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Abstract

The coastal waters off the southeastern United States (SEUS) are a primary wintering ground for the endangered North
Atlantic right whale (Eubalaena glacialis), used by calving females along with other adult and juvenile whales. Management
actions implemented in this area for the recovery of the right whale population rely on accurate habitat characterization
and the ability to predict whale distribution over time. We developed a temporally dynamic habitat model to predict
wintering right whale distribution in the SEUS using a generalized additive model framework and aerial survey data from
2003/2004 through 2012/2013. We built upon previous habitat models for right whales in the SEUS and include data from
new aerial surveys that extend the spatial coverage of the analysis, particularly in the northern portion of this wintering
ground. We summarized whale sightings, survey effort corrected for probability of whale detection, and environmental data
at a semimonthly resolution. Consistent with previous studies, sea surface temperature (SST), water depth, and survey year
were significant predictors of right whale relative abundance. Additionally, distance to shore, distance to the 22uC SST
isotherm, and an interaction between time of year and latitude (to account for the latitudinal migration of whales) were also
selected in the analysis presented here. Predictions from the model revealed that the location of preferred habitat differs
within and between years in correspondence with variation in environmental conditions. Although cow-calf pairs were
rarely sighted in the company of other whales, there was minimal evidence that the preferred habitat of cow-calf pairs was
different than that of whale groups without calves at the scale of this study. The results of this updated habitat model can
be used to inform management decisions for a migratory species in a dynamic oceanic environment.
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Introduction

The North Atlantic right whale (Eubalaena glacialis) is highly

endangered, and although it has received protection from the

Endangered Species Act of 1973 and the Marine Mammal

Protection Act of 1972, the species remains well below its optimum

sustainable population level [1]. Threats to the recovery of this

species include entanglement in fishing gear and collisions with

ships [2]. Effective management decisions, and assessing risk of

injury and mortality from these threats, require knowledge of right

whale habitat preferences to identify areas where whales are likely

to occur.

Western North Atlantic right whales occupy nearshore habitats

of North America, with their primary feeding grounds from spring

through autumn off the coast of New England and eastern

Canada. The coastal waters off the southeastern United States

(SEUS), however, have been identified as their primary calving

grounds, with cow-calf pairs and some juveniles and adults

occupying the waters off Florida (FL) and Georgia (GA) during

winter months (December–March) [3]. Several management

measures have been established in the SEUS due to threats from

human activities in this region, especially the risk of ship strikes

from the high volume of shipping traffic associated with the ports

of Jacksonville, FL, Fernandina, FL, Brunswick, GA, and

Savannah, GA. Measures designed to reduce the likelihood of

ship collisions with right whales in high-risk areas include a

mandatory ship reporting system, seasonal management areas

with ship speed restrictions, recommended transit lanes for large

ships, and aerial surveys during the calving season (Figure 1). In an

effort to enhance protection measures for North Atlantic right

whales, aerial surveys in the SEUS have been supported since the

early 1990s by a collection of agencies, including the National

Oceanic and Atmospheric Administration National Marine

Fisheries Service (NOAA Fisheries), the US Coast Guard, the

US Navy, and the US Army Corps of Engineers. As part of that

effort, a multiagency, coordinated survey network, termed the

Early Warning System (EWS), has been in place since the 1993/

1994 calving season [4]. The level of effort varied in the early

surveys, but a core survey area off the Florida-Georgia border was

regularly flown [5]. In 2003 EWS survey lines were modified as
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depicted in Figure 1 to provide consistent coverage of nearshore

waters from Butler Beach, FL (29.76u N) to Sapelo Sound, GA

(31.56u N). A primary objective of these surveys is to locate right

whales in the area and relay this information to mariners; other

objectives include monitoring population vital rates and human-

related injuries with the aid of photo identification and charac-

terizing whale habitat use and distribution. Additional surveys off

South Carolina and northern Georgia (SC-GA) were implemented

in the 2004/2005 calving season (Figure 1) with similar objectives,

providing coverage from Sapelo Sound, GA (31.56u N) to North

Myrtle Beach, SC (33.82u N).

Effective management actions rely on the ability to know where

and when right whales are likely to occur, yet the boundaries of

management areas are typically static in time and space, while

whale distribution varies spatially and temporally in response to

dynamic environmental conditions [6,7]. Additionally, right whale

distribution changes seasonally as whales migrate between

wintering grounds in the SEUS and feeding grounds at higher

latitudes. If whale distribution can be modeled and predicted from

environmental variables and behavioral patterns, management

strategies can be developed that take into account system

variability and uncertainty. Several predictive habitat models have

been developed for the right whale wintering grounds in the SEUS

[5,8,9,10]. However, these models did not analyze the most

current survey data, including surveys with more consistent

protocols (see Methods) and data from the recent SC-GA surveys,

which have significantly expanded coverage in the northern

section of the wintering ground. Accurate inferences from species

distribution models are frequently limited to the extent (spatial,

temporal and environmental) of the input data (e.g., [11]), and

development of these models, particularly for rare and endangered

species, should be an iterative process validated and informed by

newly available data [12,13]. Right whale abundance (sighting

rates) observed during more recent surveys in the northern portion

of the wintering ground was not consistent with predictions from

previous models. Additionally, none of the previous right whale

habitat models for the SEUS accounted for latitudinal migration

patterns or for differences in the probability of whale detection due

to variable platforms (type of plane) and survey conditions, as has

been done in other studies (e.g., [14]).

In this study, we characterized right whale habitat in the SEUS

using generalized additive models (GAMs) to relate whale sightings

from aerial surveys to static and dynamic environmental variables.

We modeled the occurrence (presence-absence) and relative

abundance of whales using a hurdle model. We analyzed recent

survey data (from 2003/2004 through 2012/2013), with spatial

coverage ranging from southern Florida through South Carolina.

Our model was developed at a two-week temporal resolution, and

it included survey effort, adjusted for survey platform and sea state,

and inter- and intra-annual effects as covariates. We generated

predictions from this model, and the results demonstrate that right

whale distribution varies within and among years. Additionally, we

compared environmental conditions for sightings with a calf

present to those without calves to determine whether cow-calf

pairs utilize habitat that is different from other whales that migrate

to the SEUS.

Methods

Ethics Statement
Whale surveys were conducted under permits #0594-1467,

#594-1759-00 and #15488 issued to the Georgia Department of

Natural Resources and permits #655-1652 and #14233 issued to

Scott Kraus (New England Aquarium) by NOAA Fisheries. All

research protocols were reviewed by NOAA’s Office of Protected

Resources and complied with the Endangered Species Act and the

Marine Mammal Protection Act.

Aerial Surveys
Aerial surveys for right whales have been conducted in the

SEUS during the right whale calving season (December–March)

since 1991, but effort intensity and spatial coverage have varied

considerably among years outside of a core EWS area [5]. We

analyzed survey data from 2003/2004 through 2012/2013 for this

study because survey methods were standardized and the location

of EWS transect lines was consistent during these seasons.

Sightings and effort data for these surveys were provided by the

North Atlantic Right Whale Consortium [15]. Since 2003/2004,

EWS surveys have been flown along fixed track lines running east-

west, spaced 3 nautical miles (5.56 km) apart, and extending 24–

34 nautical miles (44–63 km) offshore (Figure 1). Surveys were

conducted from a Cessna 337 Skymaster or a de Havilland DHC-

6 Twin Otter aircraft with a target altitude of 1000 ft (305 m).

EWS surveys were designed to be flown daily during the calving

season and complete the defined survey track lines, dependent

upon weather conditions and aircraft availability. The SC-GA

surveys began in 2004/2005 using Skymaster aircraft and the

same data-collection protocols as in EWS surveys but with

dedicated track lines running east-west and spaced 3 nautical

miles (5.56 km) apart in the southern portion of the survey area

and running northwest-southeast and spaced approximately 4

nautical miles (7.52 km) apart in the northern portion (Figure 1).

Additional coastal (‘‘Florida nearshore,’’ sensu [5]) surveys south of

these track lines were flown in some years. Most effort during

coastal surveys was within 10 nautical miles (18.5 km) off and

parallel to the shoreline (generally in a north-south direction).

During aerial surveys, one observer on each side of the aircraft

searched for right whales, and a computer program was used to

automatically record geographic location (latitude, longitude, and

altitude) obtained from the aircraft’s GPS every 10–30 seconds.

Environmental conditions (sea state, visibility, weather) were

recorded at the beginning of the survey and updated as conditions

changed. When a right whale was observed, the aircraft deviated

from the designated track line to approach the sighting location.

Whale locations were recorded as the GPS location when the

aircraft flew directly over the whale. After recording the behavior

and number of whales and obtaining photographic documenta-

tion, the aircraft returned to the designated track line to resume

survey.

Survey Data Processing
Data recorded during each flight from all EWS, SC-GA, and

coastal surveys were entered into a GIS (ArcGIS version 10.0, Esri

Inc., Redlands, CA), and the equidistant Universal Transverse

Mercator (UTM) projection was used for data analysis. We filtered

survey data to only include portions considered ‘‘on-effort’’: sea

state #3 (Beaufort scale), altitude #365 m, visibility $3.7 km, and

flying along a designated track line (i.e., not in transit or circling a

whale). Whale sightings were considered on-effort if that was the

survey status at the time of the initial sighting. We removed all

verification survey sightings and their associated effort (i.e., surveys

conducted to locate and verify a reported whale sighting) and all

duplicate sightings (i.e., whales already sighted on the same survey,

as verified by photo identification). Each segment of a flight path

was buffered on both sides with an effective search width,

according to survey platform and sea state, to estimate the

searched area. To determine effective search widths, perpendic-

ular sighting distances were calculated from survey track lines and

Right Whale Wintering Ground Habitat Model
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right whale sighting locations [16], and the multiple-covariate

distance sampling (MCDS) engine in Distance 6.0 software was

used to model detection probabilities [17]. Separate detection

functions were created for each survey platform (Skymaster and

Twin Otter aircrafts) using sea state as a covariate in MCDS,

resulting in distinct effective search widths (range = 1.3–2.2 km)

for each platform/sea state combination. Because the Skymaster

has flat windows resulting in a blind spot beneath the aircraft, a

section corresponding to 0.186 km (unpublished field data) on

both sides of the flight path was removed from the estimated

searched area for surveys from this platform. The Twin Otter had

no blind spot because it has bubble windows that allowed

observers to search directly under the aircraft.

A composite sampling grid for the study area was constructed to

accommodate disparities in track line spacing and orientation,

consisting of 5.56265.56-km cells oriented east-west in the south

and 7.52267.52-km cells oriented northwest-southeast in the

north (Figure 2). We overlaid the sampling grid onto the study area

Figure 1. Aerial survey track lines for right whales in the southeastern United States. Transect lines are from the Early Warning System
(EWS) and South Carolina/Georgia (SC-GA) survey areas. Critical habitat and seasonal management area boundaries are included for reference.
doi:10.1371/journal.pone.0095126.g001
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so the track lines bisected the grid cells, allowing all survey effort

within a cell to be associated with a single track line. Because

whale sightings were so rare, we aggregated all survey and

environmental data into the grid cells at a semimonthly

(approximately 2 week) temporal resolution–either the 1st through

the 15th day of a month (A) or the 16th through the last day of a

month (B)–to increase the number of records with whale presence,

while maintaining a time frame with relatively stable environ-

mental conditions. Thus each survey year consisted of eight

semimonthly periods (December A through March B). Each cell

summarized over a semimonth is hereafter considered a sampling

unit. For each semimonth, the searched area (km2) from all surveys

during that period was summed within each grid cell and used as

the measure of survey effort. Two sampling units (survey effort .

340 km2) were identified as outliers on a Cleveland dotplot [18]

and were excluded from analysis.

Environmental Data
Geographic locations (UTM easting and northing) were taken at

the center point of each grid cell. Distance to shore was calculated

as the distance between the center point of each cell and the high-

resolution NOAA composite shoreline GIS layer (http://shoreline.

noaa.gov). Bottom depth data were obtained from the 30-arc-

second-resolution data set of the General Bathymetric Chart of the

Oceans (http://www.gebco.net). Depth was calculated as the

mean bottom depth of all values within each grid cell; cells with

mean depth above sea level or deeper than 70 m (22 sampling

units considered outliers) were excluded from analysis. Bottom

slope (degrees) was derived from bathymetric data using Spatial

Analyst in ArcGIS and was also summarized as the mean of values

within each cell. Sea surface temperature (SST) was derived from

Advanced Very High Resolution Radiometer (AVHRR) 1.47-km-

resolution imagery from NOAA’s CoastWatch data set (http://

cwcaribbean.aoml.noaa.gov/data.html) for the East Coast South

region. Within each semimonth all available daily images with

minimal cloud cover were downloaded (mean = 8.1 images), image

pixels with cloud interference were removed, and the semimonthly

mean SST was calculated at each pixel. SST for a sampling unit

was calculated as the mean of all semimonthly mean SST 1.47 km

pixels within each cell. The potential environmental predictors

mentioned above were chosen based on previous studies of right

whales in the SEUS [5,8,9,10]. Additionally, the semimonthly

mean SST data were used to estimate the location of the 22uC
SST isotherm (Spatial Analyst in ArcGIS 10.0); this isotherm was

chosen because 22uC is at the upper SST range for right whales in

this region [5] and can be used as a proxy for the Gulf Stream

boundary in winter [19]. Distance from this isotherm was

calculated from the center point of each grid cell; distances for

sampling units with SST .22uC were set as negative values,

indicating that a cell was east or south of the isotherm.

Model Framework
GAMs were used to relate the number of right whale sightings

to possible predictor variables. GAMs are extensions of general-

ized linear models (GLMs) that allow for smooth, nonlinear

functions of predictor variables determined by observed data

rather than by strict parametric relationships [20,21]. Like GLMs,

GAMs use a specified error distribution for the response variable

and a link function to relate the response variable to the predictor

variables. Because the response variable, number of sighted

whales, was overdispersed and zero-inflated due to the large

number of sampling units (96%) with no sightings, we used a

hurdle model [22]. A hurdle model consists of two steps: modeling

presence-absence with a binomial distribution, and then modeling

positive abundance, conditional on presence. Hurdle models are

therefore useful for modeling zero-inflated data and allow the

modeled process which determines presence to differ from the

process which determines abundance [22]. We first used a

quasibinomial distribution (to deal with excessive number of

zeros) with a logit link to model presence-absence from all data.

We then used a gamma distribution with a log link to model the

number of whales from sampling units with whale sightings [23].

Predicted relative abundance can be calculated by multiplying the

probability of occurrence, derived from the first model, by the

expected number of whales, derived from the second model.

Often, models of count data from wildlife surveys include effort as

Figure 2. Aerial survey effort and right whale sightings in the southeastern United States. Values represent cumulative area surveyed (A),
cumulative number of whales sighted (B), and number of whales sighted divided by area surveyed (C) per grid cell between December 2003 and
March 2013 while observers were on-effort.
doi:10.1371/journal.pone.0095126.g002
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an offset term, assuming this variable as a linear predictor with a

coefficient equal to one [21]; our data, however, did not meet this

assumption (see Results), and we included effort as a smoothed

covariate. GAMs were constructed using the R statistical software

(version 3.0.1) with the mgcv package (version 1.7-24; [24]). The

mgcv package determines the appropriate degrees of freedom (df)

and smoothing for each predictor variable by minimizing the

generalized cross validation (GCV) score [21]. To avoid overfitting

by the model and to limit complexities of the smoothing function

to an ecologically interpretable relationship, we set the basis

dimension parameter to 3, thereby limiting the maximum df for

each term to 2 (e.g., [25,26]).

The response variable for the hurdle model was the total

number of right whales sighted in each sampling unit. An

individual whale could have been sighted multiple times within the

same semimonth, and we did not correct for availability bias (e.g.,

whales submerged at time of survey); therefore, our model is

representative of the relative spatial distribution of whales rather

than absolute abundance or density. Possible predictor variables

included depth, distance to shore, SST, distance to the 22uC
isotherm, and survey effort. Survey year was included as a factor

variable to account for inter-annual variation in the total number

of right whales in the SEUS, and the interaction between northing

and semimonthly period was used to account for intra-annual

shifts in distribution resulting from the timing of the whale

migration. Easting was ultimately excluded as a predictor variable

in favor of more informative environmental variables with which it

was correlated. Slope was also excluded because all survey effort

occurred on the continental shelf within a narrow range of values

(0.01–1.29u), and it was consistently found to be the least

significant term in a stepwise selection (see Table S1). Although

collinearity was present among some of our explanatory variables,

its impact was minimized by removing easting and slope to reduce

variance inflation factors for the remaining predictors to ,4.8

[27], employing penalized regression splines with shrinkage in the

mgcv package to estimate smoothing functions [28,29], and

limiting model predictions to the range of sampled data [29].

Model Selection and Validation
Model selection was accomplished with a forward stepwise

selection procedure, using the following evaluation criteria: model

GCV scores, percentage of deviance explained, and analysis of

deviance tests. Starting with a null model, each term was added

individually; the term resulting in the lowest GCV score was

included in the next step. At each step, analysis of deviance was

used to determine whether increasing model complexity with the

addition of the selected term significantly improved the model. A

term was not included in the final selected model if the confidence

interval for the fitted response included zero for all observed values

of the term or if the model at the previous step (which did not

contain the term) had a lower model GCV score [24].

A five-fold cross-validation was used to evaluate each candidate

model’s performance in predicting novel data [30]. Model training

was based on a random subset of 80% of the data and used to

predict the validation subset (remaining 20%). Average squared

prediction error (ASPE) was calculated from the predicted and

observed number of whales sighted in the validation subset. This

cross-validation was run five times, and the mean ASPE was

calculated for each model to assist in model selection. Final

specification of the selected best model used to estimate smoothing

functions and create prediction maps was based on the complete

data set.

Spatial autocorrelation in species distribution models can be

problematic because it violates the assumption that residuals are

independently distributed. We examined whether spatial autocor-

relation was present by calculating Moran’s I of deviance residuals

of predicted relative abundance for all 80 semimonths (8

semimonths/year 610 years) using the R-package spdep (version

0.5-56; [31]). Moran’s I was calculated as a global statistic,

considering all grid cells as neighbors, with an inverse distance

weighting such that nearby grid cells exerted greater influence.

Moran’s I ranges from 21 (perfect negative correlation) to +1

(perfect positive correlation), with values near 0 indicating no

spatial autocorrelation present.

Segregation of Calves
Studies of baleen whales, including southern right whales

(Eubalaena australis), indicate that cows with calves may prefer

environmental features different from those used by other

demographic groups on wintering grounds [32,33], and it has

been suggested that cow-calf pairs receive fitness benefits by

segregating themselves from the harassment of other whales [34]

or by avoiding areas with more predators [8]. We therefore

compared environmental variables (depth, distance to shore, SST,

distance to the 22uC isotherm, and UTM northing) at locations of

sightings with calves present to those without calves. For this

analysis, we overlaid exact sighting locations on the original

environmental GIS layers (not the sampling grid) to maximize

resolution for each variable. SST values were estimated only for

sightings that occurred on days for which SST images were

available and at locations free of cloud interference. Isotherms

were constructed as stated above, based on semimonthly mean

SST data. We excluded all sightings that were not on-effort or

those with an estimated depth above sea level due to data

precision. Sightings were classified based on the presence of a calf,

pooled across years, semimonths, and levels of survey effort, and

compared using a Mann-Whitney test. Due to the potential effect

of migration timing, we tested for differences in UTM northing in

each semimonthly period using a series of pair-wise comparisons

with sequential Bonferroni correction [35].

Results

A total of 2191 surveys was flown in the EWS and SC-GA areas

from December 2003 through March 2013, resulting in sightings

of 3286 right whale groups and 7369 whales (not unique

individuals, as some whales were resighted within and between

seasons) while on-effort. The greatest concentration of both survey

effort and sightings occurred in the EWS area near the coast of

northern Florida and southern Georgia (Figure 2). A total of 56143

sampling units, containing 3104 sightings of 6953 whales, was

retained for analysis after removing statistical outliers and those

with missing SST values due to cloud interference.

Occurrence Model
For the presence-absence model, the GAM stepwise selection

procedure yielded higher explained deviances, lower GCV scores,

and lower ASPE values at each step, signifying that models had a

better fit as complexity increased (Table 1, Table S1A). This

finding was supported by analysis of deviance tests at each step; the

more complex models were consistently identified as the most

parsimonious despite having more parameters (Table S2A). The

selected best model included seven predictor variables as

significant (survey effort, SST, distance to the shoreline, bottom

depth, interaction between semimonthly period and UTM

northing, survey year, and distance to the 22uC SST isotherm)

and explained 22.8% of the total deviance (Table 1). This model

had the lowest ASPE values for all validation data sets,

Right Whale Wintering Ground Habitat Model
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demonstrating its superior ability to predict the spatial distribution

of right whales from novel data in the study area.

Smoothing functions for all terms in this model indicated

nonlinear relationships and were consistent with the locations of

sightings from the surveys. As expected, the probability of a right

whale sighting increased with increasing survey effort but leveled

off when effort was .250 km2 (Figure 3A); this result supports our

decision to model survey effort as a smoothed covariate rather

than as an offset term. The SST for sampling units with a right

whale present ranged from 9.0 to 22.6uC, with a mean (6 SE) of

14.7uC (60.04). The GAM predicted the highest probabilities

between 12 and 16uC (Figure 3B). Right whales were more likely

to be sighted close to shore, particularly within 25 km of the coast

(Figure 3C), and at intermediate depths, between 10 and 25 m

(Figure 3D). Generally, sightings occurred in cooler waters far

from the 22uC isotherm, with only one sighting made south or east

of this isotherm. However due to the proximity of the Gulf Stream

to shore, especially in the southern portion of the study area,

whales were limited by land to a maximum distance from the 22uC
isotherm, and the response to this variable reached a plateau near

this distance (Figure 3E). The interaction term between semi-

month and northing was remarkably useful for capturing temporal

shifts in distribution due to right whale migration in and out of the

SEUS. Consistent with sighting data, the GAM predicted the

highest probability of a whale sighting in January and February.

Across all semimonthly periods, sighting rates were highest in

intermediate northings of our study area, between latitudes of

approximately 29.5 and 31.0uN. The interaction of these

variables, however, demonstrated that whales occur in more

northerly areas as they arrive at the beginning of the calving

season in December, shift farther south in the middle of the season

in January and February, and return north as they depart from the

SEUS in March (Figure 3F). Survey year was also a significant

predictor variable, as some years (e.g., 2007/2008 and 2008/2009)

had higher sighting rates than others (Figure 3G, Table S3).

Abundance Model
For the positive abundance model, the selected best model

included six predictor variables as significant (SST, distance to the

shoreline, distance to the 22uC SST isotherm, bottom depth,

interaction between semimonthly period and UTM northing, and

survey year) and explained 12.2% of the deviance for the presence-

only data (Table 2). Adding survey effort increased the GCV score

and did not significantly decrease the explained deviance for

modeling the number of whales (Table S1B, Table S2B), so this

term was excluded from the model.

The range of training data for the positive abundance model

included only data from sampling units with whale sightings

present, and the response for this model is the expected number of

sighted whales per sampling unit, given whale presence. In

general, smoothing functions in this model were similar to those in

the presence-absence model, with more whales likely in sampling

units with intermediate SST (Figure 4A), close to shore (Figure 4B),

and in cooler waters far from the 22uC isotherm (Figure 4C). More

whales were predicted, although with high uncertainty, near the

upper limit of depth values with whales present (Figure 4D).

Survey year was again significant, although the likelihood of

multiple whales sighted in a sampling unit for a given year did not

necessarily correspond with the overall sighting rate or probability

of occurrence (Figure 4E, Table S3). Of the sampling units with

whales present, multiple whales were more likely in sampling units

at southerly northings and when whale densities were greatest,

from late January through late February (Figure 4F). Smoothing

functions for the positive abundance model generally had a higher

standard error than those for the presence-absence model due in

part to the smaller sample size.

Model Predictions
The final, combined hurdle model was successful at predicting

the number of observed whales, as deviance residuals were overall

close to zero (mean 6 SE =20.21960.003). However, examina-

tion of the model residuals revealed that, in general, the model

tended to overpredict when whales were not sighted (i.e.,

predicting whale occurrence in sampling units with no whales

observed) and underpredict when whales were sighted. For

sampling units where no whales were sighted, the mean observed

number of whales – the mean predicted number of whales = 0–

0.106. For sampling units where whales were sighted, the mean

observed number of whales – the mean predicted number of

whales = 3.027–0.524. Excluding the last semimonthly period

from March 2013, we found no evidence for spatial autocorre-

lation of the residuals during any of the semimonthly periods, as all

Moran’s I values approximated zero (mean = 0.030, range =2

0.002 to 0.158). Moderate spatial autocorrelation was observed for

late March 2013 (Moran’s I= 0.376), although no sightings were

made during this semimonth and all residuals were thus negative.

Using the selected hurdle model, we created hindcasts

predicting the spatial distribution of whales for all semimonthly

periods in the study. With the predict.gam function in the mgcv

Table 1. Summary of stepwise selection procedure for presence-absence model of right whales in the southeastern US.

Model % Deviance GCV mean ASPE

null 0 0.3417 0.0392

s(SemiMonth:Northing) 10.3 0.3065 0.0377

s(SemiMonth:Northing)+s(DistToShore) 15.7 0.2882 0.0364

s(SemiMonth:Northing)+s(DistToShore)+Year 18.8 0.2777 0.0352

s(SemiMonth:Northing)+s(DistToShore)+Year+s(Effort) 20.9 0.2706 0.0345

s(SemiMonth:Northing)+s(DistToShore)+Year+s(Effort)+s(SST) 22.3 0.2658 0.0342

s(SemiMonth:Northing)+s(DistToShore)+Year+s(Effort)+s(SST)+s(Depth) 22.6 0.2647 0.0340

s(SemiMonth:Northing)+s(DistToShore)+Year+s(Effort)+s(SST)+s(Depth)+s(DistTo22Iso) 22.8 0.2642 0.0340

Predictor variables include interaction between semimonthly period and UTM northing, distance to the shoreline (DistToShore), survey year, survey effort, sea surface
temperature (SST), bottom depth, and distance to the 22uC SST isotherm (DistTo22Iso). Smoothed covariates indentified by ‘‘s()’’. Evaluation criteria include the
proportion of deviance explained, generalized cross validation score (GCV), and mean average squared prediction error (ASPE) from a five-fold cross-validation.
doi:10.1371/journal.pone.0095126.t001
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package, the observed values for predictor variables (except survey

effort) in all grid cells were used to generate the predicted and

standard error estimates for probability of a whale sighting and

number of whales sighted from the first and second steps of the

hurdle model, respectively. Predicted relative abundance was then

calculated by multiplying the probability of occurrence by the

expected number of sighted whales. For these predictions, survey

effort was set constant for all grid cells (at 250 km2, near which the

smoothing function for the presence-absence model reached a

plateau) to eliminate the confounding effect of variable survey

effort on number of sightings. We did not extrapolate our results or

predictions outside the range of our sampled data (e.g., where

depth was .70 m, the maximum value in our training data), nor

did we make predictions for cells with missing data (e.g., where

SST data were lacking due to cloud interference). For illustrative

purposes, we have included prediction maps for the first 15 days of

each month for the 2009/2010 and 2011/2012 seasons (Figure 5).

In general, sea surface temperatures were near average in

December 2009 but colder than average for the remainder of

the 2009/2010 season (Figure S1), and this season had interme-

diate sighting rates relative to other years in our data set

(Figure 3G, Table S3). In contrast, the 2011/2012 season was

warmer than average (Figure S1) and had low observed sighting

rates relative to other years in our data set (Figure 3G, Table S3).

Consistent with the smoothing functions and observed sightings

from surveys, the greatest concentrations of predicted whale

sightings for all semimonths occurred close to shore, in the

relatively shallow and cooler waters west of the Gulf Stream

(Figure 5). High predicted sighting rates were more common and

distributed farther south in January and February than in

December and March (Figure 5). Because 2009/2010 had a

greater partial effect for the year term (Figure 3G), this season had

higher predicted sighting rates overall compared to 2011/2012

(Figure 5). Notably, areas within the SEUS with the highest

predicted number of whales were located farther south in a cold

year (2009/2010; e.g., Figure 5B) compared to a warm year (2011/

2012; e.g., Figure 5F). The presence-absence model seemed to

drive the pattern for predicted relative abundance (Pearson

correlation coefficient between predicted probability of presence

and predicted relative abundance = 0.98); standard errors were

generally larger for cells with high predicted probability of

occurrence.

Segregation of Calves
Of the total 3286 sightings, 1344 (41%) were of unaccompanied

cow-calf pairs and 1919 (58%) were sightings without calves (i.e.,

juveniles, adult males, non-calving adult females, pregnant

females, and females that had lost a calf that year). The remaining

1% of sightings was composed of a calf by itself (6), two cow-calf

pairs in close association (4), or a cow-calf pair accompanied by

other individuals (13). We were able to extract SST data for 459

sightings with a calf present and 675 sightings with a calf absent,

and all other environmental data for 1349 sightings with a calf

present and 1907 sightings with a calf absent. Sightings with a calf

present were made in locations significantly shallower and closer to

shore and tended to occur in warmer water than sightings without

calves, although the differences were small and there was extensive

overlap in the range of values between group types (Table 3).

Distance to the 22uC isotherm did not differ significantly among

groups (Table 3). UTM northing did not differ significantly

between groups with or without calves for any semimonthly period

except the first period in December, when sightings without calves

occurred farther north (p,0.01; Figure 6).

Discussion

In agreement with previous studies, our results indicate that

GAMs are a useful tool for relating cetacean distribution to

environmental variables and predicting cetacean occurrence and

relative density based upon those variables [26,36]. The develop-

ment of a GAM, along with the ability to collect environmental

data via remote sensing and to apply GIS processing techniques,

permitted us to interpolate our results and estimate relative

abundance of right whales, with associated standard error, in

regions of our study area not sampled by aerial surveys. The

flexibility of GAMs allowed right whale encounter rates to be

modeled as a complex, nonlinear response to predictor variables,

and a hurdle model approach allowed us to deal with zero-inflated

data from surveys of a rare species summarized at a high spatial

resolution. By using dynamic predictor variables and accounting

Figure 3. Smooth functions of predictor variables for presence-absence model of right whale sightings. Predictor variables include
survey effort (A), sea surface temperature (B), distance to the shoreline (C), bottom depth (D), distance to the 22uC isotherm (E), interaction between
semimonthly period and UTM northing (F), and partial effects for survey year (G). The y-axis is on the scale of the linear predictor, and dashed lines
indicate 62 standard errors. Estimated degrees of freedom for each smoothed variable are in parentheses on the y-axis; tick marks on the x-axis
indicate all sampled values.
doi:10.1371/journal.pone.0095126.g003

Table 2. Summary of stepwise selection procedure for positive abundance model of right whales in the southeastern US.

Model % Deviance GCV mean ASPE

null 0 0.4534 8.284

s(SemiMonth:Northing) 6.5 0.4261 7.981

s(SemiMonth:Northing)+Year 10.2 0.4126 7.842

s(SemiMonth:Northing)+Year+s(SST) 11.2 0.4082 7.822

s(SemiMonth:Northing)+Year+s(SST)+s(DistTo22Iso) 11.7 0.4066 7.819

s(SemiMonth:Northing)+Year+s(SST)+s(DistTo22Iso)+s(DistToShore) 11.8 0.4065 7.820

s(SemiMonth:Northing)+Year+s(SST)+s(DistTo22Iso)+s(DistToShore)+s(Depth) 12.2 0.4054 7.807

Predictor variables and abbreviations same as in Table 1.
doi:10.1371/journal.pone.0095126.t002
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for migration patterns, we were able to model changes in whale

distribution through time.

Concordant with other studies in the SEUS [8,9,10], bottom

depth and SST were significant predictors of right whale

distribution; right whales were more likely to be sighted in waters

10 to 25 m deep and 12 to 16uC SST. Fonnesbeck et al. [9] and

Keller et al. [10] also found year to be a significant factor variable

related to differences in the total number of whales in the SEUS.

Based on SST at sighting locations, Keller et al. [5,10] suggested

that right whales likely avoid the Gulf Stream, although they did

not include a term to represent Gulf Stream variability in their

model (such as distance to the 22uC SST isotherm). Distance to

Figure 4. Smooth functions of predictor variables for positive abundance model of right whale sightings. Predictor variables and
display same as in Figure 3.
doi:10.1371/journal.pone.0095126.g004
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shore was a significant predictor in our model, in contrast to these

previous studies which either did not consider this term [8,9] or

limited model complexity to four terms [10]. The range of

preferred SST and avoidance of waters .22uC SST may be

related to physiological optima and constraints on thermoregula-

tion and growth, particularly in pregnant or nursing females and

newborn calves [5,37,38]. It is less clear why whales were more

common in shallow water close to shore, but it has been

hypothesized that predator avoidance, weaker currents, and calm

waters provided by these physical factors may be advantageous to

calves and juveniles that are still developing swimming skills or

more susceptible to predation [8,34]. Unfortunately, it will be

difficult to adequately address these hypotheses unless predator

abundance and wave/surface roughness data become available at

finer temporal and spatial resolutions.

Our model also included the interaction between northing and

semimonthly period to account for whale migration during the

calving season. Both Good [8] and Keller et al. [10] predicted

suitable habitat off northern Georgia and South Carolina

throughout the winter. We, however, predict that these areas

have relatively lower encounter rates compared to core-use areas

off northern Florida and southern Georgia, particularly during the

middle of the winter (Figure 5), congruent with sighting data

(Figure 2). We believe that this difference in predictions is driven

by the additional data with low sighting rates from the SC-GA

surveys and by the inclusion of the latitude/semimonth interaction

term in our model, which accounted for latitudinal shifts in whale

distribution that were independent of SST variability. This is the

first habitat model, to our knowledge, that explicitly considers a

migration process in an area outside of the species’ feeding

grounds. Although the latitude/semimonth interaction term is

only a proxy for the inherent processes that truly drive the

migration timing, and it limits the application of the model to the

area analyzed, it nevertheless improved the predictive capability of

our model and is therefore useful for identifying areas in the SEUS

with high whale encounter rates and predicting how these

encounter rates change throughout a winter season. Moreover,

the ecological factors that may influence the timing of whale

migration into and within the SEUS (e.g., predation risk, calm

seas, and historical distribution of con-specifics) are difficult to

quantify and remain unknown. Although our model predicts that

sightings are less common and whales likely spend less time in the

area off northern Georgia and South Carolina, this does not mean

that right whales do not use (and possibly give birth in) these areas.

We hypothesize that, in most years, these more northerly areas are

part of the right whale migration corridor [39,40]. Whales may

display behaviors in these corridors that affect detectability (if they

spend more time below the surface) and may have shorter

residence times there than in the core wintering area. We therefore

suggest that a separate model be created to characterize the right

whale migration corridor when more data on migrating whales

become available. Variability in sea surface roughness (not

Figure 5. Predicted right whale relative abundance. Values represent predicted number of sighted right whales per grid cell (assuming
uniform survey effort) during the 2009/2010 calving season (a relatively cold season with high sighting rates) for December 1–15 (A), January 1–15 (B),
February 1–15 (C), and March 1–15 (D); and during the 2011/2012 calving season (a relatively warm season with low sighting rates) for December 1–
15 (E), January 1–15 (F), February 1–15 (G), and March 1–15 (H).
doi:10.1371/journal.pone.0095126.g005
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addressed in this study) and the occurrence of Gulf Stream

meanders north of Charleston, SC, which generate onshore

movements of unsuitably warm water [19,41], may yield a less

stable habitat for whales in the northern areas of the SEUS.

Nevertheless, we agree with Good [8] and Keller et al. [10] that in

some years the core wintering area extends farther north than the

current critical habitat boundary (e.g., Figure 5G). Although

extrapolating model results can help identify potential areas for

future surveys [10,12], the different predictions among studies here

highlight the importance of validating and updating models with

additional data and may emphasize that caution is needed when

applying model results beyond the spatial and temporal extent of

training data [42].

Environmental variability among years leads to differences in

both the total number of whales that migrate to the SEUS and the

spatial distribution of whales once they arrive there (Figure 5,

Keller et al. [10]). Variability in right whale spatial distribution

among years seems to be driven by local conditions such as water

temperature and location of the Gulf Stream, which vary in the

SEUS among years and within a calving season (Figure S1). For

example, whales are distributed farther south in relatively cold

years (Figure 5), presumably to occupy areas of preferred SST.

However, the number of whales that migrate to the SEUS in a

given year and the amount of time they spend there are likely

influenced by factors outside the SEUS [43,44]. Greene et al. [43]

and Kenney [44] suggest that female right whale calving rates (and

consequently the number of calving females that migrate to the

SEUS each year) are determined by the number of females

available to calve and by recovery times for reproductive females,

ultimately influenced by food availability in summer foraging

grounds. Encounter rates of whales will also be affected by the

duration of whale residence in the SEUS, which may be a

consequence of demographics (with calving females possibly

having longer residence times than other whales [45]), energy

reserves, changes in weather, or other, unknown factors. Although

including year as a factor variable significantly improved our

model fit and the ability to hindcast whale relative abundance for

the years analyzed in our study, it precluded the ability to predict

the magnitude of whale densities for years beyond our data set.

Replacement of this term with a variable that describes the

Figure 6. UTM northings for right whale sightings in the southeastern United States. Values indicate mean (62 standard errors) UTM
northing of sightings for each semimonthly period during all calving seasons. Sightings with a calf present displayed as red squares; sightings without
a calf displayed as blue diamonds.
doi:10.1371/journal.pone.0095126.g006

Table 3. Mean (range) environmental conditions at locations of right whale sightings with a calf present or absent.

Variable Calf Present Calf Absent z-score p

Depth (m) 14.9 (3.0–34.0) 15.5 (2.0–33.0) 22.95 0.003

DistToShore (km) 17.6 (0.2–62.1) 18.5 (0.1–66.2) 22.11 0.035

SST (uC) 14.9 (9.9–21.3) 14.7 (8.9–22.9) 21.84 0.066

DistTo22Iso (km) 86.2 (11.7–135.3) 85.7 (23.9–132.3) 20.44 0.664

Environmental variables include bottom depth, distance to the shoreline (DistToShore), sea surface temperature (SST), and distance to the 22uC SST isotherm
(DistTo22Iso).
doi:10.1371/journal.pone.0095126.t003
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number and demography of right whales predicted to migrate to

the wintering grounds each year (e.g., [43]) would greatly improve

the predictive capabilities of our model, particularly for forecasting

the true value of whale encounter rates. Overall, the results of this

study demonstrate that whale abundance and distribution vary

within and between years. Recognizing and understanding this

temporal variability can better inform the location and timing of

management actions as whale distribution changes throughout a

season, which would result in more effective risk mitigation and

population monitoring of right whales.

While the final model explained the most variation in our

dataset, overdispersion (partly caused by the high spatio-temporal

resolution of our sampling units, the rarity of right whale sightings,

and the potentially high number of false absences generated by

aerial survey data) created challenges to achieving a good model

fit. Indeed, it is common for GAMs modeling cetacean occurrence

at a high spatial resolution, and non-normal models in general, to

explain only a small proportion of the deviance in a dataset

[26,36,46]. For example, our model frequently under-estimated

the number of whales in grid cells with observed sightings, and this

may be related to how the data were aggregated. Rather than

predicting a high sighting probability in a single grid cell, the

model smoothed predicted whale occurrence over several nearby

cells with similar, preferred habitat conditions; in this regard, the

model predictions may describe more accurately where a whale

may be located over the span of two weeks (i.e., temporarily

occupying multiple nearby cells) than would an aerial survey

sighting fixed in time and location. Conversely, the model tended

to overpredict whale occurrence in areas where no whales were

sighted. The small population size of right whales could have

resulted in the absence of whales from suitable habitat [47].

Additionally, the lack of a sighting does not necessarily mean that

whales were truly absent. Whales might not have been detected

due to availability bias (e.g., whales were submerged [48]),

perception bias (e.g., observer error [49]), or incomplete temporal

coverage by surveys (i.e., not flying at night, not flying during poor

weather). In consideration of these limitations of aerial surveys and

the confounding effect of unequal survey effort on the number of

sightings, we believe that predictive habitat models can better

characterize the distribution of whales than can sightings-per-unit-

effort data (e.g., Figure 2C). Rather than relying solely on costly

surveys with imperfect detection probabilities and limited cover-

age, predictions from these models can be particularly helpful in

making management decisions that require risk assessment based

on expected whale distribution [50].

Whale groups with a calf present were sighted in waters that

were shallower and closer to shore than were other whale groups.

Even though shallow, nearshore locations in our study area

generally had the coldest water, there was also a trend for groups

with calves to be sighted in slightly warmer water. Sightings with a

calf present occurred farther south during early December,

although this finding is confounded by few sightings of calves

early in the calving season and the fact that calves-of-the-year are

not likely to be migrating from the north at this time. Studies of

baleen whales on their wintering grounds have also found cow-calf

pairs closer to shore and in shallower water than other

demographic groups [32,33,51]. Differences in habitat preference

may be a result of different energetic constraints or predation risks

between demographic groups. Although our results were statisti-

cally significant and supported by other studies, the differences

between groups were minimal, the range of values for environ-

mental variables were very similar, and sightings of groups with

calves compared with those without calves were not spatially

segregated at the scale and spatial extent of our model. We

therefore conclude that separate habitat models for cow-calf pairs

and other demographic groups in the SEUS are not warranted

and are impracticable at the scale used in this study, and

management areas for one group will likely be equally effective for

the other. Despite the large number of sightings in our data,

however, it was extremely rare for a cow-calf pair to be sighted

with another whale. Thus, at a fine scale, it appears that cow-calf

pairs are segregated from other whales, but this pattern may be

influenced more by social dynamics (e.g., harassment avoidance;

[34,52]) than by environmental features.

Our analysis presents an example of the use of static and

dynamic environmental variables to predict species distribution

and characterize habitat preferences of a migratory species in a

dynamic seascape. Using temporally dynamic variables, such as

SST, isotherms, and a seasonal migration index, we were able to

predict semimonthly right whale distribution. Although our

framework does not estimate absolute densities, it provides

additional insights into how whale distribution changes over time

compared to a single depiction of instantaneous density. This

framework could be applied to other highly mobile migratory

species in variable habitats that may benefit from dynamic

management actions [6,53]. The model results corroborate that

right whale distribution varies within and among years. We believe

that the addition of data from a broader survey area relative to

previous studies, and accounting for migration patterns, improved

the model by predicting how whale distribution changes within a

calving season and by separating core-use areas from short-term-

use areas in the migration corridor. Hindcast predictions from this

model can be used to assess risks to whales and effectiveness of

management actions. Improvements of the model, including the

addition of parameters for predicting the total number of whales

that migrate to the wintering grounds [43], would allow for near-

real-time forecasts of whale distribution that could be used to

better inform management decisions. We encourage future

evaluations of this and other habitat models as additional data,

particularly from other predictors and from surveys in areas

previously receiving little coverage, become available.
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Figure S1 Average daily sea surface temperatures for
December through March. Data obtained from the National

Data Buoy Center (http://www.ndbc.noaa.gov) at Gray’s Reef

(top panel, station 41008, 31.400uN 80.868uW) and at St.

Augustine (bottom panel, station SAUF1, 29.857uN 81.265uW).

Data include 2009/2010 (blue line), 2011/2012 (red line), long-

term historical average with 95% confidence intervals (1991/1992

and 1997/1998–2012/2013 at Gray’s Reef; 1988/1989–2001/

2002 and 2004/2005–2011/2012 at St. Augustine), and long-term

historical range.
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Table S1 A. Summary of all models tested in stepwise selection

procedure for presence-absence models of right whales in the

southeastern United States. Predictor variables include interaction

between semimonthly period and UTM northing, distance to the

shoreline (DistToShore), survey year, survey effort, sea surface

temperature (SST), bottom depth, distance to the 22uC SST

isotherm (DistTo22Iso), and slope. Smoothed covariates indenti-

fied by ‘‘s()’’. Evaluation criteria include the proportion of deviance

explained, generalized cross validation score (GCV), and mean

average squared prediction error (ASPE) from a five-fold cross-

validation. The best model at each step is in bold. B. Summary of

all models tested in stepwise selection procedure for positive

abundance models of right whales in the southeastern United
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presence-absence models at each step of the stepwise selection

procedure. Models at each step refer to the respective best model

(in bold) from Table S1A. Reductions in deviance, F-statistics, and

p-values compare each model to the model in the previous step. B.

Results of analysis of deviance tests comparing positive abundance

models at each step of the stepwise selection procedure. Models at

each step refer to the respective best model (in bold) from Table

S1B. Reductions in deviance, F-statistics, and p-values compare

each model to the model in the previous step.

(DOCX)

Table S3 Number of observed sightings, number of
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