (green) and postsynaptic
receptors (red). Arrow in the right panel of B points to actin in the axon. C–D. Phalloidin (grey), SVs (green), and AChRs stained with BTX-Rho (red),
showing the organization of actin around SV clusters. Image in C is from a SMND7 terminal and in D from a WT terminal. E. Intensity profiles across
actin loops and SV clusters showing the reduced diameter and thickness of the loop in mutants. F. Phalloidin areas in WT and mutant terminals were
not significantly different (P.0.05). Scale bars: A & B: 5 mm; C & D: 2 mm.
doi:10.1371/journal.pone.0026164.g006
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Figure 7. Microtubules are immature and more abundant in SMA presynaptic terminals. A. Representative images from WT (left) and
SMND7 (right) axon microtubules in TVA muscles at P11 apparently showing no alterations. Scale bar: 10 mm. B–C. Typical distribution of
microtubules in WT and mutant nerve preterminals, at P11 (B) and P4 (C). Scale bars: 5 mm. D. Percentage of presynaptic terminals showing
microtubules in a fasciculated-like, scattered-like, or mixed pattern, at P11. E. Microtubule area in the presynaptic terminal, normalized to the
postsynaptic surface, was significantly larger in SMND7 than in WT mice. **: P,0.005.
doi:10.1371/journal.pone.0026164.g007
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Figure 8. Selective alterations of SVs in motor terminals from the LAL muscle. A. Representative images of pre- and postsynaptic
characteristics of NMJs in the LAL muscles of WT (upper panels) and SMND7 (lower panels) mice at P14. Postsynaptic terminals were labeled with
BTX-Rho (red) and presynaptic vesicles with antibodies against VAChT (green). Note the clustering of SVs despite the mature appearance of the
postsynaptic side in the SMND7 terminal. Scale bar: 5 mm. B–G. Mean postsynaptic area (B & E), SV area (C, F), and cluster area (D, G) in SMND7 and
WT terminals, from rostral (B–D) and caudal (E–G) divisions of the muscle. Note that the area of vesicles and the cluster sizes were not significantly
different in the rostral part of SMND7 terminals at P7, while these parameters were significantly reduced at P14. However, in the caudal part SVs
deficiencies in SMND7 terminals were evident since P7 (n = 16 WT terminals and n = 15 SMND7 terminals). *: P,0.05; **: P,0.005; ***: P,0.0005.
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carrier mice (Smn+/2; SMN2+/+; SMND7+/+) on a FVB/N

background. Identification of wild-type (WT) and SMA mice

(Smn-/-; SMN2; SMND7) was done by PCR genotyping of tail

DNA as previously described [40]. All experiments were

performed according to the guidelines of the European Council

Directive for the Care of Laboratory Animals.

Muscle preparation
Mice were sacrificed by CO2. The Levator auris longus (LAL) and

Transversus abdominis (TVA) muscles were dissected with their nerve

branches intact and pinned to the bottom of a 2 ml chamber, over

a bed of cured silicone rubber (Sylgard, Dow Corning Corp.).

Preparations were continuously superfused with physiological

solution (in mM): 125 NaCl, 5 KCl, 2 CaCl2, 1 MgCl2, 25

NaHCO3 and 15 glucose, continuously gassed with 95% O2 and

5% CO2 (pH: 7.35). Electrophysiological recordings were

performed at room temperature (22–23uC).

Intracellular recording
Standard electrophysiological techniques were used to record

miniature (mEPPs) and evoked end-plate potentials (EPPs) using

conventional microelectrodes (R = 10-25 MV fill with 3 M KCl) as

described previously [36]. Recordings were done in the TVA

muscle from control and SMA mice at P14-15 days of age. Nerve

stimulation was carried out by a suction electrode. The stimulation

consisted of square-wave pulses of 0.2-0.5 ms duration and 2–40 V

amplitude, at variable frequencies (0.5–20 Hz). Muscle contrac-

tions were blocked with m-conotoxin GIIIB (2–4 mM, Alomone), a

specific blocker of skeletal muscle voltage-gated sodium channels.

Quantum contents during a train were plotted against time, and

fitted to a sequential model of release [42] that assumed that all

release on the first shocks came from the RRP, which is depleted

along an exponential time course, and that the refilling of the RRP

rose sigmoidally to a plateau level. The probability of release (Pr)

was calculated by dividing the first EPP quantal content by the

RRP size.

Immunohistochemistry
Whole-mount dissected muscles were incubated for 30 min in

Ringer solution saturated with 95% O2/5% CO2 before fixation

in 4% paraformaldehyde. Later, muscles were bathed in 0.1M

glycine in PBS for 20 min, then permeabilized with 1% (v/v)

Triton X-100 in PBS for 30 min and incubated in 5% (w/v) BSA,

1% Triton X-100 in PBS for 2 h. Samples were incubated

overnight at 4uC with the primary antibodies of interest (see

below). The following day muscles were rinsed for 1 h in PBS

containing 1% Triton X-100, incubated for 1 h both with the

corresponding secondary antibodies and 10 ng/ml rhodamine-

BTX or BTX-Alexa 647 (BTX-A647) (Molecular Probes) and

rinsed again with PBS for 90 min. Presynaptic terminals were

labeled with antibodies against the vesicular acetylcholine

transporter (VAChT; 1:500, Synaptic System), the synaptic vesicle

2 protein (SV2; 1:500, Developmental Studies Hybridoma Bank),

neurofilaments (NF; 1:750, Millipore), acetylated tubulin (1:1000,

Sigma) and Bassoon (1:100, Stressgen). The preparations were

incubated with fluorescent secondary Alexa antibodies (1:500,

Invitrogen). Finally, muscles were mounted with slowfade medium

(Sigma).

Mitochondrial labeling
Fresh tissue was incubated with Mitotracker Orange (Invitro-

gen), a mitochondrion-selective stain that is concentrated by active

mitochondria and retained well during cell fixation, at final

concentration of 400 nM. The muscle was then washed, fixed and

processed for additional labeling of other organelles.

Actin labeling
Fixed (4% PFA) and permeabilized (1% Triton X-100) muscles

were incubated with the actin dye Phalloidin-Alexa647 (Invitro-

gen) at a working concentration of 170 nM. Later, the preparation

was washed and mounted with slowfade medium.

Image acquisition and analysis
Muscles were imaged with an upright Olympus FV1000

confocal laser scanning microscope, equipped with three excitation

laser lines (argon-krypton laser with 488, 561 and 633 nm

excitation lines). During image acquisition, an alternating

sequence of laser pulses was used for activation of the different

fluorescent probes. Images were taken using a 63x oil-immersion

objective with a numerical aperture of 1.4. Images from wild-type

and mutant littermate preparations were taken with similar

conditions (laser intensities and photomultiplier voltages) and,

usually, during the same day. For analysis, only fully occupied

terminals were considered [33].

Morphometric analysis of the fluorescently labeled structures

was performed offline with ImageJ (W. Rasband, National

Institutes of Health, Bethesda, MD; http://rsb.info.nih.gov/ij/).

Postsynaptic terminal, SVs and NFs areas were determined

automatically, by finding outline masks based on brightness

thresholding, from maximal projected confocal images.

All statistics given as mean 6 standard error of the mean, unless

stated otherwise. Differences between groups were tested using the

t-test (2 tails).

Supporting Information

Figure S1 VAChT and SV2 colocalize in SMA synaptic
vesicles. A & B. Examples of WT and SMND7 terminals at P14

from TVA muscles. Images are Z-stack projections. Scale bar:

5 mm. C. Quantification of colocalization by Pearson coefficient

showed no significant difference between SMND7 (n = 9 terminals)

and WT (n = 4 terminals) mice (P = 0.78).

(TIF)
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