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Abstract

Intrauterine growth restriction is associated with impaired lung function in adulthood. It is unknown whether such
impairment of lung function is linked to the transforming growth factor (TGF)-b system in the lung. Therefore, we
investigated the effects of IUGR on lung function, expression of extracellular matrix (ECM) components and TGF-b signaling
in rats. IUGR was induced in rats by isocaloric protein restriction during gestation. Lung function was assessed with direct
plethysmography at postnatal day (P) 70. Pulmonary activity of the TGF-b system was determined at P1 and P70. TGF-b
signaling was blocked in vitro using adenovirus-delivered Smad7. At P70, respiratory airway compliance was significantly
impaired after IUGR. These changes were accompanied by decreased expression of TGF-b1 at P1 and P70 and a consistently
dampened phosphorylation of Smad2 and Smad3. Furthermore, the mRNA expression levels of inhibitors of TGF-b signaling
(Smad7 and Smurf2) were reduced, and the expression of TGF-b-regulated ECM components (e.g. collagen I) was decreased
in the lungs of IUGR animals at P1; whereas elastin and tenascin N expression was significantly upregulated. In vitro
inhibition of TGF-b signaling in NIH/3T3, MLE 12 and endothelial cells by adenovirus-delivered Smad7 demonstrated a direct
effect on the expression of ECM components. Taken together, these data demonstrate a significant impact of IUGR on lung
development and function and suggest that attenuated TGF-b signaling may contribute to the pathological processes of
IUGR-associated lung disease.

Citation: Alejandre Alcázar MA, Morty RE, Lendzian L, Vohlen C, Oestreicher I, et al. (2011) Inhibition of TGF-b Signaling and Decreased Apoptosis in IUGR-
Associated Lung Disease in Rats. PLoS ONE 6(10): e26371. doi:10.1371/journal.pone.0026371

Editor: Dominik Hartl, University of Tübingen, Germany
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Introduction

The term fetal programming reflects the assumption that a

temporary environmental influence during intrauterine develop-

ment may lead to permanent alterations of physiological processes

later in life [1], [2], [3]. Intrauterine undernourishment can

represent such an environmental factor, leading to intrauterine

growth restriction (IUGR) and, in most cases, to low birth weight

(LBW). Furthermore, there is evidence that being born with LBW

also has an impact on lung development and function [4], [5], [6].

Organogenesis of the lung occurs in five stages: 1.) the

embryonic stage, 2.) the pseudoglandular stage, 3.) the canalicular

stage, 4.) the saccular stage, and 5.) the alveolar stage. A sixth stage

- microvascular maturation - has also been proposed [7]. The

process of lung development is highly regulated and thus

susceptible to modification by perinatal environmental conditions

[7], [8]. Consequently, disturbed intrauterine growth may induce

changes in lung structure, which predispose lungs to later disease.

Several observational studies have described decreased lung

function with reduced forced expiratory volume in one second

(FEV1) in young infants [9], in school children [10], and in young

adults born with LBW [11], [12]. The terms IUGR and ‘‘small for

gestational’’ age (SGA) are often used synonymously, but the

distinction between them is important. IUGR is the pathological

form of SGA. It affects growth and predisposes to diseases later in

life. Intrauterine protein restriction has been shown to be a reliable

animal model of IUGR [13], [14], and several animal studies

addressing structural changes of the pulmonary system have also

demonstrated reduced lung function following IUGR [15], [16],

[17].

Lung structure and function are determined during early and

late lung development [18], [19], [20]. While the pathogenic

processes leading to IUGR-associated lung disease have not yet

been elucidated, extracellular matrix (ECM) and its maintenance

during alveolarization is thought to play a pivotal role in disease

pathogenesis [21], [22]. Disruption of critical signaling pathways

may be involved [19], [23], including signaling by the transform-

ing growth factor (TGF)-b superfamily [23], [24]. TGF-b signaling

is initiated by binding of TGF-b to the type II TGF-b receptor

(TbRII), which then forms a complex with either the type I

receptor (TbRI) or activin A receptor type II-like 1 (Acvrl1, also

called ALK-1). The type I receptor transmits signals within the cell
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via second-messenger Smad proteins, namely Smad1-Smad4, or

by Smad-independent pathways [25]. TGF-b signaling is also

regulated by Smad6 and Smad7, inhibitory Smads which

antagonize TGF-b signaling. Several studies have indicated that

TGF-b signaling plays a critical and finely tuned role in

pulmonary branching and alveolarization [18], [23], since TGF-

b ligands inhibited airway branching in vitro [26], [27].

Furthermore; abrogation of TGF-b signaling by genetic ablation

of TbRII [28], Smad2, Smad3 or Smad4 enhanced lung

branching in vitro [29]. Consistent with these observations,

overexpression of Smad7 promoted lung branching [30]. Howev-

er, conditional overexpression of the TGF-b1 gene in the mouse

lung during the postnatal period disrupts lung development [31].

Interestingly, Smad3 deficiency in mice results in progressive

airspace enlargement with age [32]. These studies implicate TGF-

b signaling as a regulator of lung branching and alveolarization.

Together with reports that TGF-b might be associated with fetal

growth in pregnancy [33], they have led us to hypothesize that

IUGR due to protein restriction during gestation may influence

TGF-b signaling and contribute to impaired lung function and

structural changes in later life.

Methods

Induction of intrauterine growth restriction
All procedures performed on animals were done in accordance

with the German regulations and legal requirements and were

approved by the local government authorities (Regierung von

Mittelfranken, AZ # 621-2531.31-11/02 and AZ # 621-2531.31-

14/05).

Adult and neonatal Wistar rats were housed in humidity- and

temperature controlled rooms on a 12:12-h light-dark cycle.

IUGR in rats was induced as previously described [14]. In brief,

virgin female Wistar rats were obtained from our own colony.

Dams were time-mated by the appearance of sperm plugs, then

fed either a normal diet containing 17.0% protein (control group)

or a low protein isocaloric diet containing 8.0% protein (casein)

throughout pregnancy (IUGR group). Diets were obtained from

Altromin, Germany (# C1000, C1003). Rats delivered spontane-

ously at day 23 of pregnancy. On the first postnatal day (P1) the

litters were reduced to six pups per dam. During lactation, dams

were fed standard chow. Weaning was at P23. IUGR and control

animals were sacrificed at P1 and P70 and assigned to four groups:

IUGR P1, Control P1, IUGR P70, and Control P70. Body weight

and weight of the lung were obtained immediately after sacrificing

the animals. Means 6 standard error of the mean were calculated.

Measurement of airway responsiveness
At P70, lung function was assessed by measuring respiratory

system dynamic compliance (Cdyn) with direct plethysmography

(FinePointeTM RC; Wellington, NC, USA). Cdyn is defined as a

measure of the ability of the lung to distend in response to

pressure. Decreased compliance means that a greater change in

pressure is needed for a given change in volume, as in atelectasis,

edema, fibrosis, pneumonia, or absence of surfactant. Rats were

deeply anesthetized by intramuscular injection of ketamine

(100 mg/kg body weight) and midazolame (5 mg/kg body

weight), tracheotomized and ventilated. Cdyn was measured at

baseline.

Processing of lung tissue and morphometric analysis
Following anesthesia with ketamine (100 mg/kg body weight)

and midazolame (5 mg/kg body weight) the animals were

exsanguinated by aortic transection. Neonatal animals at P1 were

euthanized by decapitation. The right lobe of the lung was

removed after ligation of the bronchus, and one portion was

immediately snap-frozen in liquid nitrogen for mRNA and protein

analysis. The left lobe was inflated via tracheotomy and pressure-

fixed at 20 cm H2O with 4% (mass/vol) paraformaldehyde, and

the trachea was ligated. Lungs and hearts were excised en bloc,

submersed in 4% (mass/vol) paraformaldehyde overnight for

paraffin embedding and sectioning as described previously [34].

Paraffin sections (1 mm) were mounted on poly-L-lysine-coated

glass slides, dewaxed with xylene (3–5 min) and rehydrated in a

graduated series of ethanol solutions (100%, 95%, and 70% (vol/

vol), finally PBS). The mean linear intercept (MLI) and septal

thickness were determined on sections stained for smooth muscle

actin and counter-stained with hematoxylin and eosin as described

previously [35], [36].

RNA extraction and real-time PCR
Total RNA was isolated from unfixed lung tissue or cultured

cells as previously described [37], followed by DNase treatment to

remove any contaminating genomic DNA. Total RNA was

screened for mRNA encoding ALK-1, ALK-5, TbRII, TbRIII,

Smad2, Smad2, Smad3, Smad4, Smad6, Smad6, Smurf2, elastin

(Eln), tenascin N (TenN), collagen I (Coll I), collagen III (Coll III),

fibrillin (Fbl), matrix metalloproteinases (MMP) 2, MMP 9, tissue

inhibitor of matrix metalloproteinases (TIMP) 1, TIMP 2,

plasminogen activator inhibitor-1 (PAI-1), surfactant protein A

(SP-A), SP-C, and SP-D. Quantitative changes in mRNA

expression were assessed by quantitative real-time PCR as

described previously [14] using the IQ TM SYBR-Green �
Supermix and a BioRad iQ5-Cycler (Bio-Rad Laboratories,

Hercules, CA, USA) or the 7500 Real-time PCR system (Applied

Biosystem, Foster City, CA, USA) [14]. In all samples, the relative

amount of specific mRNA was normalized to the ubiquitously

expressed glyceraldehyd-3-phosphat-dehydrogenase (GAPDH)

and b-actin gene. Primer pairs and TaqMan probes are listed in

Table 1. Oligonucleotides were designed with Primer Express

software (Perkin-Elmer, Foster City, CA, USA).

Protein detection by immunoblot
Frozen unfixed lung tissue was homogenized in lysis buffer as

previously described [14]. Cultures cells were harvested using a

cell scraper and lysed in the same buffer. Protein concentration

was determined with a Bio-Rad DC protein assay (Bio-Rad,

Hercules, CA). Lysates resolved on a 10% reducing SDS-PAGE

gel were transferred to a nitrocellulose membrane. Blots were

probed with the following antibodies: polyclonal rabbit-anti-rat-

phospho Smad2 (Cell Signaling, Danvers, MA, # 3101, 1:1000),

monoclonal rabbit-anti-rat-phospho Smad3 (Cell Signaling, Dan-

vers, MA, # 9520, 1:1000), polyclonal rabbit-anti-rat-Smad2/3

(Cell Signaling, Danvers, MA, # 3102, 1:1000), polyclonal rabbit-

anti-rat-Smad4 (Cell Signaling, Danvers, MA, # 9515), polyclonal

rabbit-anti-rat-Smad7 (R&D Systems, Wiesbaden, Germany,

MAB2029, 1:1000), polyclonal rabbit-anti-rat-cleaved Caspase-3

(Cell Signaling, Danvers, MA, # 9661, 1:1000), polyclonal rabbit-

anti-rat-Caspase-3 (Cell Signaling, Danvers, MA, # 9662, 1:1000),

polyclonal rabbit-anti-rat-poly (ADP-ribose) polymerase (PARP)

(Cell Signaling, Danvers, MA, # 9542, 1:2000), monoclonal

mouse-anti-rat-proliferating cell nuclear antigen (PCNA) (DAKO,

Glostrup, Denmark, Clone PC10, M0879, 1:10.000). Monoclonal

mouse-anti-rat-b-Actin (Cell Signaling, Danvers, MA, # 3700,

1:1000) served as a loading control. Anti-mouse IgG, HRP-linked

(Cell Signaling, Danvers, MA, # 7076, 1:2000), and HRP-linked

anti-rabbit IgG (Cell Signaling, Danvers, MA, # 7074, 1:2000)

were used as secondary antibodies.

TGF-b Signaling and IUGR-Associated Lung Disease
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Densitometric analysis of protein bands was performed using

Advanced Image Data Analyzer-Software (Version 4.15, Fuji

Photo Film Co., Omiyama, Japan) and Bio-Rad ImageLab

software (Bio-Rad, Munich, Germany). Band intensities from

samples were normalized for loading using the b-actin band from

the same sample.

Immunostaining of lung tissue sections
Expression of Smad molecules was assessed on 1-mm tissue

sections, prepared as described above for morphometric analysis.

Antigen retrieval and quenching of endogenous peroxidase activity

with 3% (vol/vol) H2O for 20 min was performed. Sections were

incubated with the relevant primary antibody: polyclonal rabbit-

anti-rat-phospho Smad2 (Cell Signaling, Danvers, MA, # 3101,

1:1000) or monoclonal rabbit-anti-rat-phospho Smad3 (Cell

Signaling, Danvers, MA, # 9520, 1:100). Immune complexes

were visualized with an avidin/biotin-DAB (3,39-diaminobenzi-

dine) detection system (Vector Lab, Burlingame, CA, USA). Each

slide was counterstained with hematoxylin.

Optimization of the multiplicity of infection (M.O.I.)
NIH/3T3, MLE-12 and mouse endothelial cells were seeded in

24-well tissue culture plates at a density of 16104/well, incubated

for approximately 12 h until 50% confluent, washed with PBS and

then incubated in serum-free OptiMEM medium (Invitrogen,

Darmstadt, Germany; 1000 ml per well) for 30 min at 37uC before

addition of the virus. To define the best suitable multiplicity of

infection (M.O.I.), an adenoviral LacZ vector (AdLacZ) carrying a

b-galactosidase reporter gene was used. AdLacZ was diluted in

PBS to a final concentration of 16106 plaque forming units

(p.f.u.)/ml, applied to the cells with increasing M.O.I. (10, 50, 100,

200 and 500 ml per well), follwed by incubation of the cells at 37uC
for 3 h. The volume of the culture medium was then increased by

addition of OptiMEM (1500 ml per well). After incubation for 6 h

the medium was replaced by the appropriate culture medium

containing FCS and the incubation was continued for a total of

48 h. All experiments were performed in triplicate. After 48 h of

incubation cells were fixed in 2% formaldehyde/0.2% glutaralde-

hyde for 15 min, washed with PBS supplemented with 0.02%

Nonidet P40 and analyzed for nuclear bacterial b-galactosidase

activity indicated by the characteristic blue staining in a PBS

solution containing K3Fe(CN)6 (5 mM), K4Fe(CN)6 (5 mM),

MgCl2 (2 mM), 0.02% Nonidet P40, 0.01% sodium deoxycholate

and X-gal (5-bromo-4-chloro-3-indolyl-b-D-galactopyranoside dis-

solved in N,N-dimethylformamide) at a concentration of 0.8 mg/

ml. The cells were stained overnight protected from light.

Table 1. Primer pairs and TaqMan probes used.

PAI-1 forward 59-TCCGCCATCACCAACATTTT-39

reverse 59-GTCAGTCATGCCCAGCTTCTC-39

probe 59(FAM)- CCGCCTCCTCATCCTGCCT-
AAGTTCTCT-(TAMRA)39

TGFb-1 forward 59-CACCCGCGTGCTAATGGT-39

reverse 59-GGCACTGCTTCCCGAATG-39

probe 59(FAM)-ACCGCAACAACGCAATC-
TATGACA-(TAMRA)39

tgfbr1 forward 59-ACCGCGTGCCAAATGAAGAGGAT-39

reverse 59-GGTAAACCTGATCCAGACCCTGAT-39

Tgfbr2 forward 59-GAGCAACTGCAGCGTCACC-39

reverse 59-CCAGAGTAATGTTCTTGTCGTTC-39

Tgfbr3 forward 59-CTTGACAGCAGAAACAGAGG-39

reverse 59-AAACACTTGATCTTCTCCCAC-39

Smad2 forward 59-AATTACATCCCAGAAACACCAC-39

reverse 59-TGTCCATACTTTGGTTCAACTG-39

Smad3 forward 59-CACCAGTGCTACCTCCAGTGT-39

reverse 59-TAGTGTTCTCGGGGATGGAA-39

Smad4 forward 59-CTACTTACCACCATAAC-
AGCACTACCA-39

reverse 59-GTGCTGAAGATGGCCGTTTT-39

Smad6 forward 59-CCCCCTATTCTCGGCTGTCT-39

reverse 59-TGGTGGCCTCGGTTTCA-39

Smad7 forward 59-AGATACCCGATGGATTTTCTCAAA-39

reverse 59-TCGTTCCCCCGGTTTCA-39

Smurf2 forward 59-GGTCTCAGCGACATAGAAATTACATG-39

reverse 59-TGTTGTGTTGTCCTCTGTTCATAGC-39

SARA forward 59-GCCAACGTGCCTATCCTAATTC-39

reverse 59-ACTGCCCTTTCCTGTTGTCTGA-39

Elastin forward 59-GAAAACCCCCGAAGCCCT-39

reverse 59-CCCCACCTTGATATCCCAGG-39

Tenascin N forward 59-AGGTGGACTATTACAAGCTTCGGTAT-39

reverse 59-GCAGACCGGTGATGTCATATCTAC-39

Collagen I a forward 59-AGAGCGGAGAGTACTGGATCGA-39

reverse 59-CTGACCTGTCTCCATGTTGCA-39

probe 59(FAM)-CAAGGCTGCAACCTGGA-
TGCCATC-(TAMRA)39

Collagen III forward 59-GGACCTCCTGGTGCTATTG -39

reverse 59-GAATCCAGGGATACCAGCTG-39

Fibrillin forward 59-TGCTCTGAAAGGACCCAATGT-39

reverse 59-CGGGACAACAGTATGCGTTATAAC-39

mCollagen I forward 59-TCACCTACAGCACCCTTGTGG -39

reverse 59-CCCAAGTTCCGGTGTGACTC-39

mTenascin N forward 59-AGAAGCTGAACCGGAAGTTGAC-39

reverse 59-CGTCTGGAGTGGCATCTGAAA-39

mElastin forward 59-GGCTTTGGACTTTCTCCCATT-39

reverse 59-CCACCTTGGTATCCCAGGG-39

mMMP-2 forward 59-ATGCGGAAGCCAAGATGTG-39

reverse 59-GTCCAGGTCAGGTGTGTAAC-39

mb-Actin forward 59-GACATCAGGAAGGATCTCTATG-39

reverse 59-CTTCTGCATCCTGTCAGCAA-39

SP-A forward 59-GGGATAGTAGCCATGTCACTGTGT-39

reverse 59-CGTCTGTCACATTGCACTTGATAC-39

SP-C forward 59-CCTGAGTGAACACACAGACACCAT-39

reverse 59-GTCAGGAGCCGCTGGTAGTC-39

SP-D forward 59- TAGAGGCTGCCTTTTCTCGCTAT -39

reverse 59-GCCGCCCTGAAGATTTTGT-39

TIMP-2* forward 59-TCAAAGGACCTGACAAGGACATC-39

reverse 59-CGCCTTCCCTGCAATTAGATAT-39

probe 59(FAM)-TCTACACGGCCCCCTCCTCAGCA-
(TAMRA)39

MMP-2* forward 59-CTGGAGATACAATGAAGTAAAGAAGA-
AAAT-39

reverse 59-CACGACTGCATCCAGGTTATCA-39

probe 59(FAM)-TTTCCCGAAGCTCATCGCAGA-
CTCC-(TAMRA)39

GAPDH forward 59-ACGGGAAACCCATCACCAT-39

reverse 59-CCAGCATCACCCCATTTGA-39

probe 59(FAM)-TTCCAGGAGCGAGATCCC-
GTCAAG-TAMRA)39

*TIMP-1, TIMP-2 and MMP-2 were detected by TaqMan
realtime-PCR analysis.
doi:10.1371/journal.pone.0026371.t001

Table 1. Cont.
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Infection with an adenoviral Smad7 vector
The E1A/E1B-deleted adenoviral vector AdSmad7 was diluted

in PBS to a final concentration of 16106 p.f.u./ml and applied to

the cells (NIH/3T3, MLE-12, and mouse endothelial cells) at an

M.O.I. of 100. The incubation was continued for a total of 48 h.

All experiments were performed in triplicate.

AdSmad7-infected cells were stimulated with TGF-b1 (2 ng/ml)

for 12 and 24 h. The cells were then lysed and processed for

mRNA extraction. Uninfected cells served as control.

Data analysis
The results of real-time RT-PCR were calculated based on the

DDCt method and expressed as fold induction of mRNA

expression compared to the corresponding control group (1.0-fold

induction). For quantitative immunoblot analysis densitometry was

performed and values were normalized to b-actin. Two-tailed

Mann-Whitney test and one-way ANOVA followed by a

Bonferroni post-test were used to assess the significance of

differences between IUGR and control animals at given time

points. A p value,0.05 was considered as significant. All results

are shown as means 6 standard error of the mean.

Results

Auxometry of neonatal and adult rats after IUGR
A marked effect of low protein diet during gestation on growth,

as assessed by body length and body weight, was observed

(Figure 1A). At day P1 average body weight (5.8660.092 g) of the

undernourished pups (IUGR) was significantly lower than that of

age-matched pups of mothers fed with normal protein (control

group: 4.5560.068 g). However, by P70 the IUGR group

exhibited a slightly reduced body mass (38366.32 g) in compar-

ison with the control group (41664.61 g). This difference was not

significant when tested by one-way ANOVA followed by

Bonferroni post-test (Figure 1A). Thus, low protein diet during

gestation led to IUGR without affecting survival or adult body

weight.

Lung morphology of adult rats formerly affected by IUGR
Total lung weight at P1 and P70 did not differ between IUGR

and control animals. However, alveolar development was

impaired in IUGR animals, evident by fewer and larger air spaces

(Figure 1B), compared to animals with appropriate birth weight.

The mean linear intercept (MLI) is roughly inversely proportional

to the alveolar surface (37). By P70, IUGR animals exhibited a

MLI approximately 30% lower than that of the control group. To

evaluate the interstitium and accumulation of ECM components

we assessed septal thickness. There were no differences between

IUGR and Co.

Respiratory parameters of adult rats formerly affected by
IUGR

A marked effect of IUGR on dynamic respiratory compliance

(Cdyn) was observed at P70. IUGR animals exhibited a Cdyn 40%

lower than that of age-matched controls (Figure 1C). Cdyn reflects

the elasticity and function of the pulmonary connective tissue.

Interestingly, lung compliance was significantly lower in IUGR

animals under baseline conditions.

Expression pattern of surfactant protein A (SP-A), SP-C,
SP-D

To address surface tension as a regulator of lung compliance, we

assessed mRNA expression of genes encoding surfactant protein A

Figure 1. Body weight, respiration and physiological lung
parameters of IUGR rats. A: Body weight (g) and relative lung weight
(lung weight/body weight) of rats after IUGR (white bars) and control
rats (black bars) at days P1 and P70; n = 8–15 for each bar. B:
Architectural changes in lung structure were evident in hematoxylin
and eosin-stained lung sections from IUGR rats and control rats at day
P70. Measurement of septal thickness (mm) and mean linear intercept
(MLI; mm) in IUGR rats and control rats (CO) at day P70; n = 6–10 for each
bar. C: Assessment of respiratory system compliance by whole body
plethysmography in IUGR rats (white bars) and in the control group
(CO; black bars) at P70. n = 15–17 for each bar. D: Expression pattern of
genes encoding surfactant protein A (SP-A), SP-C, and SPD. IUGR rats
(white bars) and control group (black bars). n = 6–15 for each bar. The
significance for each bar is indicated by p values, IUGR vs. Co, n.s. = not
significant; two-tailed Mann-Whitney test.
doi:10.1371/journal.pone.0026371.g001
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(SP-A), SP-C, and SP-D at P1 and P70. There was no significant

difference detectable, neither at P1 nor at P70 (Figure 1D).

Effect of IUGR on TGF-b-induced ECM proteins and
modulators of the ECM in neonatal and adult rat lungs

To address whether the dramatic alterations in dynamic

respiratory compliance (Cdyn) and respiratory system resistance

(Res) in IUGR animals are associated with altered expression of

ECM components, we assessed the mRNA levels of genes

encoding ECM molecules. Expression of collagen I, collagen III,

fibrillin (Figure 2A) and the ECM regulators MMP-9 and TIMP-1

(Figure 2B) was downregulated at the critical developmental time

point P1. In contrast, the expression of elastin (Eln), tenascin N

(TenN) (Figure 2A), as well as that of MMP-2, a regulator of ECM

remodeling enzymes, and its inhibitor TIMP-2 (Figure 2B) was

elevated. These results indicate a dysregulated composition and

remodelling of the ECM during the stage of alveolarization.

Effect of IUGR on the expression of TGF-b1 and the
methylation of CpG islands of the promoter region of
TGF- b1

To address whether the alterations in the expression of ECM

components at the critical phase of lung development at P1 are

associated with an altered expression of the growth factor TGF-b1

in the neonatal lungs of IUGR rats, we measured the expression of

the gene encoding TGF-b1 and the TGF-b responsive gene PAI-1.

Both TGF-b1 mRNA and protein were decreased in IUGR pups

at P1 (Figure 3A, Figure 3B), consistent with the downregulation of

expression of the TGF-b-responsive gene PAI-1 at P1 (Figure 3A).

TGF-b1 protein was detected at lower amounts in lungs of IUGR

animals at P70 (Figure 3B, 3C).

Next, we wanted to investigate why the expression of the ligand

TGF-b1 is changed after IUGR. Therefore we analyzed the

methylation of CpG islands in the promoter region of the TGF-b1

gene by PCR amplification of bisulfite-treated DNA, separation by

agarose gel electrophoresis, and gel extraction and purification of

the PCR products. Analysis of the PCR products did not reveal

any significant difference of methylation in lungs of IUGR rats

compared to the controls (data not shown).

Effect of IUGR on the expression of TGF-b signaling
molecules in rat lungs

Next, we assessed expression of the components of TGF-b
signaling by quantitative real-time PCR. The results demonstrate a

significant increase of the transforming growth factor receptor type

I (TbRI) and TbRIII in lungs of IUGR animals, but no changes

for TbRII at P1. At P70 the expression of the receptors did not

differ between the two groups (Figure 4A). The mRNA expression

of the regulatory Smad2 was reduced, whereas the mRNA levels of

Smad3 and Smad4 were significantly increased at P1. At P70

Smad2 expression was downregulated, while no remarkable

difference for Smad3 or Smad4 was observed (Figure 4B).

Expression of the inhibitory molecule of the TGF-b system,

Smad7, was slightly decreased and expression of Smad-specific E3

ubiquitin protein ligase 2 (Smurf2), which inhibits Smad2 and

Smad3, was significantly reduced. The expression of Smad anchor

for receptor activation (Sara) as a protein presenting Smad2 and

Smad3 to the TGF-b-receptors, was significantly increased

(Figure 4C).

Additionally, where antibodies were available, lung homoge-

nates at P1 and P70 were probed by immunoblotting to investigate

whether IUGR due to undernourishment during gestation resulted

in changes on the protein level between IUGR and control groups.

Indeed, pronounced alterations were observed for some intracel-

lular signaling components of the TGF-b system. The abundance

of co-Smad4 and of inhibitory Smad7 was decreased at P1

(Figure 5A). At P70 the expression of Smad4 was unchanged,

while expression of Smad7 was persistently downregulated

(Figure 5A). The expression of regulatory Smad2 and Smad3,

transducers of TGF-b signals, was altered neither at P1 nor at P70

(Figure 5A).

Effect of IUGR on the activity and localization of TGF-b
signaling in rat lungs

The results obtained so far indicate a regulation of the

expression of the TGF-b system due to IUGR. To further

elucidate whether the activity of TGF-b signaling was changed in

lungs of IUGR rats, we analyzed the phosphorylation of

Figure 2. Effect of IUGR on the expression of extracellular
matrix (ECM) proteins and modulators of the ECM in neonatal
rat lungs. Expression of TGF-b-regulated genes encoding elastin (Eln),
tenascin N (Ten), collagens (Coll) I, Coll III, and Fibrillin (A), and genes of
ECM modulators including matrix metalloproteinase (MMP)-2, MMP-9,
tissue inhibitor of metalloproteinases (TIMP)-1, and TIMP-2 (B) in lungs
extracted at day P1 from neonatal rats after IUGR and control rats. The
mRNA expression, illustrated as relative fold induction, was assessed by
real-time PCR. The control group was normalized to 1 as indicated by a
scattered line; n = 15 for each group. The significance for each bar is
indicated by p values, IUGR vs. Co; two-tailed Mann-Whitney test.
doi:10.1371/journal.pone.0026371.g002
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intracellular Smad2 and Smad3 by immunoblot. At P1 and P70

phosphorylation of Smad2 and Smad3 was significantly dimin-

ished (Figure 5B), indicating that the activity of TGF-b signaling

was decreased in lungs of IUGR rats.

To localize the activity of TGF-b signaling within the different

compartments of the lung we performed immunohistochemical

analysis of lung tissue at P70. Consistent with the immunoblotting

data, the phosphorylation of both Smad2 and Smad3 was less in

the bronchi and in the alveoli of lungs after IUGR (Figure 5C).

Effect of IUGR on apoptosis in neonatal and adult rat
lungs

The observed impaired pulmonary TGF-b signaling in IUGR

rats is likely to influence apoptosis and proliferation during the

vulnerable perinatal period and may thereby contribute to the

increase in alveolar surface and lung tissue in adulthood.

Therefore, we next sought to examine key markers of apoptosis

and proliferation in the developing lung at P1 and in the adult lung

at P70. We assessed expression of caspase-3 and polyclonal rabbit-

anti-rat-poly (ADP-ribose) polymerase (PARP) by immunoblot-

ting. Total caspase 3 levels were reduced in lungs of IUGR rats at

P1 at P70, whereas PCNA levels were not changed. Additionally,

cleaved caspase-3 and the cleaved fragment of PARP were

markedly diminished after IUGR at both time points, indicating

decreased apoptosis in lungs after of IUGR rats (Figure 6).

Effect of the inhibition of the TGF-b signaling by
adenoviral Smad7 on the expression of extracellular
matrix proteins

The inhibition of TGF-b signaling by AdSmad7 was confirmed

by immunoblotting of both phospho-Smad2 and phospho-Smad3.

Additionally we assessed baseline transcriptional activity of the

cells infected by AdSmad7. Accordingly, the induction of

transcription was normalized to AdSmad7/Co (Figure 7A).

To assess the impact of TGF-b signaling on the expression of

ECM components, we next performed cell culture experiments.

Phosphorylation of Smad2 and Smad3 was inhibited by infecting

NIH/3T3 cells (fibroblasts), MLE-12 epithelial cells and murine

Figure 3. Effect of IUGR on the expression of TGF-b1 in lungs of neonatal and adult rats. A: Expression of genes encoding TGF-b1 and
TGF-b-inducible plasminogen activator inhibitor-1 (PAI-1) during late lung development (day P1). The mRNA expression was assessed by quantitative
real-time PCR. The control group was normalized to 1 as indicated by a scattered line; n = 15 for each group. The significance for each bar is indicated
by p values, IUGR vs. Co; two-tailed Mann-Whitney test. B: representative immunoblots illustrating expression of TGF-b1 in lungs extracted at day P1
and P70 from rats with and without IUGR. b-actin served as loading control. Immunoblot data were quantified for both day P1 and P70; n = 6 for each
bar. The significance for each bar is indicated by p values, IUGR vs. Co; two-tailed Mann-Whitney test.
doi:10.1371/journal.pone.0026371.g003
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endothelial (mEnd) cells with a constitutively-expressing Smad7

adenoviral vector (AdSmad7). Inhibition of intracellular TGF-b
signaling led to cell type-dependent expression. Collagen I was

significantly downregulated in NIH/3T3 cells and slightly, but not

significantly in MLE-12 and mEnd cells. Messenger RNA

expression of tenascin N was slightly increased in NIH3T3 and

dramatically upregulated in MLE-12, whereas no changes could

be detected in mEnd. The expression of elastin increased strikingly

in MLE-12 cells after inhibition of the Smad-dependent pathway.

Matrix metalloproteases-2 (MMP-2) expression was not altered in

MLE-12 cells, but was down- or upregulated in NIH3T3 and

mEnd cells, respectively (Figure 7B). Taken together, these data

demonstrate a direct effect of the inhibition of TGF-b signaling by

AdSmad7 on ECM components. The results are consistent with

our in vivo data and underline the impact of a decreased TGF-b
activity on the ECM.

Discussion

Several studies have examined ECM molecules and morpho-

metric parameters of lungs after IUGR [38], but none so far has

addressed lung function and the impact of growth factors such as

TGF-b on the pulmonary system. Here, we aimed at elucidating

mechanistic clues linking IUGR and subsequent changes in the

pulmonary architecture.

Dynamic lung compliance is a dimension for the lung scaffold

and ECM, and the pulmonary ability to distend in response to

pressure. Our data demonstrate that IUGR following maternal

isocaloric protein restriction during gestation leads to a reduced

dynamic compliance. This is in line with studies demonstrating an

airway disease in former IUGR infants [12]. Further, morpho-

metric analysis at P70 revealed a decreased MLI after IUGR,

indicating an increase of alveolar tissue, whereas there was no

alteration of septal thickening. These results are in contrast to

previously reported morphometric lung analyses subsequent to

IUGR demonstrating an impaired alveolarization [16], [17].

However, those previous studies differ from our in various points:

(1) species, (2) induction of IUGR and (3) catch up growth.

Consistent with our observations, expression of both ECM

components (elastin, tenascin N, collagens I and III) and ECM

regulators (MMP-2 and TIMP-2) was markedly dysregulated. This

is in contrast to the findings of Maritz et al. [38], who reported a

lower number of alveoli per respiratory unit and thicker

interalveolar septa in IUGR lambs. In addition, we investigated

the surfactant proteins, based on the fact that lung compliance is

determined by them, but did not detect any difference. The cause

of IUGR is of utmost importance and determines the phenotype

later in life [39]. Maritz et al. used a model of placental

insufficiency, whereas the present study is based on a low protein

diet model. That may explain, at least in part, the different

observations.

How could IUGR dysregulate ECM components during lung

development? The process of alveolarization is regulated by

growth factor-mediated interaction of different cell types [18],

[19]. The TGF-b family controls cell proliferation, transformation

and apoptosis, as well as ECM deposition and remodelling [8],

[18], [19]. There are studies demonstrating that several mod-

ificators, such as RAGE-products [40] and hypoxia [41], are

involved in lung disease and regulation of TGF-b signaling.

Recent studies of our group did not indicate placental or fetal

hypoxia subsequent to IUGR induced by low protein diet during

gestation. Overexpression of TGF-b1 during gestation leads to

septal thickening and lung fibrosis [31], [42], whereas Smad3-

deficient mice develop a hypoplastic lung [32], [43]. Here we

show, for the first time, that IUGR in rats decreases pulmonary

TGF-b signaling persistently. TGF-b1 mRNA and protein levels

were reduced immediately after birth and at P70. Such persistent

changes could be the result of epigenetic modifications, for

example methylation of promoter regions (CpG islands) influenc-

ing gene expression and possibly inducing gene silencing. Some

studies revealed an effect of IUGR due to maternal protein

restriction on DNA methylation and on the expression of essential

growth or transcription factors [44], [45], [46]. We could not

Figure 4. Expression of the TGF-b signaling machinery in lungs
of neonatal and adult rats. Changes in the expression of genes
encoding components of the TGF-b signaling machinery as assessed by
real-time RT-PCR at days P1 and P70; n = 8–15 for each bar. The
significance for each bar is indicated by p values, IUGR vs. CO; two-
tailed Mann-Whitney test. A: Expression of genes encoding the TGF-b
receptors tgfbr1, tgfbr2 and tgfbr3 at P1 (white bar) and P70 (striped
bar). B: Expression of genes encoding the regulatory smad2, smad3 and
smad4 at days P1 (white bar) and P70 (striped bar). C: Expression of
genes encoding the inhibitory smad7, smurf2 and smad anchor for
receptor activation (sara) at days P1 (white bar) and P70 (striped bar).
doi:10.1371/journal.pone.0026371.g004
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detect differences between IUGR and control animals. However,

other epigenetic mechanisms of transcriptional regulation via

transcription factors may contribute to the altered TGF-b1

expression. In line with this, the phosphorylation of both Smad2

and Smad3 is significantly derogated at P1 and P70 in the rat lung.

TGF-b regulates the expression and secretion of some ECM

molecules, including collagens, fibrillin, and matrix-metabolizing

enzymes [7], [8], [47]: the MMPs and their cognate inhibitors,

TIMPs. During early and late lung development both ECM

components and MMP-2/TIMP-1 are strongly expressed in

humans [48] and mice [49], and their deposition in the ECM

and its remodeling plays a pivotal role in alveolarization. In our

study, we have illustrated that the levels of collagen I, collagen III,

and fibrillin mRNA are consistently decreased. In animal models

of arrest of alveolarization, MMP-2 is reduced and TIMP-1 is

elevated [50], [51]. In contrast to these results, we demonstrate an

increased alveolarization and alveolar mass after IUGR, and

opposing regulation of TIMP-1 and MMP-2. Additionally, we

show that inhibition of the TGF-b activity in fibroblasts by

adenoviral Smad7 leads to reduced mRNA expression of TGF-b-

regulated ECM molecules. However, it is essential to differentiate

between the cell types of the compartments of the lung: in

epithelial cells (MLE-12) inhibition of TGF-b signaling led to a

tremendous upregulation of elastin and tenascin N, whereas elastin

expression was unaffected in fibroblasts (NIH/3T3) and murine

endothelial cells, and tenascin N expression was even decreased in

murine endothelial cells. Taken together, our data in vivo and in

vitro suggest that an abnormal downregulation of pulmonary TGF-

b activity after IUGR has an impact on the composition and

function of the ECM contributing to an impaired lung function.

What other role may the TGF-b system play during lung

development in IUGR animals? Proliferation and differentiation

of type II pneumocytes are key steps in the process of

alveolarization and regulated by TGF-b [52], [53]. Our study

shows that IUGR may result in a decreased activation of the TGF-

b system accompanied by diminished expression and cleavage of

caspase-3 and reduced cleavage of PARP, indicating clearly

disturbed apoptotic processes at both time points investigated.

These findings are endorsed by the fact that caspase-3 is a

downstream molecule of the TGF-b system [54], whereby TGF-b
signaling has potent antiproliferative and pro-apoptotic effects on

epithelial cells [55], [56], [57], [58]. Moreover, we demonstrate

that tgfbr3 expression is significantly upregulated in IUGR lungs

at P1. Consistent with these results, another group postulates that

TGF-b receptor III (TbRIII) may act as a protective factor in

apoptotic processes in cardiac fibroblasts by negative regulation

and inhibition of TGF-b signaling [59]. Considering these data, it

is conceivable that diminished TGF-b signaling in lungs after

IUGR inhibits apoptosis in fibroblasts and alveolar epithelial cells,

thereby contributing to an abnormal growth of pulmonary tissue

(Figure 8).

Additionally, compensatory mechanisms occur in order to

counter-regulate the reduced phosphorylation of Smad2/3 by

downregulation of the inhibitory intracellular molecules Smad7

and Smurf2. Furthermore, phosphorylation of Smad2/3 support-

ing molecules, e.g. Sara, is upregulated indicating a compensation

for the reduced activity of the TGF-b system.

There two major reasons for IUGR: first, placental insufficiency

with a combination of hypoxemia, inflammatory reaction and

nutrient restriction, second, maternal undernourishment due to

low protein diet. Of the different animal models of IUGR, we

chose the low protein diet model in the rat, based on the fact that it

is characterized by a low birth weight, development of arterial

hypertension and pronounced responsiveness to inflammatory

Figure 5. IUGR alters expression and phosphorylation of Smad proteins in rats. A: Representative immunoblots illustrating the expression
of TGF-b-specific Smad2, Smad3, the co-Smad, Smad4, and the inhibitory Smad, Smad7, in lungs extracted at days P1 and P70 from rats with and
without IUGR. b-actin served as loading control. Immunoblot data were quantified for Smad4 and Smad7 for both days P1 and P70 (Co as black bar,
and IUGR as white bar); n = 4–6 for each bar. The significance for each bar is indicated by p values, IUGR vs. CO; two-tailed Mann-Whitney test. B: The
expression of active TGF-b signaling components in lung homogenates of rats with and without IUGR was analyzed by immunoblotting of
phosphorylated (p) and total Smad2 and Smad3. b-actin served as loading control. Immunoblot data were quantified for pSmad2 and pSmad3 for
both days P1 and P70 (Co as black bar, and IUGR as white bar); n = 4–6 for each bar. The significance for each bar is indicated by p values, IUGR vs. CO;
two-tailed Mann-Whitney test. C: Immunhistochemical localization and expression pattern of pSmad2 and pSmad3 in lungs of rats with IUGR (right
column) and without IUGR (left column). A–F: representative fields illustrating the expression and localization of pSmad2 in bronchi (A–D) and in the
alveoli (E–F) of lungs extracted on day P70. G–L: representative fields illustrating the expression and localization of pSmad3 in bronchi (G–J) and in the
alveoli (K–L) of lungs extracted on day P70. M–N: negative control.
doi:10.1371/journal.pone.0026371.g005

Figure 6. Effect of IUGR on apoptosis in lungs of rats at days P1 and P70. Apoptosis is assessed by cleaved caspase-3 and cleaved fragment
of Poly (ADP-ribose) polymerase (PARP). A: Representative immunoblots illustrating the expression of cleaved and total caspase-3, fragments of PARP
and total PARP in lung homogenates of rats with IUGR and without IUGR (Co) at day P1 (A) and P70 (B). The b-actin served as loading control; n = 4–6
for each bar.
doi:10.1371/journal.pone.0026371.g006
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processes. However, undernourishment is not the leading cause of

IUGR in the western world, but in the developing countries.

Hence, the data presented in our study may be limited to a certain

group of IUGR infants and not completely alienable to IUGR

induced by placental insufficiency. Furthermore, rat lungs at birth

are at an earlier developmental stage than lungs of human

neonates born at term and therefore comparable to preterm

infants.

Taken together, the data presented here suggest that IUGR

affects lung development and lung function by at least two

functional consequences: 1) IUGR attenuates TGF-b signaling

after IUGR which leads to a dysregulated expression of ECM and

Figure 7. Effect of the inhibition of intracellular TGF-b signaling by adenoviral Smad7 overexpression on the expression of ECM
components in vitro. A: Basal expression of components of the TGF-b signaling pathway in MLE-12 cells following infection with adenoviral Smad7
(AdSmad7) and stimulation with TGF-b1 (2 ng/ml) for either 12 h or 24 h. Representative immunoblots illustrating the expression and
phosphorylation of Smad2 and Smad3 in MLE-12 cells are shown. Changes in the basal mRNA levels of genes encoding collagen I (ColI), tenascin N
(TenN), elastin (Eln) and metallo-matrixproteinase-2 (MMP-2) in MLE-12 cells infected by AdSmad7. Data represent the mean relative fold change in
mRNA expression assessed by real-time RT-PCR in MLE-12 cells 24 h after infection with AdSmad7. B: Induction of these four genes in native
fibroblasts (NIH/3T3), alveolar cells (MLE-12) and endothelial cells (End) (black bars) and after infection with AdSmad7 (white bars) one day prior to a
stimulation with TGF-b1 (2 ng/ml) for 12 h or 24 h. Fold changes were calculated by: (DDCt adSmad7, stim/DDCt adSmad7, unstim), and (DDCt control, stim/
DDCt control, unstim), where adSmad7 denotes infection with AdSmad7; control, no infection with AdSmad7; stim, ligand-stimulated; unstim,
unstimulated. The significance for each bar is indicated by p values, AdSmad7 vs. control.
doi:10.1371/journal.pone.0026371.g007

Figure 8. The role of transforming growth factor (TGF)-b signaling in lung disease subsequent to intrauterine growth restriction
(IUGR). A proposed model depicting the effects of decreased TGF-b signaling during the development of IUGR-associated lung disease is shown.
ECM - extracellular matrix.
doi:10.1371/journal.pone.0026371.g008
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ECM-remodeling components, and 2) IUGR decreases apoptosis

in the lung. This significantly contributes to the altered lung

development and impaired lung function seen after IUGR.
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