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Abstract

Background: The threat posed by highly pathogenic avian influenza A H5N1 viruses to humans remains significant, given
the continued occurrence of sporadic human cases (499 human cases in 15 countries) with a high case fatality rate
(approximately 60%), the endemicity in poultry populations in several countries, and the potential for reassortment with the
newly emerging 2009 H1N1 pandemic strain. Therefore, we review risk factors for H5N1 infection in humans.

Methods and Findings: Several epidemiologic studies have evaluated the risk factors associated with increased risk of H5N1
infection among humans who were exposed to H5N1 viruses. Our review shows that most H5N1 cases are attributed to
exposure to sick poultry. Most cases are sporadic, while occasional limited human-to-human transmission occurs. The most
commonly identified factors associated with H5N1 virus infection included exposure through contact with infected blood or
bodily fluids of infected poultry via food preparation practices; touching and caring for infected poultry; consuming
uncooked poultry products; exposure to H5N1 via swimming or bathing in potentially virus laden ponds; and exposure to
H5N1 at live bird markets.

Conclusions: Research has demonstrated that despite frequent and widespread contact with poultry, transmission of the
H5N1 virus from poultry to humans is rare. Available research has identified several risk factors that may be associated with
infection including close direct contact with poultry and transmission via the environment. However, several important data
gaps remain that limit our understanding of the epidemiology of H5N1 in humans. Although infection in humans with H5N1
remains rare, human cases continue to be reported and H5N1 is now considered endemic among poultry in parts of Asia
and in Egypt, providing opportunities for additional human infections and for the acquisition of virus mutations that may
lead to more efficient spread among humans and other mammalian species. Collaboration between human and animal
health sectors for surveillance, case investigation, virus sharing, and risk assessment is essential to monitor for potential
changes in circulating H5N1 viruses and in the epidemiology of H5N1 in order to provide the best possible chance for
effective mitigation of the impact of H5N1 in both poultry and humans.
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Introduction

There have been several human pandemics caused by influenza

A viruses over the last 150 years [1,2,3]. The first pandemic of the

20th century, the ‘‘Spanish’’ influenza (H1N1) pandemic of 1918–

1919, was particularly lethal in young, otherwise healthy adults,

killing an estimated 40–50 million people worldwide [2,4,5,6].

Genetic analyses of specimens collected from victims preserved in

the arctic and archived tissues from World War I soldiers suggests

that the 1918 H1N1 strain was an avian-origin virus that adapted to

humans [7]. The ‘‘Asian’’ influenza pandemic (H2N2) in 1957 and

the ‘‘Hong Kong’’ influenza pandemic (H3N2) in 1968 were less

lethal and resulted from avian-human virus reassortment [4,5]. The

2009 H1N1 pandemic influenza virus is a reassortant of human,

swine and avian-origin influenza virus gene segments, with the HA

gene sharing a common ancestry with the 1918 pandemic virus HA
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that has been circulating in swine populations globally [8]. Since its

emergence in the spring of 2009, the pandemic H1N1 virus quickly

became the predominant strain globally[9].

The isolation of a highly pathogenic avian influenza A virus,

subtype H5N1 (referred to as H5N1 in this manuscript), from a 3-

year-old boy in Hong Kong in 1997 was the first detection of this

virus strain in humans and raised concerns worldwide of the

potential for a pandemic of avian origin with a lethality in the

range of the 1918 pandemic [10]. As with the 1918 virus, all of the

genes found in the H5N1 viral strain in Hong Kong originated

from avian viruses, [4,10]. While H5N1 has not yet demonstrated

the ability to transmit efficiently from person to person, the high

case-fatality associated with infection, and because of the immense

potential for influenza viruses to mutate and adapt to other hosts,

H5N1 remains a continuing public health concern.

As of 8 June 2010, 15 countries have reported a total of 499

confirmed cases of human H5N1 infection to WHO [11]. By far,

the largest numbers of human cases has been reported from

Indonesia, Vietnam and Egypt, each having reported more than

100 cases (these three countries account for 79% of all human

cases). No human cases have yet been reported in Western Europe

or the Americas, although H5N1 has been detected in poultry in

Europe. The number of reported cases and fatalities, case fatality

rate (CFR), H5N1 virus clades identified that have infected

humans, and the median age and gender (% male) of reported

cases [12,13] vary by country (Table 1). The crude CFR for all

cases to date is high (CFR = 59.1%, interquartile range 32.5–77.8),

but also varies substantially among the 15 countries.

To date H5N1 remains an avian epidemic with sporadic spill-

over into the human population and other species. The

predominant modes of transmission from poultry to humans

remain incompletely understood and limited exposure information

from infected persons has restricted our ability to evaluate risk

factors for human infection and implement more refined risk

reduction measures. Field investigations of cases of H5N1 in

humans—usually in locations of low or middle income countries—

are generally difficult to conduct, especially in a timely manner,

and may result in collection of incomplete exposure information.

Conversely, in some countries, good exposure data has been

collected during outbreak investigations, but may not be analyzed

or published. Thus, information on potential exposures, when

given, is typically limited to recent contact with sick or dead poultry [14]

or the preparation of sick birds for consumption [15]. More detailed

knowledge of the types of behaviors and interactions with poultry

that result in virus transmission would facilitate more effective and

targeted risk reduction measures at the human-animal interface.

Several epidemiologic studies have been published to evaluate

risk factors, including contact with poultry and poultry products

and non-poultry-related contact such as from H5N1-contaminated

water, for H5N1 infection in humans. Most of these have adopted

a case-control (or nested case-control) design where researchers

have evaluated the risk of exposure to poultry from visiting live

bird markets (LBM), food preparation, caring or feeding poultry or

exposure risk via contact with a confirmed human case. In 2009,

Rabinowitz et al. published a systematic review of published

analytical studies and case reports through 2007 on exposure

variables for human cases of H5N1 infection. Since this

publication, a number of published large-scale seroprevalence

studies in areas where H5N1 has occurred or is recurrent have

been published. Here we evaluate what is known about pathways

of exposure at the animal-human interface using all available

publications, including seroprevalence studies and case-control

studies not included in previous reviews, which could result in

human infection with H5N1 virus.

Methods

A systematic search for all available published literature

evaluating prevalence of symptomatic or asymptomatic infection

with H5N1 and/or risk factors for human infection with the H5N1

virus was performed in MEDLINE using the following keywords

together and in various combinations: ‘‘H5N1, risk factor, poultry,

seroprevalence, antibodies, human, animal-human interface’’. All

papers published between 1 January 1997 and 1 April 2010 are

included in the review regardless of the language of publication.

The original search yielded 444 articles. All titles were reviewed to

identify epidemiologic studies that evaluated risk factors among

human populations. The abstracts were reviewed for papers from

which a decision could not be made from the title alone. Case

reports, vaccine efficacy studies, laboratory studies and studies in

animal populations were excluded from this review. This review

updates a previous review by Rabinowitz et al [16], using studies

published between 2008–2010.

Twenty-four published studies evaluating risk and/or risk

factors for human infection conducted in 8 countries (Thailand,

Vietnam, Indonesia, Cambodia, Nigeria, China, Azerbaijan, and

Germany) and Hong Kong were included in the review. Four

studies focused on the initial 1997 outbreaks in Hong Kong, while

the remaining 20 studies were conducted in Asian, African and

European countries in areas with confirmed outbreaks in human

and/or domestic poultry populations from 2003–2009. Based on

the population under study and principal objective, the 24 studies

fall into two categories: case-control studies to evaluate risk factors

for human infection among laboratory-confirmed H5N1 cases

(n = 5; 2 related to the 1997 outbreak and 3 related to outbreaks

occurring 2003 to 2009); or seroepidemiology studies (n = 19; 3

relating to the 1997 outbreak and 16 related to outbreaks

occurring 2003 to 2009) to evaluate the predictors of having

H5-specific antibody among health care workers (HCW; n = 4),

poultry workers (PW; n = 8) or household/social contacts (n = 8) of

laboratory-confirmed infected H5N1 cases (one study evaluated

both occupational and domestic exposure to poultry and is

therefore counted as both a study among PW and social contacts).

Results

Investigations into the 1997 H5N1 outbreak in Hong
Kong (18 cases, 6 deaths)

The H5N1 virus was first known to cross the animal-human

species barrier in 1997 when 18 hospitalized, symptomatic cases,

six of whom died, were identified in Hong Kong [10]. A case-

control study of 15 of these confirmed H5N1 cases and 41 controls

matched on age, sex and neighborhood found that exposure to live

poultry at LBM in the week before illness was associated with a 4-

fold increased risk in infection (OR = 4.5 95%CI 1.2–21.7)

(Table 2). No association was found with consumption of cooked

or undercooked poultry at home or at a restaurant [17].

The extent of anti-H5 seroprevalence was evaluated among

household/social contacts [18], HCW caring for confirmed

human H5N1 cases [19], and PW involved in the culling of all

poultry in Hong Kong (Table S1; in supplemental information)

[20]. Six of 51 (12%) household contacts and none of 26 social

contacts tested positive for anti-H5 antibodies using microneu-

tralization (MN) and Western Blot (WB) techniques[18]. Although

not statistically significant, the authors of this study suggest that

common-source exposure of the household contacts to poultry in

their homes was a likely risk factor for infection. Among HCW,

risk factor data were collected including exposure to the case

patient (e.g. provided direct care to case, physical contact, face-to-

Human Risk of H5N1
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Table 1. Characteristics of human cases of highly pathogenic avian influenza H5N1 virus infection reported to WHO from 1997 to
16 March 2010 by country.

Country Total Crude CFR (%) Clade(s)
A

Median age of cases
(range)

B
% Male n/total (%)

B

Cases Deaths

Azerbaijan 8 5 62.5 2.2 10 16.5 (5–20) {{ 9/16 (56) {{

Turkey 12 4 33.3 2.2

Bangladesh 1 0 0.0 2.2 16 mo (–) 1/1 (100)

China 38 25 65.8 2.2, 2.3.4, 7 30 (12–41){ 3/8 (38){

Hong Kong, SAR (1997) 18 6 33.3 0, 1 6 (1.5–60) 6/15 (40)

Djibouti 1 0 0.0 2.2 2 (–) 0/1 (0)

Egypt 106 32 30.2 2.2 12.5 (1–75)a 12/38 (32)a

Indonesia 163 135 82.8 2.1.2, 2.1.3 18.5 (1.5–45){ 33/54 (61){

Iraq 3 2 66.7 2.2 15 (3–39) 2/3 (66.7)

Lao People’s Democratic Republic 2 2 100.0 2.3.4 28.5 (15–42) 0/2 (0)

Myanmar 1 0 0.0 2.3.4 7 (–) 0/1 (0)

Nigeria 1 1 100.0 2.2 22 (–) 0/1 (0)

Pakistan 3 1 33.3 NR 25 (22–27) 3/3 (100)

Cambodia 9 7 77.8 1 14–22 (2–58){ 19/41 (46){

Thailand 25 17 68.0 1

Vietnam 116 58 50.0 1, 2.3.4

Total 489 289 59.1 – – –

AClade(s) isolated from humans.
BData from cases up to 1 Jan 2009.
Adapted from sources [13,17,63,64,65,66,67].
{Includes data from 2004–2005 cases only;
{Includes data from 2005–2006 cases only;
aIncludes data from 2006–2007 cases only;
{{Includes data from 2006 cases only;
NR = Not released.
doi:10.1371/journal.pone.0014582.t001

Table 2. Risk factors for H5N1 infection: Summary of published case-control studies.

Study, year Study Population
Risk Factors
RR, OR, 95%CI

Mounts et al., 1999 [17] Hong Kong
15 cases 41 matched
controls

Exposure to poultry at live/wet markets was associated with a 4-fold increased risk (OR = 4.5, 1.2–21.7)

Dinh et al., 2006 [23] Viet Nam
28 cases 106 matched
controls

Univariate Analysis: preparing/cooking unhealthy poultry (OR = 31, 2.4–1150), having sick or dead poultry in
the household (OR = 7.41, 2.7–59), presence of sick/dead poultry in the neighborhood (OR = 3.9, 1.0–55.7),
no indoor water source in the household (OR = 5.0, 1.3–77.0)
Multivariate Analysis: No water in the household (OR = 6.5, 1.2–34.8), sick or dead poultry in the household
(OR = 4.9, 1.2–20.2), prepare and cook sick or dead poultry (OR = 9.0, 0.98–82.0)

Areechokchai et al.,
2006 [22]

Thailand
matched case control
study of 16 cases and 64
controls

Direct touching of unexpectedly dead poultry OR 29.0 (2.7–308.2)

Zhou et al., 2009 [39] China
10 urban and 18
rural cases; 134 matched
controls

Infection included direct (OR = 506.6, 95%CI15.7–16319.6) or indirect (OR = 56.9, 95%CI 4.3–745.6) contact
with sick or dead poultry, visiting a LBM (OR = 15.4, 95%CI 3.0–80.2)
Urban cases were significantly more likely to have visited a LBM, compared with rural cases (p = 0.002)

WER, 2006 [33] Azerbaijan, residents in
settlements of confirmed
cases

9/52 residents tested positive for H5N1 virus.
No case-control was initiated, but contact with infected wild birds (defeathering) reported as likely cause of
infection

doi:10.1371/journal.pone.0014582.t002
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face talking, worked within two meters of patients, recalled patient

coughing/sneezing, suctioned respiratory secretions from or

administered breathing treatments to patients, changed bed linens

or bathed the patient), age, sex, occupation and exposure to

poultry (shopped at live poultry market, had live or freshly cut

poultry in their home in the weeks before interview). Because the

initial diagnosis was delayed, infection control procedures were not

immediately initiated for most cases. Among the exposed and

unexposed HCW enrolled, 4% (8/217) and 0.7% (2/309),

respectively, tested positive for H5 antibodies, suggesting a risk

of patient to HCW transmission. Exposure to poultry did not differ

among exposed and unexposed HCW. Risk factors for H5

antibody among exposed HCW included bathing the patient and

changing bed linens, tasks that involve close and more prolonged

exposure to the patient. Interestingly, no HCWs exposed to mildly

ill children had anti-H5 antibodies, only HCW exposed to

critically ill patients with pneumonia, both of whom died, had

H5 antibody.

Among 1,525 PW and among 293 government workers (GW)

who were involved in the culling of poultry during this outbreak in

Hong Kong, 10% of PW were estimated to be seropositive to H5,

while 9 (3.1%) GW tested positive [20]. A nested case-control

study of PW found an elevated risk for those that worked in retail

compared to those who worked in wholesale, hatchery, farm, or

other poultry industries (OR = 2.7 95% CI 1.5–4.9); worked on a

farm with .10% mortality among poultry within the previous two

months (OR = 2.2 95% CI 1.3–3.7); butchered poultry (OR = 3.1

95% CI 1.6–5.9); fed poultry (OR = 2.4 95% CI 1.4–4.1); and

prepared poultry for restaurants (OR = 1.7 95% CI 1.1–2.7). The

risk of having anti-H5 antibody appeared to increase with the

amount and intensity of contact with poultry, with stratified

analysis suggesting that butchering poultry and exposure to

poultry flocks with .10% mortality were exposures most highly

associated with having anti-H5 antibody. Feeding poultry was not

associated with an increased risk in stratified analyses.

Sero-epidemiological investigations since 2003 (499
cases, 295 deaths)

Since 2003, sero-epidemiologic investigations into risk factors

for human infection have been conducted primarily in Asian

countries and to a lesser extent in African, European and the

Middle Eastern countries (Table S1) but human seroprevalence

studies have not been conducted in all locations with relatively

high numbers of human cases (e.g., Egypt, Vietnam and

Indonesia). Rather, several small scale studies evaluating the

prevalence of anti-H5 antibodies have been conducted in

Vietnam, Thailand, Cambodia, China, Indonesia, Germany,

and Nigeria in areas (within 1–3 km) surrounding locations of

reported human and/or poultry outbreaks [21,22,23,24,

25,26,27,28,29,30,31,32,33,34,35]. These sero-studies can be

categorized by the study populations evaluated in each study:

non-occupational settings (subjects living in close proximity to a

confirmed H5N1 case) and occupationally exposed individuals

(PW or HCW) (Table S1).

Non-occupational settings. Non-occupational exposure

largely consists of caring for household poultry, preparing or

cooking poultry, visiting a LBM or living in close proximity to

poultry. Three studies from Thailand, Cambodia and Indonesia of

the seven studies evaluating seroprevalence in rural areas found no

evidence of anti-H5 antibodies in their study populations despite

frequent contact in households with poultry with probable H5N1

infection [24,29,30]. However, evidence of exposure to poultry

resulting in asymptomatic human infection was found in 1 study in

China, and 2 studies in Cambodia. In the studies from Guangdong

China and Cambodia, approximately 1–3% (14/1214[25], 7/674

[36], 18/700 [37]) of the individuals living within a 3 km or 1 km

radius, respectively, of H5N1 outbreaks in domestic poultry had

antibodies against H5 indicating prior infection with H5N1. In

Cambodia, risk factors associated with seropositivity included

swimming or bathing in ponds (OR = 11.3, 95% CI 1.25–102.18

[36]; OR = 2.52, 95%CI 0.98–6.51[37]) and gathering poultry

and placing them in cages or designated areas (OR = 5.8, 95% CI

0.98–34.12[36]).

Two case-control studies were conducted in Vietnam (28 cases;

106 age-, sex-, and neighborhood- matched controls [23]) and

Thailand (16 cases, 64 age- and neighborhood-matched controls

[22]; Table 2). Using multivariate analysis, the Vietnam study

found that risk factors for human infection included preparing or

cooking unhealthy poultry (OR = 31, 95%CI 3.4–1150), having

sick or dead poultry in the household (OR = 7.41, 95%CI 2.7–

59.0), presence of sick/dead poultry in the neighborhood

(OR = 3.9, 95%CI 1.0–55.7), and no indoor water source in the

household (OR = 5.0, 95%CI 1.3–77.0) [23]. In Thailand, cases

were more likely to have: touched a dead bird that died

unexpectedly (OR = 29, 95%CI 2.7–308.2); dressed poultry (no

definition provided, OR = 17, 95%CI 1.6–177.0); had poultry that

died unexpectedly around their home (OR = 5.6, 95%CI 1.5–

20.7); plucked feathers from poultry (OR = 14, 95%CI 1.3–152.5);

stored products of sick or dead poultry in their home (OR = 9.3,

95%CI 2.1–41.3); or directly touched sick poultry (OR = 5.6,

95%CI 1.5–20.7). Risk factors for infection also included living in

close proximity to sick (OR = 3.8, 95%CI 1.2–11.7) or dead

(OR = 13, 95%CI 1.5–96.3) poultry [22]. Following an outbreak

of H5N1 in wild birds in Azerbaijan in 2006, the clinical

specimens (throat, nasal and rectal swabs, plus sera) of 9/52

residents (all symptomatic) tested positive for the presence of

H5N1 virus using RT-PCR and virus isolation. These 9 cases, all

of whom were from related or neighboring families, were thought

to most likely have become infected while defeathering dead wild

swans [38].

In China, a case-control analysis of 10 urban and 18 rural

laboratory confirmed human H5N1 cases compared to 134

controls found that risk factors for infection included touching sick

or dead poultry (OR = 506.6, 95%CI15.7–16319.6) or living in

close proximity to sick or dead poultry (OR = 56.9, 95%CI 4.3–

745.6), and visiting a LBM (OR = 15.4, 95%CI 3.0–80.2) [39]

(Table 2). Urban cases were significantly more likely to have

visited a LBM, compared with rural cases (p = 0.002).

Occupational exposure. Risk factors for infection among

PW at LBMs or workers involved in culling operations have been

evaluated in Nigeria, China (Guangdong), Indonesia (Bali),

Vietnam and Germany. Despite presumably frequent and

extensive contact with infected poultry, no evidence of H5N1

infection was found among 295 market vendors in Nigeria [26], 87

market vendors in Bali [30], 68 market vendors in Guandong,

China [40], or 97 GW involved in culling operations in Germany

[31]. Three studies from Guangdong, China (1 seropositive/110

tested using HI with turkey red blood cells[35]; 2/231 using

HI.1:80[25]; 2/2191 using HI [no cutoff mentioned]) and one

study from Vietnam (3 seropositive/500 tested using HI.1:80,

0/500 using MN) found limited evidence of previous H5N1

infection; however, no specific risk factors for infection were

reported (Table S1) [25,32,35,41].

Since 2003, one study from Thailand, and two studies from

Vietnam evaluated the frequency of asymptomatic or subclinical

infection and evaluated human-to-human transmission risk factors

for H5N1 virus among HCW [21,27,28]. In contrast to the results

found in the serosurvey of HCW conducted in Hong Kong in

Human Risk of H5N1
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1997[19], no serologic evidence was found of infection with H5N1

among HCW with direct contact with human H5N1 patients. The

use of personal protective equipment (PPE) in Vietnam was well

documented [27,28]. In Thailand, however, the use of PPE

(surgical mask, gown and gloves) was not initiated until 48 hours

after the patient was admitted to the hospital [21].

Person to Person transmissionClusters of epidemiologically linked

H5N1 cases have occurred among relatives in several countries,

including Indonesia, China, Turkey, Azerbaijan, Vietnam and

Thailand, suggesting that human-to-human transmission between

family members in close contact may have occurred [38,42,43,

44,45,46,47,48]. An early investigation in Vietnam, suggested that

between January 2004 and July 2005, 15 suspected family clusters

occurred among the first 109 cases, of which nine clusters had $2

laboratory confirmed H5N1 cases [42].

A family cluster in mainland China consisted of a father and

son, the former likely infected through close, unprotected contact

via care of his son at a hospital during his illness [46]. Similarly in

Thailand, two relatives of an infected patient likely became

infected through unprotected hospital care [44]. In Turkey, several

members of the same family became infected with H5N1, however

transmission was likely common-source poultry-to-human rather

than human-to-human because they all shared the same living

space with poultry [43].

In Indonesia, there have been reports of 21 clusters of H5N1

among blood relatives with each cluster involving 2–7 blood

relatives [45,47,48]. Limited human-to-human transmission may

have occurred in two of the first three clusters in 2005. However,

common-source exposure to the virus via a contaminated

environment, through contact with contaminated poultry manure

or with infected poultry could not be ruled out [45]. In a further

detailed analysis of all human H5N1 cases in Indonesia, the

authors examined exposures to poultry and could not rule out a

common source of infection in the clusters as family members

usually have similar opportunities for exposure to the virus.

Environmental exposures leading to transmission of
H5N1 virus to humans

Non-poultry exposures-related H5N1 exposures, defined here as

any contact not involving touching poultry or poultry products, e.g.

exposure to H5N1 contaminated environments may also lead to

H5N1 infection [36,49,50,51,52]. Exposure to H5N1 virus in

contaminated feces in garden fertilizer has been reported as a source

of human infection [53]. Because birds are known to shed high

concentrations of virus into water sources, transmission from poultry

to humans through contaminated water is also possible [52]. The

epidemiologic investigation of two H5N1 cases in a single family in

Vietnam suggested that exposure to possibly contaminated canal

water via swimming or washing may have resulted in infection.

However, the role of water in transmission could not be confirmed

[49]. More recently, results from environmental sampling within a

Cambodian village with confirmed H5N1 in domestic poultry flocks

and one human case as well as results from a human seroprevalence

study from the same village identified contaminated water as a

potential risk factor for H5N1 infection [36,51].

Discussion

Several epidemiologic studies have been published to evaluate

risk factors, including contact with poultry and poultry products

and non-poultry-related contact such as from H5N1-contaminated

water, for H5N1 infection in humans. Our review shows that most

H5N1 cases are attributed to exposure to sick poultry, while a few

were likely due to human-to-human transmission.

An illustration of possible pathways of poultry-to-human

transmission of H5N1 virus is provided in Figure 1. Potential

modes of influenza transmission vary depending on the nature of the

contact, and have been suggested to include inhalation; ingestion;

conjunctival, oral contact or intranasal inoculation; or aerosol

routes [16]. Evidence from the published literature has illustrated

that exposure to the H5N1 virus has occurred through contact with

infected poultry blood or bodily fluids via food preparation practices

[54] (e.g., slaughtering, boiling, defeathering, cutting meat, cleaning

meat, removing and/or cleaning internal organs of poultry);

consuming uncooked poultry products (e.g., raw duck blood)

[21,49,55] or through the care of poultry (either commercially or

domestically) [36]. The extent and frequency of risk behaviors and

the relative risk of different behaviors is currently unknown across all

countries where H5N1 is recurrent or endemic and there may be

reluctance to disclose information on possible individual exposures

due to legal, social or economic implications, or other reasons. For

example, in Azerbaijan the nine human cases were likely exposed

during the illegal de-feathering of dead wild swans [38].

There are also a significant number of human H5N1 cases

reported to WHO without known or reported poultry exposure

[56]. Little is understood about non-direct contact exposures to

H5N1-infected poultry that may increase the risk of human

infection, though recent studies have suggested an association

between exposure to a contaminated environment (e.g., water;

cleaning poultry cages or their designated areas; using poultry

feces for fertilizer) and infection either through ingestion,

conjunctival or intranasal inoculation of contaminated water, soil

[49,51,53] or via fomites e.g. equipment or vehicles [50]. It is also

possible that infection via inhalation of H5N1 aerosolized at LBMs

in China may have occurred [17,39]. Other pathways may exist,

but are currently unknown.

The collective results of publically available studies have shown

that transmission of H5N1 virus from poultry to humans is

infrequent, given that often only a single case may be detected in

an area with widespread illness and death among household

poultry, for example. Furthermore, the nature of the contact

between some H5N1 patients and poultry was extensive, i.e., via

preparing infected poultry, while some cases have reported less

intense exposure to virus such as during swimming or bathing in

potentially virus laden ponds or visiting LBMs without direct

contract with poultry, and some have had no known exposure to

poultry prior to infection [53,57]. A better understanding of the

risk of transmission via direct or indirect contact, through ingestion

or inhalation or other exposure routes is needed to refine strategies

to reduce risk of H5N1 infections in people.

It is highly likely that types of human-poultry contact differ

between and even within countries. For example, there is

substantial variation in the frequency of different poultry contact

practices (e.g., slaughtering, caring for poultry) by age and gender

amongst populations in rural Cambodia living in close proximity

to poultry [58]. Research has demonstrated that, based on

reported poultry contact patterns, males in rural Cambodia have

a higher exposure risk potential to H5N1 than females across all

age groups and exposure risk is highest among males between the

ages of 26–40, followed by 16–25 years old. Males in these age

groups reported practices of contact with poultry (e.g., slaughter

poultry, remove internal organs, blow in the beak of fighting cocks,

clean the trachea of fighting cocks, lick wounds of fighting cocks)

that give rise to the highest H5N1 transmission risk potential [58].

Such differences demonstrate that the potential risk for transmis-

sion of H5N1 from poultry to humans is not uniform across age

and gender and therefore may not be uniform within or across

countries. The demographic differences in human cases of H5N1
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infection to date among countries (Table 1) are likely because such

contact patterns with poultry—in addition to animal husbandry

practices, biosecurity systems for the production of food animals

and systems for detection of clinical disease—also differ among

countries. However, data could also suggest that the variation in

H5N1 incidence by age may not be due to exposure alone and

that there may be differences by age in susceptibility to infection,

pre-existing immunity against human influenza viruses that may

confer some cross-reactive immunity, clinical presentation of

disease, and/or presentation to health care facilities. In some

countries, inclusion of contact with sick poultry in the definition of

a suspect case could lower the case detection rate as well as falsely

increase the proportion of cases with exposure to sick poultry as a

risk factor. Additionally, ascertainment and recall biases could

have been introduced in exposure assessment due to media

coverage and/or lengthy delays between reported human and/or

poultry H5N1 cases and follow-up epidemiologic investigations.

Our results also demonstrate a difference in seropositivity rates

among serosurveys conducted following the 1997 H5N1 outbreaks

in Hong Kong when compared to serosurveys conducted following

outbreaks from 2003 to 2010. The higher rates of seropositivity in

the studies following the 1997 outbreak may reflect the genetic

differences in the viruses circulating now compared to the 1997

virus, which may have been more adaptable to human infection

[59]. Sustained vigilance is required to monitor the ever changing

nature of these viruses.

Several important data gaps currently limit our understanding

of the transmission of H5N1 from poultry or H5N1 contaminated

environments to humans. First, there is likely some unknown level

of underreporting of human cases and poultry outbreaks such that

the range and types of exposures may differ from reported cases.

There may also be data and analyses conducted on H5N1 cases

that have not been made publically available. Second, the

serologic studies were conducted by different laboratories using a

variety of assays and cutoffs for seropositivity, making direct

comparisons of results across studies difficult. Seroprevalence

studies have identified few asymptomatic individuals with anti-

H5N1 antibodies, indicating previous infection with H5N1.

However, the duration of immunity after H5N1 infection is not

known and the timing of sampling in these studies may have

resulted in an underestimation of those having experienced prior

infection. In addition, it is possible that some infected individuals

may not seroconvert and that some antibody positive individuals

have non-specific antibody against H5 and do not represent true

prior infections.

Third, the influence of genetic and/or immunological factors on

susceptibility to infection and disease is poorly understood.

Although there have been several suspected clusters of H5N1

infection largely among blood relatives [42,43,44,45,46], the

clusters are difficult to interpret because not all potentially exposed

family members may have been tested for H5N1 and in most

clusters, a common exposure could not be ruled out. While there

may have been limited human-to-human transmission among

close contacts in some clusters, genetic variation between families

could result in the occurrence of clusters because of a

predisposition to infection [47,60].

Figure 1. Known and suggested pathways of H5N1 exposure to infection from poultry to humans. *via swimming/bathing in water
frequently used by domestic and/or wild poultry.
doi:10.1371/journal.pone.0014582.g001
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Finally, improved knowledge is needed on potential routes of

transmission of H5N1 virus from poultry or H5N1-contaminated

environments to humans and on the prevalence of risky practices

in human populations. Studies to date have evaluated exposures

through which people might become infected with H5N1, but we

currently lack sufficient data from the confirmed H5N1 cases

around the world and published epidemiologic studies to fully

evaluate other potential risk factors for infection such as the role of

water and other environmental factors, or unknown risk factors

that have yet to be investigated. Transmission routes could also

include oral ingestion, conjunctival or intranasal inoculation from

contaminated water while drinking, swimming or bathing or

inhalation of the virus in feces while caring for poultry [36].

Furthermore, more asymptomatic cases may occur because of low

concentrations of viruses in the environment than have been

detected in studies done to date. More studies of environmental

contamination, including viral contamination in LBMs [61],

would further contribute to this understanding.

In order to fully evaluate the risk of poultry-to-human

transmission, a detailed exposure history needs to be collected from

all suspected cases and their contacts. In addition, data variables

related to exposures to poultry by species and potentially infected

environments ideally should also be standardized across epidemi-

ologic studies to facilitate pooled or meta-analyses. Data collection

forms have been developed [62]; however, these forms must include

not only information on contact with poultry by species, but include

questions regarding the timing and intensity of such contact. These

forms should also not only evaluate general exposure (e.g., handling

sick or dead poultry, handling feces or fertilizer from sick or dead

poultry, slaughtering poultry), but should include potential exposure

via the environment (e.g., contaminated water). In order to build a

database from which more robust analysis can be conducted,

detailed exposure information should be systematically collected

from all confirmed and suspect cases.

Although infection in humans with H5N1 virus remains rare,

human cases continue to be reported. As well, H5N1 is now

considered endemic among poultry in parts of Asia, providing

opportunities for further dissemination of this virus and opportu-

nities to mutate and adapt to humans and other mammalian

species. Collaboration between human and animal health sectors

for surveillance, case investigation, virus sharing and risk

assessment is essential to understand and reduce the risk of virus

transmission at the interface between domestic poultry and

humans and to quickly recognize changes that may occur in the

virus or in the epidemiology of its spread to humans that signal

adaptation to humans. Current exposure data remain too general

to explain the current pattern or to predict future cases of H5N1

infection in human populations; however the results of the

available studies, including those reporting cases having no

contact with poultry, suggest that exposure through the environ-

ment may account for many human cases [36,39]. Rapid,

systematic and standardized collection of detailed information on

poultry contact and human case contacts for all suspected and

confirmed human cases of H5N1, as well as more systematic

epidemiological and seroepidemiologic studies with appropriate

controls, would improve our understanding of risks of H5N1 and

help inform development and implementation of appropriate

public health risk reduction measures.
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