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Abstract

Yeast ribosomal proteins L11 and S18 form a dynamic intersubunit interaction called the B1b/c bridge. Recent high
resolution images of the ribosome have enabled targeting of specific residues in this bridge to address how distantly
separated regions within the large and small subunits of the ribosome communicate with each other. Mutations were
generated in the L11 side of the B1b/c bridge with a particular focus on disrupting the opposing charge motifs that have
previously been proposed to be involved in subunit ratcheting. Mutants had wide-ranging effects on cellular viability and
translational fidelity, with the most pronounced phenotypes corresponding to amino acid changes resulting in alterations of
local charge properties. Chemical protection studies of selected mutants revealed rRNA structural changes in both the large
and small subunits. In the large subunit rRNA, structural changes mapped to Helices 39, 80, 82, 83, 84, and the
peptidyltransferase center. In the small subunit rRNA, structural changes were identified in helices 30 and 42, located
between S18 and the decoding center. The rRNA structural changes correlated with charge-specific alterations to the L11
side of the B1b/c bridge. These analyses underscore the importance of the opposing charge mechanism in mediating B1b/c
bridge interactions and suggest an extensive network of information exchange between distinct regions of the large and
small subunits.
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Introduction

The ribosome must coordinate a series of rapid, highly accurate

events between multiple locations and molecular complexes

through every stage of protein synthesis. During the elongation

cycle alone, these include discriminating between cognate and non-

or near-cognate aminoacyl-tRNA (aa-tRNA) complexed with

elongation factor eEF1A (EF-Tu in bacteria and archaea),

accommodating aa-tRNAs into the peptidyltransferase center

(PTC) of the large subunit (LSU), catalyzing peptide bond

formation, and recruiting and stimulating GTP hydrolysis by

eEF2 (EF-G in bacteria and archaea). The cycle is completed by

translocation of the ribosome along the mRNA by three nucleotides

in the 39 direction. While our understanding of the biochemistry

and local structural changes that occur during each step of

elongation are becoming clear, deciphering how numerous widely

separated regions of this macromolecular complex coordinate their

actions with one another is less apparent. Mapping of the allosteric

communication pathways between different functional centers to

better understand how the ribosome synchronizes the various steps

of translation, particularly between the large and small subunits, is

thus a critical challenge to understanding the relationship between

ribosome structure and function.

In the past decade, high resolution X-ray crystallographic and

near-atomic resolution cryo-EM datasets have revealed numerous

intra- and inter-subunit interactions [1,2,3,4,5,6]. In particular,

the LSU and SSU directly interact through a series of 17

intersubunit bridges [4,7]. Most of these involve either RNA-RNA

or RNA-protein interactions. An exception is the B1b/c bridge,

which is formed between the LSU ribosomal protein L11 in yeast

(L5 in bacteria and archaea) and the SSU protein S18 (S13 in

bacteria and archaea) [4]. A recent crystal structure of the yeast

ribosome identified a second protein-protein intersubunit bridge

involving ribosomal protein L3 and a yet to be identified SSU

protein bound near h44 and h8, known as the eukaryotic specific

eB13 bridge [8]. In yeast, the essential protein L11 is located in the

LSU at the intersubunit face of the central protuberance where it

interacts with H84 of the 25S rRNA and with 5S rRNA

(Figure 1A). L11 can be roughly divided into three regions: the

P-site loop (consisting of L11 residues S48-H68) which dynami-

cally interacts with H84 and the P-site tRNA [9], a central region

that interacts with the 5S rRNA and H84, and the intersubunit

face which participates in the B1b/c intersubunit bridge. Cryo-

EM studies of ribosomes sampled through the elongation cycle

have revealed a ratcheting motion between the large and small

subunits during the process of translocation. This ratcheting

breaks the B1 b L11-S18 bridge, resulting in a roughly 30Å

movement and adoption of the B1 c bridge conformation

[10,11,12,13]. While the ribosome contains numerous intersubunit

bridges, the B1b/c bridge undergoes the largest conformational

adjustments during the process of ribosomal ratcheting [10,11,14].

Previous observations of structural datasets suggested that a series

of opposing positive and negative charge motifs between L11 and

S18 may provide ‘‘sticky and slippery’’ surfaces that aid in both the

movement and placement of the ratcheting subunits [13,15]

(Figure S1).
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Previous studies have linked mutations in human L11 to

Diamond-Blackfan anemia [16,17,18], and L11 has also been

shown to play a role in ribosome biogenesis control and regulation

of the MDM2-p53 pathway [19,20,21]. Further understanding of

L119s role in the ribosome may shed light on the molecular

mechanisms underpinning these findings. While it is possible that

the B1b/c bridge may merely function to mechanically limit the

motions of the ratcheting ribosome, L119s close proximity to the

ribosomal P-site implies it may have an important role in

communicating information between different functional centers

in the two subunits [9]. The current study focused on identifying

the critical amino acid residues of L11 located in the B1b/c bridge

region and evaluating their roles in ribosomal function at the

biological, biochemical, and structural levels. The observation that

disruption of these charges had the greatest impacts on growth and

viability is consistent with the view that the differential electrostatic

polarities within the B1b/c bridge play a crucial role as a

‘‘molecular yardstick’’ to aid in establishing preferred ratchet

orientations [13]. Additionally, we suggest that structural analyses

of several mutants has helped to reveal allosteric lines of

information transmission in the ribosome, linking the decoding

center on the small subunit to the PTC on the large subunit

through L11. A model describing L119s role in a ribosome ‘‘wiring

diagram’’ is presented.

Results

Generation of rpL11 alleles and genetic analyses
L119s essential nature, its close proximity to the tRNA binding

sites, and its unusual participation in a protein-protein intersubunit

bridge spurred an examination of its role in the relationship

between ribosome structure and function, particularly with regard

to the transmission of information through the B1b/c intersubunit

bridge. Scanning site-directed mutagenesis involving mutation of 3

or 4 sequential amino acids at a time spanning K87EYQ90,

E108HID111, and I114KYD117 was initially performed to identify

the amino acids of L11 that most affected the contribution of L11

to the B1b/c bridge (Figure 1B). As previous surveys have

suggested that movement and positioning of the B1b/c bridge

during the intersubunit ratcheting process may be partially

controlled by stretches of differentially charged amino acid

residues between L11 and S18 [13,15], each of these three

stretches of amino acids were either deleted, changed to alanine,

or given a positive charge by mutagenesis to poly-arginine. Of the

15 ‘regional mutants’ created, only H109ID111 to poly-arginine

(109–111R, this nomenclature is used throughout), was unviable.

At 30uC, all of the other regional mutants were phenotypically

indistinguishable from wild type, except for 114–116R which

exhibited a slow growth phenotype (Figure 2A and Table S1).

To determine which amino acids of the lethal mutant were most

important for viability, single amino acid alanine and arginine

mutations were generated at H109, I110, and D111. Additionally,

an H109E mutant was generated to observe the effects of a charge

reversal. While I110A and D111A displayed wild-type phenotypes,

H109A promoted depressed growth rates at 30uC, and H109E

was even further impaired (Figure 2A). For this reason, H109 was

selected for further mutagenesis to a wide range of amino acids, as

shown in Figure 2A. All H109 mutants were viable. Subsequently,

the effects of these mutants on growth rates were monitored by

standard 10-fold dilution spot analysis on SD-trp and grown at

30uC, 20uC, and 37uC. Since 30uC represents the optimum

temperature for growth of yeast laboratory strains, all other

temperature and drug effects were compared to this baseline. At

30uC, slow growth phenotypes were observed in the H109A,

Figure 1. Location of L11 in the ribosome. (A) Image of the yeast ribosome. The large subunit is colored green, and the small subunit is pink.
L11 (cyan) is located in the central protuberance of the large subunit where it interacts with 5S rRNA, Helix 84 of 25S rRNA, the T-loop of the peptidyl-
tRNA, and the small subunit protein S18 via the B1 b and B1 c intersubunit bridges. (B) Close-up view of L11 and neighboring structures. Amino acids
of L119s intersubunit region targeted for mutation are colored orange, red, and pink, corresponding to the colored amino acid shown. Ribosomal
structures generated in PyMol using yeast cryo-EM [5] fitted with tRNAs from T. thermophilus [6].
doi:10.1371/journal.pone.0020048.g001
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H109E, H109N, H109F, D111R, and 114–116R mutants. While

several of the regional mutants displayed decreased growth

characteristics at 20uC, all of the H109 mutants grew at rates

consistent with those observed at 30uC relative to wild-type. At

37uC the slow growth phenotypes observed at 30uC were

corrected in the H109A, H109E, H109N, H109F, and D111R

mutants. In contrast, growth of H109R was slightly inhibited while

that of the 87–90D was severely impacted (Figure 2A).

Small molecule translational inhibitors can provide insight into

changes in specific functional centers of the ribosome. This study

employed 3 such compounds: paromomycin, anisomycin, and

sparsomycin. Effects on growth were monitored by dilution spot

analysis on SD-trp at the drug concentration indicated in

Figure 1B, and cells were grown at 30uC. The aminoglycoside

antibiotic paromomycin, which stabilizes near-cognate codon:anti-

codon interactions and causes increased rates of translational error

[22], was used to probe for effects on the SSU decoding center.

Almost all of the regional mutants were sensitive to paromomycin,

with especially strong effects seen in the regional arginine mutants,

bolstering the hypothesis that charge-charge interactions are

important for B1b/c intersubunit bridge function. In the single

amino acid H109 mutants, H109D, H109E, and H109R were all

sensitive to paromomycin, while the remaining mutants were

phenotypically comparable to wild-type cells (Figure 2B). Aniso-

mycin binds to the A-site pocket of the LSU, interfering with

peptidyl transfer by competing with the 39 end of the aa-tRNA for

binding to the ribosome [23,24]. Again, sensitivity was observed in

the regional mutants, with particularly strong effects observed with

the 109–111A, 108–110R, and 115–117R mutants. Conversely,

the single amino acid mutants H109A, H109E, H109N, and

H109F were all resistant to this drug, with only E108R, H109I,

and I110R displaying minor sensitivity (Figure 2B). Sparsomycin

binds in conjunction with the peptidyl-tRNA, interfering with

peptidyl transfer and aa-tRNA binding, as well as stabilizing

hybrid states of the tRNAs [24,25,26]. At 30ug/mL of

sparsomycin, the 87–90D, 108–110D, 109–111A, 114–110R

regional mutants were hypersensitive as were the H109D,

H109R, H109S, H109I, and H109Q single amino acid changes.

Conversely, the H109A and H109F mutants conferred sparsomy-

cin resistance. This mixture of sparsomycin resistance and

sensitivity in the H109 mutants was of particular interest given

the previously described interaction of L11 with the peptidyl-

tRNA through its ‘‘P-site loop’’ [9].

The yeast ‘‘Killer’’ system can be employed to rapidly screen for

general translational fidelity defects. Killer+ yeast harbor the L-A

and M1 dsRNA helper and satellite viruses respectively. The L-A

mRNA contains two open reading frames, the first of which

encodes the viral capsid protein (Gag), while the second encodes

the RNA-dependent RNA polymerase viral replicase (Pol) [27].

Pol is in the 21 reading frame relative to Gag, and a Gag-pol

fusion protein is synthesized consequent to a 21 programmed

ribosomal frameshift (21 PRF) [28,29,30]. The M1 (+) strand

RNA is encapsidated and replicated in L-A viral particles, and

encodes a secreted toxin that can kill uninfected yeast through its

interaction with the Kre1 p cell wall assembly protein [31].

Maintenance of M1 is highly sensitive to alterations in translational

fidelity [32], and the inability of cells to maintain M1 can be scored

by loss of the ‘‘Killer’’ phenotype, i.e. loss of a zone of growth

inhibition around Killer+ cells when plated onto a lawn of diploid

Killer— indicator cells. Six of the 14 regional mutants as well as the

H109E and H109N mutants exhibited Killer— phenotypes

(Figure 2C). Additionally, several of the H109 mutants and the

Figure 2. Phenotypic analyses of the viable L11 mutants. (A) 10-fold dilutions of indicated yeast strains were spotted onto SD-Trp media and
incubated at temperatures indicated, or (B) on SD-Trp media containing paromomycin, anisomycin, or sparsomycin at the indicated concentration
and grown at 30uC. (C) Killer virus assays. Wild-type (WT) Killer+ cells are identified by a zone of growth inhibition. Inability to maintain the Killer+

phenotype indicates altered translational fidelity.
doi:10.1371/journal.pone.0020048.g002

L119s Role as an Informational Conduit
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115–117A regional mutant conferred weak killer phenotypes

(KillerW) as defined by decreased zones of growth inhibition. The

most pronounced effects on Killer virus maintenance were

observed in strains in which amino acids were either deleted, or

in which the charges of their side-chains were altered. The Killer+

phenotype is also sensitive to ribosome biogenesis and subunit

joining defects [33]. To determine if loss of Killer could be

attributed to this type of defect, polysome and subunit profiles

were generated for wild type and Killer- mutant strains by sucrose

density fractionation. All of the mutants assayed exhibited wild-

type profiles, ruling out subunit joining and biogenesis defects as

causative for Killer loss (Figure S2).

Changes to the B1b/c bridge affect translational fidelity
‘‘Translational fidelity’’ generically refers to the accuracy of

protein synthesis. A series of bicistronic Renilla-firefly dual

luciferase reporters were used to quantifiably examine 4 different

aspects of translational fidelity: 21 PRF, +1 PRF, suppression of a

nonsense UAA codon, (reviewed in [34]), and utilization of a near-

cognate codon (reviewed in [35]). The regional mutant 109–111A

plus a subset of the H109 mutants (H109A, H109E, H109R, and

H109F) were selected for these analyses based on their locations

relative to the lethal 109–111R mutant, and because of their

pronounced genetic phenotypes. Rates of 21 PRF were measured

using the L-A 21 PRF viral signal positioned between Renilla and

firefly luciferase genes such that firefly luciferase could only be

synthesized consequent to a 21 PRF event. Ratios of fusion

luciferase proteins were compared to a 0-Frame control with the

luciferase genes in frame with each other. Wild-type rates of 21

PRF were 6.07%60.16%, i.e. within the 4–8% range observed

using other ‘‘wild-type’’ strains in our laboratory of (see [34,36]).

Several mutants conferred statistically significant changes in 21

PRF, including 87–90R, 108–110R, H109E, H109R, and 114–

116R (Figure 3).

A recent kinetic analysis of 21 PRF suggests that this

phenomenon can occur at three different points during the

translation elongation cycle: one occurring when the E- and P-sites

are occupied by tRNAs prior to decoding the slippery site, and two

occurring while the P- and A-sites contain tRNAs, either during

accommodation or peptidyl transfer [37]. In contrast, Ty1

mediated +1 PRF only occurs when the A-site is empty [38].

Rates of +1 PRF were determined using a cis-acting signal

obtained from the Ty1 retrotransposon. In cells expressing wild-

type RPL11B, +1 PRF rates were 10.98% 60.30%. L11 mutants

109–111A, H109A, and 114–116R mutants conferred statistically

significant increases while H109R, and H109F promoted

statistically significant decreases in this measure of translational

fidelity (Figure 3).

Codon recognition occurs in the decoding center of the SSU,

and is another critical component of translational fidelity. While

paromomycin is used as a genetic probe for altered decoding

center function, measuring rates of both nonsense codon

suppression as well as missense incorporation of near cognate

amino acids offers a more precise quantitative analysis of changes

in decoding center fidelity. Suppression of a UAA stop codon

immediately upstream of the firefly luciferase gene was

0.137%60.003% in cells expressing wild-type L11. All strains

tested showed altered rates of nonsense suppression: the 109–111A

and H109E mutants all trended higher (,1.8–2.0 fold increases),

while H109A, H109R, and H109F all promoted increased

accuracy of UAA decoding. Missense rates were measured by

the incorporation of the near cognate tRNAArg at a mutant AGC

serine codon at amino acid 218 of the firefly luciferase reporter,

which rescues the activity of this enzyme. Missense rates for wild-

type were 0.074% 60.002, consistent with previous studies [35].

While the 87–90R and H109F mutants promoted wild-type levels

of missense incorporation, the remaining mutants all promoted

increased rates of missense suppression with 109–111A having the

Figure 3. The L11 B1 b/c bridge mutants affect translational fidelity. Isogenic yeast cells expressing either wild-type or mutant forms of L11B
were transformed with dual luciferase reporters and control plasmids and rates of translational recoding were determined. All results are graphed as
fold wild-type. 21 PRF was measured using the yeast L-A virus frameshift signal. +1 PRF was directed by the frameshift signal derived from the Ty1
retrotransposable element. Nonsense suppression measures the percentage of ribosomes suppressing an in-frame UAA termination codon
positioned between the Renilla and firefly luciferase reporter genes. Missense suppression rates evaluated near-cognate utilization of a tRNAArg tRNA
at an AGC serine codon at position 218 within the firefly luciferase gene. Error bars denote standard error. Asterisks above samples indicate
statistically significant changes as determined by t-test.
doi:10.1371/journal.pone.0020048.g003

L119s Role as an Informational Conduit
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highest at ,3-fold wild-type (Figure 3). Surprisingly, there did not

appear to be a strong correlation between nonsense or missense

suppression levels and growth defects induced by paromomycin.

While all three tests examine aspects of translational fidelity as it

pertains to the decoding center, there are clearly non-overlapping

mutational changes affecting each condition, suggesting the

decoding center is influenced by the L11 mutants in an indirect

or multifaceted manner.

B1b/c bridge mutants alter tRNA binding
Several regional arginine and H109 mutants were selected for

tRNA binding studies based on their strong genetic phenotypes.

Wild-type KD values for A-site tRNA were determined to be

97.6 nM 612.2 nM. While 109–111A, H109A, H109F, and 114–

116R mutant ribosomes did not affect this parameter, ribosomes

containing the 87–90R, 108–110R, and H109E mutants of L11

showed decreased affinities for A-site tRNA, with H109E

increasing its KD to the greatest extent (176.5 nM 616.3 nM)

(Figures 4A and 4B).

The KD of wild-type ribosomes for Ac-Phe-tRNAPhe in the P-

site was 72.3 nM 67.9 nM. Similar to A-site binding results, the

L11 109–111A and H109A mutants, as well as 108–110R did not

affect this parameter. Both the 87–90R and H109F L11 mutants

conferred higher dissociation constants for P-site tRNA (122.2 nM

69.3 nM, and 99.2 nM 65.0 nM respectively), while 114–116R

and H109E promoted lower P-site tRNA dissociation constants

(41.0 nM 610.1 and 42.8 nM 611.2 respectively) (Figures 4C

and 4D).

Ribosome structural conformations are influenced by the
B1b/c bridge

Selective 29-hydroxyl acylation analyzed by primer extension

(SHAPE) using the chemical probe 1 M7 [39,40,41] was utilized

to explore the role of the B1b/c bridge mutants on rRNA

conformation and the role of L11 as an informational conduit

between distinct regions of the LSU and SSU. SHAPE

modification incrementally modifies rRNA base sugar backbones

in proportion to their flexibility. Modified (solvent accessible and

flexible) bases are visualized as strong stops produced by reverse

transcriptase primer extension reactions relative to unmodified

samples. In this manner, changes in the levels of flexibility of

rRNA bases consequent to L11 mutations can be discerned using

Figure 4. The L11B mutants affect binding affinities for tRNAs. (A) Binding of tRNA to the A-site. Ribosomal P-sites were blocked with
tRNAPhe at 30uC, then incubated for 35 minutes with [14C]Phe-tRNA plus elongation factors and poly(U). 80 S-tRNA-poly(U) complexes were bound to
nitrocellulose filters and washed with binding buffer. Samples were read by radioactive scintillation counting. Curves were generated using GraphPad
Prism 4. (B) A-site tRNA binding KDs were determined using one site binding with ligand depletion equation. Error bars depict standard deviation. (C)
Binding of tRNA to the P-site. Ribosomes were incubated for 40 minutes at 30uC with dilutions of N-acetylated-[14C]Phe-tRNA and poly(U) and
processed as described for A-site binding. (D) KDs for P-site tRNA binding. Error bars depict standard deviation.
doi:10.1371/journal.pone.0020048.g004

L119s Role as an Informational Conduit
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SHAPE. As most ribosomal rRNA bases are naturally protected

from 1 M7, changes observed in comparing wild-type to mutant

ribosomes preferentially appeared as deprotections. In this study,

approximately one third of the ribosomal rRNA was interrogated

spanning the 5S, 25S, and 18 S rRNAs focusing on those regions

closest to L11, the A- and P-site tRNA binding pockets, the PTC,

and the decoding center (see Figure S3). Each mutant assayed for

tRNA binding was interrogated using SHAPE. The results are

shown in Figure 5. Consistent with their lack of effects on tRNA

binding, the 109–111A and H109A mutants did not show any

structural changes as compared to wild-type ribosomes. While

several changes were observed in the H109E and 114–116R

mutants, the 87–90R, 108–110R, and H109F mutants conferred

numerous changes in the structures of both 25S and 18 S rRNAs,

many of which were overlapping. These changes are collectively

mapped to both the 2- and 3-dimensional structures in Figure 6

and to individual 3-dimensional mutant ribosomes in Figure S4: all

of these bases along with their E. coli equivalents are listed in Table

S2. Examination of Figure 6 reveals that the majority of changes in

rRNA base modifications were concentrated in multiple regions of

both the large and small subunit rRNAs. In the large subunit,

rRNA structural changes mapped to five distinct regions: (A)

nucleotides located in the hairpin loop of Helix 84, which contacts

L11 (Figure S5); (B) bases located on top of the LSU tRNA binding

pocket including the hairpin loops of Helices 82 and 80, as well as

unpaired bases connecting Helix 82 with Helix 83, and flanking

Helix 88; (C) the hairpin loop of Helix 39, which interacts with 5S

rRNA and ribosomal protein L10; (D) numerous bases located in

the core of the PTC centered around A2820 (E. coli A2451); (E) the

H109F mutant promoted increased reactivity of U2827 – G2829,

both of which interact with the N-terminal extension of ribosomal

protein L10 [42] (Figure S6). In the small subunit, significant

changes in 1 M7 reactivity were observed in 18 S rRNA bases

C1465, C1467–C1470, and C1571, which are located between

the ribosomal protein S18 binding site [5] and the decoding center

(Figure S7). A number of individual bases relatively distantly

removed from the mutated B1b/c bridge region also displayed

altered protection profiles, including C827, U828, A974, U1380,

G1419, U1419, C1482, and C1485.

Discussion

Cryo-EM analyses show that empty ribosomes, such as were

used in the current study, are thermodynamically unconstrained at

physiological temperature and can freely assume ,50 distinct

ribosomal conformations [2]. The intersubunit ratcheting process

that occurs during translocation results in the most dynamic

changes in ribosome structure, with the head of the SSU and the

central protuberance of the LSU undergoing the largest

conformational changes [10,11,13]. The B1b/c bridge, which is

formed by L11 and S18, is at the center of this structural

rearrangement, and we hypothesize that this bridge may serve as a

conduit for the exchange of information among different

functional centers in both subunits. The L11 mutants analyzed

in the current study are useful not only for testing the hypothesis

that the bridge functions as a molecular yardstick by restricting the

B1b/c bridge movements to a 30Å conformational adjustment

[13], but also to map the allosteric information transmission

pathways within the ribosome.

Inspection of Figure 1A reveals that H84 of the LSU is nestled

in between two distinct structural elements of L11: the ‘‘L11 P-site

loop,’’ which helps the ribosome monitor the tRNA occupancy

status of the P-site [9], and the intersubunit bridge region. We

recently showed that binding of P-site tRNA to the ribosome

reduces the reactivity of H84 as quantified by SHAPE [9]. Local to

L11, deprotection of the H84 loop from chemical attack by the

108–110R and H109F mutants, which lie on the opposing side of

H84 relative to the L11 P-site loop, suggests that structural

changes occurring at the intersubunit B1b/c bridge can shift the

dynamic equilibrium of the L11 P-site loop to favor the ‘‘P-site

empty’’ state of the ribosome with H84 serving as the intermediary

between these two regions of L11 (Figure S5). Thus, the H84

structural changes induced by the mutants assayed in the current

study suggest that L11 and H84 work together to communicate

information pertaining to the tRNA occupancy status of the P-site

and the B1b/c bridge.

While L11 P-site loop mutants only conferred local changes in

H84 [9], the B1b/c bridge mutants had wider-ranging effects.

H84 forms the distal end of an L-shaped joint, the long axis of

which is comprised of Helices 83, 82, and 80. This axis frames the

top of the tRNA binding pocket in the LSU from the peptidyl-

tRNA T-loop over to the PTC. The observation of numerous

changes in the rRNA modification patterns along this axis (Figure

S6) suggests that H84 may play a critical role in transmitting

information pertaining to the status of the B1b/c bridge to the

PTC. However, since the 87–90R mutant caused similar

deprotections without affecting H84, deprotection of H84 cannot

be the only explanation for the subsequent deprotection of these

structures. Importantly, many of the mutants (87–90R, 108–110R

and H109F) promoted changes in the hairpin loop of H39. This

structure is contacted by ribosomal protein L10 (Figure S8) which

has been proposed to play an important role in coordinating tRNA

passage through the ribosome [42]. L10 in turn interacts with

many different partners, including bases in H89 that are involved

in formation of the aa-tRNA accommodation corridor, with the

peptidyl-tRNA in the PTC, and with 5S rRNA [5]. Importantly,

the chemical protection patterns of A2819 of the PTC and G2828

of H89 were also affected by the Y11C mutant of L10 [42], and

G2828 was similarly affected by mutants located in the N-terminal

extension region of ribosomal protein L3 [43], thus suggesting a

degree of molecular crosstalk between L11 located in the

intersubunit face of the central protuberance, and L3/L10 which

influence the elongation factor binding site on the LSU and the

PTC. Similarly, the protection/deprotection patterns of G2823

and U2827 were affected in ribosomes harboring the C2819U

mutant of 25S rRNA located in the PTC [44]. These shared

changes in rRNA chemical protection patterns suggest that, while

spatially remote, all of these different regions of the ribosome are

connected through specific ‘‘informational nodes’’ comprised of

specific bases of 25S rRNA.

5S rRNA has also been implicated in information exchange

through the LSU [45,46]. It is tempting to postulate the 5S rRNA

may also be involved in transmitting structural signals between

these two regions given its position between L11 on one end and

the L10-interacting 25S rRNA bases identified here on the other

end. While structural evidence for such a mechanism was not

detected in the current study, binding of the oligonucleotide used

in primer extension analyses and the presence of multiple strong

reverse transcriptase stops between nucleotides 1 and 20 limited

our interrogation to nucleotides 21–104 of this 121 nucleotide

molecule. Additionally, 1 M7 only probes for changes in the ribose

sugar, precluding visualization of structural changes affecting the

bases themselves. While studies using base-specific chemical

probes could potentially address this issue, the presence of a

flexible three-way junction in 5S rRNA may enable it to undergo

large conformational changes without breakage or formation of

new base pairs [47], rendering the detection of changes in 5S

rRNA structure opaque to chemical protection methods.

L119s Role as an Informational Conduit
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Chemical protection analyses also identified a cluster of changes

in the 18 S rRNA of the SSU, many of which were concentrated

in the region between S18 and the decoding center. These

observations indicate that disruptions to the LSU side of the B1b/c

bridge have effects on the rRNA structure of the SSU, suggesting

this as a pathway for information flow between the decoding

center located in the SSU, and functional centers located in the

LSU (Figures 6 and 7). These structural changes near the decoding

center may also explain some of the paromomycin and

translational fidelity effects previously observed. Taken as a whole,

rRNA bases affected by the L11 mutants analyzed in this study

allow us to begin to map the allosteric information exchange

pathways between the major functional centers of both the LSU

and the SSU that are linked through the B1b/c bridge. While

previous work has focused on the tRNA as a transducer of

signaling between the SSU and LSU [48,49] the structural studies

performed in this work were on ribosomes lacking tRNA. This

requires alternative pathways to explain the structural modifica-

tions visualized. While these observed structural changes might

purely reflect an altered preference for ribosomal architectures

related to subunit ratcheting, the lack of base changes in the neck

(h28) and penultimate stem containing the decoding center (h44)

argues for more direct causation of these clustered changes.

However, it should be noted (and is discussed below) that other

bases further isolated and away from L11 due support the

hypothesis that some level of ribosomal global conformation has

been affected by the B1 bridge mutations. In summary, we

propose that information flows through the B1b/c bridge from the

decoding center to the PTC utilizing S18, L11 and H84 across the

top of the tRNA binding pocket. This is modeled in Figure 7A.

A significant number of indirect base modification changes

were also observed in both ribosomal subunits. These include

Figure 5. L11 mutants promote local and distant changes in rRNA structure. (A)1 M7 SHAPE modification of 25S rRNA for wild-type and
mutant puromycin treated salt washed ribosomes. DMSO lanes are unmodified controls. Sequencing ladders are shown to the left of each panel. (B)
SHAPE modification for 18 S rRNA for same mutant ribosomes. All mutants were probed multiple times, and representative images are presented.
Only regions with consistent effects are displayed here.
doi:10.1371/journal.pone.0020048.g005
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A1102-A1103 in the LSU, and C827-U828, A974, U1380,

G1419, U1423, C1482, and C1485 in the SSU. With no obvious

physical connections between these bases or with the B1b/c bridge

region, their significance is difficult to ascertain. C827 and U828

are located in the eukaryotic specific expansion segment 6 (ES6).

This region of the 18 S rRNA forms an extended helix on the

solvent side of the SSU starting below the mRNA decoding

platform [8]. ES6 creates two eukaryotic specific intersubunit

bridges: eB11 at its tip, in conjunction with ES41 of the LSU, and

eB12 at its base, together with protein L19e. This suggests that the

changes in C827 and U828 1 M7 protection patterns caused by

the L11 mutants were either directly caused by conformation

changes in the eB12 bridge, or indirectly by alterations in the eB11

bridge [8]. One explanation for the indirect, long range effects of

the L11 B1b/c bridge mutants may be that changes in the

conformation of this bridge drive the empty ribosomes used in this

study into one or a preferred subset of conformational states. By

this model, the changes observed in rRNA structure represent

mutant-specific preferences for one or more of the ,50

conformational states, providing snapshots of the ribosome in

intermediate conformations, and bolstering the hypothesis that the

opposing electrostatic polar charges of the B1b/c bridge are

essential for maintaining the proper equilibrium of the ribosome as

a Brownian nano-machine, especially when tRNAs are absent.

Consistent with this, the most significant structural changes were

observed in the mutations that directly altered the amino acid side-

chain charge properties. For example, the only lethal mutant was

109–111R, while 87–90R, 108–110R, 114–116R, and H109E

mutants conferred significant changes in rRNA structure. Con-

versely, the neutral-charged mutations H109A and 109–111A had

Figure 6. Location of altered rRNA bases. (A) Location of altered bases in two dimensional structure of 25S rRNA, and (B) in the 18 S rRNA. (C)
Position of structural changes in three dimensional structure of the ribosome in two separate views. Light blue surface is large subunit rRNA, deeper
blue surface are proteins, 5S rRNA is purple, light gray surface is 18 S rRNA, darker gray are proteins. The E, P, and A site tRNAs are orange, black, and
deep blue respectively. L11 is in cyan, S18 in yellow, H84 plus extension is lime-yellow. Deprotected bases are shown as red spheres, while bases with
increased levels of protection are green spheres.
doi:10.1371/journal.pone.0020048.g006
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no discernable effects. This also indicates a significant degree of

redundancy built into the intersubunit L11-S18 bridge, as simply

voiding a portion of the charge was not sufficient to grossly affect

rRNA structure. While structural alterations were observed in

H109F, this may be due to the loss of the positively charged histidine

replaced by the addition of the bulky phenylalanine side-chain

which may inhibit the smooth gliding movement between L11 and

S18 during ribosome ratcheting.

Changes in ribosome structure impact its biochemistry. Due to

the unique rRNA modification profile of each mutant coupled

with multiple regions of overlap, it is not feasible to confidently

attribute any one set of rRNA structural changes to the specific

effects on tRNA affinities or drug sensitivities. However several

trends are worth noting. The 87–90R, 108–110R, and H109E

mutants all promoted increased KD values for aa-tRNA,

corresponding with modifications in the 18 S rRNA concentrated

around the decoding center. H109E conferred the most dramatic

structural changes in 18S rRNA, which corresponded with the

largest increase in A-site tRNA KD. These correlations suggest that

structural alterations near the decoding center may disrupt the

binding stability of the aa-tRNA. Additionally, these were the only

mutants that promoted increased protection of the 25S rRNA

bases A2819–A2820 in the PTC, perhaps adding to the instability

of the ribosome/aa-tRNA interaction at this site. Similarly,

widespread structural changes caused by the 87–90R, H109E,

and H109F mutants resulted in altered P-site tRNA dissociation

constants. In contrast, both the 109–111A and H109A mutants,

which did not have any discernable effects on rRNA structure, did

not affect tRNA binding.

Changes in the structure of the ribosome also impact its

function. As a gross monitor of translational fidelity, the Killer

assay revealed that the L11 mutants that most affected the charge

properties of the L11 side of the B1b/c bridge had the greatest

effects on Killer virus maintenance. For example, while the 87–

90R, 108–110R, and 114–116R mutants were all unable to

maintain the Killer virus, their alanine-mutant counterparts all

remained Killer+. Indeed, while most of the H109 mutants

maintained the Killer+ phenotype, including H109R which

retained a positive charge, H109E was Killer—. These observa-

tions loosely correlated with changes in 21 PRF, with the Killer+

109–111A, H109A, and H109F mutants all promoting wild-type

rates of 21 PRF. In contrast, the 87–90R, 108–110R, H109E,

and 114–116R mutants were all Killer— and displayed statistically

significant changes in rates of 21 PRF.

A wider examination of translational fidelity revealed numerous

mutant-specific effects, i.e. on 21 PRF, +1 PRF, and on the ability

of the ribosome to properly identify nonsense and missense

codons. Most of the mutants promoted increased rates of missense

suppression, which helps stabilize near-cognate codon:anti-codon

interactions [50]. In examining the general viability of the mutant

yeast strains, slow growth phenotypes observed at the optimal

temperature of 30uC were further aggravated by colder temper-

ature, while increased temperature partially corrected this defect

for most strains. Lower temperatures decrease entropy, thus

Figure 7. Models describing the B1 b/c bridge and its role in transmitting information between the ribosomal subunits. (A) Proposed
‘‘wiring diagram.’’ Overlaid arrows depict communication pathway connecting the decoding center (DC) in the SSU to the PTC in the LSU. Coloration
is identical to that used in Figure 6C. (B) Cartoon depicting how charge-charge interactions mediate transition of the B1 b/c bridge through an
orderly series of allosteric ratcheting states.
doi:10.1371/journal.pone.0020048.g007
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decreasing Brownian motion and intermolecular collision rates. In

contrast, entropy is greater at higher temperatures, increasing rates

of intramolecular unfolding. Thus, the cold-sensitive growth

phenotypes observed here suggest that these mutants affected

inter-molecular interactions, i.e. interactions between different

components of the ribosome, rather than the folding of L11 itself.

This is consistent with the widespread changes in rRNA structure

discussed above. While the least healthy strains tended to be those

affecting amino acid side-chain charge properties, particularly

exacerbated by the presence of paromomycin and anisomycin,

clearly other strains break these loose rules, and it is likely that

other, unknown factors contribute to the overall growth and health

of cells. Thus, we propose that the B1b/c bridge region of L11 acts

less like a digital ‘‘on/off’’ switch with respect to its role in

coordinating intersubunit ratcheting, but rather more like an

analog ‘‘rheostat,’’ potentially helping to guide the ribosome

through a series of distinct conformational states, depicted in

cartoon form in Figure 7B.

In sum, we propose that by tampering with the differentially

charged region of L119s B1b/c intersubunit bridge, we have

altered the ability of the ribosomal subunits to fluidly transition

between the pre- and post-ratchet states. This may be by

increasing the activation energy required to transit between states,

or by locking the ribosome in sub-optimal intermediate ratchet

states. These structural disruptions had cascading effects on both

ribosome biochemistry and on translational fidelity. In disrupting

this communication pathway we have identified several distinct

regions across the subunits linked with one another through the

B1b/c bridge. We have also provided the first experimental

evidence, to our knowledge, demonstrating the importance of

electrostatic charge interactions in the B1b/c bridge. Future

structural analyses of ribosomes arrested at different steps of the

translation elongation program will attempt to precisely correlate

specific defects in ribosome conformation with translational fidelity

and cell growth phenotypes. Additional studies will employ a

similar molecular genetics approach to explore this informational

pathway from the small subunit side through L119s protein partner

S18 and neighboring S15.

Materials and Methods

Detailed materials and methods were previously described in a

recent publication [9]. Work was conducted in Saccharomyces

cerivisiae strain JD1313 (MATa rpl11a::HIS3 rpl11b::HIS3 ura3–52

leu2D1 trp1D63 his3D200 Killer+ + YCpL11B URA3) in which

YCpL11B URA3 plasmid was replaced with wild type or mutant

RPL11B flanked by 59 and 39 wild-type UTRs episomally supplied

to the cell on a TRP1 CEN6 plasmid. Oligonucleotide primers

used for generation of L11 bridge mutants are listed in Table S3.

The published structures for the 70 S ribosome from E. coli (PDB

accession numbers: 2AVY, 2AW4; [3], as well as 80 S structures

from yeast (3JYV, 3JYW, 3JYX; [5,51]) were used in the analysis

of this work and the generation of figures. Published Thermus

thermophilus 70 S subunits containing A-site, P-site, and E-site Phe-

tRNA were also employed (1G1X [6]). All structures were

visualized and manipulated using MacPyMol software [52].

tRNAs were docked into the yeast ribosome using rpS18 as an

‘‘anchor’’ in a tRNAs+S18 object using S18 alignment feature of

PyMol. T. thermophilus S18 was then hidden for purposes of image

generation.

Temperature and drug resistance/sensitivity assays
Yeast were grown to mid log phase in H–tryptophan synthetic

deletion media (-Trp). Strains were set to equivalent OD595 values,

and cells were serially diluted 10-fold from 105 to 10 CFU per

2.2 mL and spotted on –Trp plates. Growth was monitored at

20uC, 30uC and 37uC, and pharmacogenetic assays utilized 2 mg/

ml paromomycin, 40 mg/ml anisomycin, or 30 mg/ml sparsomy-

cin incubated at 30uC for 3–5 days. Killer virus assays were

performed as previously described [29].

Translational Fidelity Assays
The dual luciferase reporter plasmids pYDL-control, pYDL-

LA, pYDL-Ty1, pYDL-UAA [34] and pYDL-AGC218 [35] were

utilized to quantitatively measure 21 PRF, +1 PRF, UAA codon

readthrough, and suppression of an AGC serine codon in place of

an AGA arginine codon in the firefly luciferase catalytic site

respectively. The in-frame control was pJD419, the L-A dsRNA

virus 21 PRF containing reporter was pJD420, and the Ty1

containing +1 PRF reporter was pJD421. Rates of nonsense

suppression were quantified as previously described [34] using the

in-frame control pJD419 and in-frame UAA containing reporter

pJD702. The missense reporter plasmid pYDL-AGC containing a

firefly luciferase 218 arginine codon (AGA) to serine (AGC) was

previously described [34,35]. Cells were grown in liquid SD media

to mid log phase (A595 = 0.8–1.5) and lysates were collected.

Samples were read in a TD20/20 luminometer using the Stop and

Glo dual luciferase kit (Promega). Both control and test lysates

were monitored in in triplicate in 6–12 independent experiments

per strain depending on the consistency of the data. Frameshifting

rates were calculated by taking the ratio of firefly to Renilla for

control and test reporters, then dividing the average test ratio by

the average control ratio to obtain the rates for each recoding

event. Results were analyzed using a t-test to determine statistical

significance compared to wild-type rates as previously described

[36].

tRNA binding
To monitor binding of aa-tRNA to the A-site, puromycin

treated salt washed ribosomes were pre-incubated with soluble

binding factors [53], polyuridine, and yeast tRNAPhe to block the

P-site, and were subsequently mixed and incubated at 30uC with

2-fold dilutions of yeast [14C]Phe-tRNAPhe. Complexes were

bound to and washed on nitrocellulose filters and tRNA binding

was determined by scintillation counting. Dissociation constants

were calculated using Graphpad Prism’s one site binding with

ligand depletion formula. P-site tRNA KDs were evaluated in a

similar manner with polyU primed puromycin treated salt washed

ribosomes incubated with varying concentrations of [14C]Ac-Phe-

tRNAPhe.

SHAPE structural analysis
Empty puromycin treated salt-washed ribosomes (50 pmol) were

resuspended in 200 ml of SHAPE buffer [80 mM Tris-HCl

pH 7.4, 100 mM NaCl 15 mM Mg(CH3COO)2] and incubated

for 10 minutes at 30uC. Samples were divided in half and either

10 ml of dimethylsulfoxide (DMSO) or 10 ml of 60 mM 1-methyl-

7-nitroisatoic anhydride (1 M7) was added to ribosomes. Samples

were incubated at 30uC for 20 minutes. Ribosomes were

precipitated, pelletted, and RNA was isolated using an Ambion

(Austin, TX) RNAqueousH-Micro RNA isolation kit. Samples

were resuspended at a concentration of 1 mg rRNA/7 ml in pure

water. HPLC purified oligonucleotide primers purchased from

IDT (Coralville, IA) used for structural analysis by SHAPE [41]

are listed in Table S4. Oligonucleotides were labeled with

c[32P]ATP using T4 polynucleotide kinase (Roche, Indianapolis,

IN), and purified from free radiolabeled nucleotides by passage

through a MicroSpin G-25 column (GE Healthcare, Piscataway,
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NJ). Primers were annealed to ribosomal RNA samples and

extended using Superscript III enzyme (Invitrogen Life Technol-

ogies, Carlsbad, CA). Samples were resolved through 8% urea-

acrylamide denaturing gels. Gels were dried and radiolabeled

samples were visualized by phosphorimagery. Reported RNA base

changes were independently assayed from 2 separate isolations of

ribosomal RNA and each reported base was analyzed 2–5 times

depending on overall quality of reads (lower quality reads being

repeated more) and overlap between adjacent RNA primers.

Representative results are provided for each base change in Figure 5.

Supporting Information

Figure S1 B1 bridge intersubunit charge motif. Cartoon

view of proteins L11, S18, and S15 with their intersubunit regions

shown as surface. Visible are the alternating charges within this

region. Coloration: gray is non-polar bases, green are polar, blue

are negatively charged, and red are positively charged.

(TIF)

Figure S2 Polysome and subunit profiles. Polysomes were

generated by 7–47% sucrose gradient fractionation of cyclohexi-

mide arrested ribosomes in cell lysate. The absence of halfmer peaks

to the right of 80 S and polysome peaks indicated no biogenesis

defects caused by the B1 bridge mutants. Subunit profiles were

generated in a similar fashion with the omission of cycloheximide

and inclusion of 500 mM KCl in the sucrose gradient.

(TIF)

Figure S3 Three-dimensional representation rRNAs
probed by SHAPE. Locations of 25S, 18S and 5S rRNA bases

within the 80S ribosome probed with 1 M7 and their relative

proximities to L11. Probed bases are shown in bright purple and

viewed from 2 angles.

(TIF)

Figure S4 Three-dimensional rRNA SHAPE changes for
each individual mutant. Two view angles for each mutant

ribosome. rRNA is shown as cartoon. Ribosomal proteins (except

for L11 in cyan and S18 in yellow) are omitted from individual

mutant diagrams. Coloration is the same as in Figure 6C.

(TIF)

Figure S5 Position of H84 altered bases relative to B1
bridge and P-site loop. SHAPE deprotected bases in mutants

108-110R and H109F are shown as red cartoons. L11 mutated

amino acids are shown as spheres.

(TIF)

Figure S6 SHAPE modified bases surrounding the tRNA
binding pockets. Viewed from the top of the large subunit

looking down, red sticks depict deprotected bases while green show

increased protection from 1 M7 modification. Mutated L11 amino

acids shown as teal spheres.

(TIF)

Figure S7 Clustered SHAPE changes between S18 and
decoding center. 2 views of deprotected (red) and protected

(green) bases shown as sticks. Mutated L11 bases shown as teal

spheres.

(TIF)

Figure S8 Position of ribosomal protein L10 relative to
nearby modified bases. Views from two separate angles show

L10 and the proximity of its loops to many of the base changes

observed in various L11 B1b/c bridge mutants. Red spheres

indicate bases with decreased protection/increased flexibility,

while green represent increased protection.

(TIF)

Table S1 Summary table of mutant phenotypes.

(DOC)

Table S2 Summary of chemical protection data.

(DOC)

Table S3 Oligonucleotide primers used in the generation of L11

mutants by site directed mutagenesis.

(DOC)

Table S4 Oligonucleotides used for primer extension in SHAPE

analyses.

(DOC)
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