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Background. The cellular basis of long term radiation damage in the brain is not fully understood. Methods and Findings.

We administered a dose of 25Gy to adult rat brains while shielding the olfactory bulbs. Quantitative analyses were serially
performed on different brain regions over 15 months. Our data reveal an immediate and permanent suppression of SVZ
proliferation and neurogenesis. The olfactory bulb demonstrates a transient but remarkable SVZ-independent ability for
compensation and maintenance of the calretinin interneuron population. The oligodendrocyte compartment exhibits
a complex pattern of limited proliferation of NG2 progenitors but steady loss of the oligodendroglial antigen O4. As of nine
months post radiation, diffuse demyelination starts in all irradiated brains. Counts of capillary segments and length
demonstrate significant loss one day post radiation but swift and persistent recovery of the vasculature up to 15 months post
XRT. MRI imaging confirms loss of volume of the corpus callosum and early signs of demyelination at 12 months.
Ultrastructural analysis demonstrates progressive degradation of myelin sheaths with axonal preservation. Areas of focal
necrosis appear beyond 15 months and are preceded by widespread demyelination. Human white matter specimens obtained
post-radiation confirm early loss of oligodendrocyte progenitors and delayed onset of myelin sheath fragmentation with
preserved capillaries. Conclusions. This study demonstrates that long term radiation injury is associated with irreversible
damage to the neural stem cell compartment in the rodent SVZ and loss of oligodendrocyte precursor cells in both rodent and
human brain. Delayed onset demyelination precedes focal necrosis and is likely due to the loss of oligodendrocyte precursors
and the inability of the stem cell compartment to compensate for this loss.
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INTRODUCTION
Radiation therapy is a powerful tool in the treatment of primary

and metastatic cancers of the brain. However, tissue tolerance of

the normal brain is very limited and radiation doses have to be

tailored to minimize the deleterious effect on the nervous system

[1]. The late effects of radiation are of particular clinical relevance

and are manifest as cognitive impairment. There is currently no

effective treatment for radiation-induced cognitive decline[2,3].

While the pathogenesis is not fully understood, studies of brain

irradiation in humans[4] and animals[5] suggest the loss of myelin

sheaths with apparent preservation of axons. Vascular changes,

such as thrombosis and hyalinization are also seen, particularly at

high doses and in the subacute phase[6]. There are controversial

views as to the relative importance of the vascular theory versus

the glial theory as a prime underlying element of pathogenesis of

late radiation effects [7]. Histological studies of irradiated brains

essentially predate our current understanding of precursor biology

in the adult CNS. It is now recognized that there are two major

specialized zones of cell proliferation in the adult brain: the

subventricular zone (SVZ) and the dentate gyrus. These regions

contain stem cell and precursor populations that self-renew and

generate neurons and glia throughout life[8,9]. Outside these

regions the majority of the cycling cells in the adult brain (.75%)

are oligodendroglial progenitors, identified by their expression of

NG2 proteoglycan, PDGFRA or O4[10,11].

It was recently shown that irradiation leads to a dose-dependent

loss of cell types in the subventricular zone (SVZ) with impairment of

SVZ repopulation up to three months[12]. Older studies have also

reported a decrease in mitotic activity non-specifically in the

‘‘subependymal plate’’ after different radiation doses with sub-

sequent delayed recovery[13]. Additionally, there is loss of granule

cells in the hippocampus up to 3 months after brain irradiation [14].

The effects of brain irradiation on oligodendrocyte progenitors is

described in the spinal cord whereby exposure of short segments to

high dose radiation (40 Gy) results in a decrease in the number of

NG2+cells by nearly 50%[15] [16] but this data was not extended

over long time periods or to the brain itself. It is unclear from current

literature if the loss of oligodendrocyte progenitors is permanent or if

delayed recovery occurs. The loss of these cells may underlie the

absence of remyelination in the late phases of radiation. Conversely

radiation may result in alterations of the microenvironment that

inhibit survival of newly born oligodendroglial progenitors and/or

their maturation into the myelin phenotype.

In this study, we quantitate the impact of whole brain

irradiation on the SVZ compartment and olfactory neurogenesis,

as well as on the oligodendrocyte progenitors and mature myelin.

Animals are followed over a period of 15 months thus allowing
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a detailed understanding of the kinetics of the stem cell and

progenitor subpopulations both in normal aging and post radiation.

For additional validation of these findings we analyzed human tissues

post radiation. Such tissues are rarely available for analysis and were

obtained from surgical specimens collected over six years. Data from

rat and human tissues that had been irradiated at various periods

prior to analysis suggest a similar pattern of oligodendroglial

progenitor loss and demyelination over time post radiation. There

was no obvious vascular damage despite ultrastructural evidence of

myelin fragmentation. To our knowledge this is the first long term

study of the impact of high dose therapeutic range irradiation on

specific cell subpopulations in the subventricular zone and

oligodendrocyte progeny in the brain.

METHODS

X-irradiation
Young adult Sprague Dawley female rats (Taconic; 3 to

15 months old) were used throughout the study. A dose of 25

Gray (Gy) was administered to the cranium of 3-month-old rats

using a 250kV-orthovoltage system equipped with a 0.25mm

copper filter. A custom-designed positioning device platform based

on the standard stereotactic frame was used so that six animals

could be simultaneously irradiated. Animals were fully anesthe-

tized using a combination of Ketamine (90 mg/kg ip) and

Xylazine (4 mg/kg ip) prior to being placed in the frame. The

heads were centered in a 20 cm620 cm treatment field and x-

irradiation was limited to an adjustable 2 cm circular aperture

centered over the cranium. A lead plate shielded the rest of the

body, including the animals’ ears, hindbrain, and orbits; the

olfactory bulb was spared. The beam was directed onto the head

at a source to skin distance of 21 cm at a calculated angle of 5.7u
from vertical. An X-ray of the animals in their final position was

taken and developed in double exposure (with and without lead

shielding) to check the appropriate skull position against an X-ray

of the ‘‘ideal’’ position previously confirmed by dose calibration

tests. The full radiation dose is administered after final adjustment.

Dosimetry was performed by implanting lithium fluoride thermo-

luminescent dosimeters into various areas of the brain as well as

protected regions (ears, oropharynx, orbit and hindbrain). The

corrected dose rate was determined to be 117.5cGy/min with

a calculated dose variation at a maximum of 9% per 5 mm from

the center of the field in the dorsoventral axis. Instrument

calibration was performed regularly by the department of medical

physics. Rats were irradiated in batches of 6 animals per set;

several sets were done per week and the animals distributed

randomly into time point groups at n = 4 per time point.

Bromodeoxyuridine (BrdU) Administration
For three days prior to sacrifice, irradiated and control rats were

injected daily with 300 mg/kg BrdU (97%, Aldrich) in sterile

normal saline intraperitoneally.

Tissue Processing
Briefly, rats were deeply anesthetized with an intraperitoneal

injection of an overdose of Pentobarbital Sodium (Nembutal

Sodium Solution; Abbot Laboratories), followed by transcardial

perfusion of 0.1% heparinized normal saline (Sigma) at 4uC and

an equal volume of 4% paraformaldehyde (PFA) in PBS also at

4uC (pH 7.4). Brains were then carefully extracted, placed in 4%

PFA for overnight fixation at 4uC and subsequently transferred to

30% sucrose at 4uC until embedding. Optimal Cutting Temper-

ature Compound (O.C.T. Compound, Tissue Tek) was used for

embedding and 25 mm or 10 mm (for histology) sections were cut

on a freezing cryostat. Sections were stored at 280uC until use for

immunohistochemical analyses.

Immunohistochemistry
Sections were washed briefly with PBS 0.1% BSA and blocked for

fluorescence immunohistochemistry with 10% normal goat serum

(NGS, Gibco) in PBS 0.1% BSA and 0.3% Triton X-100 for one

hour (Triton X-100 was omitted for surface antigens). Pre-

treatment steps were performed for some antibodies as follows: 2N

HCl for 30 min at 25uC for BrdU and 100% methanol for 7 min

at 220uC for MAG. Primary antibodies were incubated overnight

at 4uC and appropriate secondary antibodies (Alexa conjugates,

Molecular Probes) were applied on the following day at 25uC for

one hour. Slides were then washed in PBS, counterstained with the

nuclear marker DAPI (Molecular Probes) and mounted in 70%

glycerol. The primary antibodies used included: BrdU (1:50, BD);

chondroitin sulfate proteoglycan NG2 (1:200, Chemicon); guinea

pig Doublecortin (DCX, 1:3000, Chemicon); Calretinin (1:1000,

Swant); Rat Endothelial Cell Antigen (RECA, 1:100, Serotec); rat

Myelin Basic Protein (MBP, 1:200, Chemicon); Myelin-Associated

Glycoprotein (MAG, 1:100, Chemicon); O4 (1:100, Chemicon);

O1 (1:100, Chemicon); CNPase (1:200, Sternberger Monoclonals);

PDGFRA (1:50, Santa Cruz Biotechnology); Neurofilament M

(1:200, Chemicon); Neurofilament 70kDa (1:200, Chemicon);

Galactocerebroside (Galc, 1:200, Chemicon); von Willebrand

Factor (vWF, 1:100, BD Biosciences Pharmingen).

Stereological Analyses/Cell Counts
All stereological analyses were conducted by a trained operator

with no knowledge of animal identification. Total number of

proliferating cells (BrdU+) and proliferating oligodendrocyte

progenitor cells (BrdU/NG2+) was assessed separately in the

SVZ, cortex and corpus callosum by stereological methods using

the optical fractionator probe (Stereo Investigator Version 6,

Micro Brightfield). Fractionator probes were designed and applied

using the stereological software with the coefficient of error

(Gundersen) set at #0.04. Systematic random sampling was

applied to each of the three regions of interest as defined on serial

sections selected at discrete intervals with a random start. Data is

presented as average estimated total cell number at each time

point and for appropriately age-matched controls.

For stereological analysis of endothelial cells, serial sections of

cortex and corpus callosum stained for RECA (1:100, Serotec)

were analyzed for the following: total capillary segment number

using the optical fractionator method and total capillary length

using the virtual sphere method[17,18]. Unbiased counting frames

with inclusion/exclusion lines were used to avoid edge effects.

For the olfactory bulb, regions of interest were identified as the

anterior extension of the rostral migratory stream (distal or rostral

RMS), the granular cell layer, the glomerular layer, and the entire

olfactory bulb. We counted the total number of proliferating cells

(BrdU+) in the olfactory bulb, in addition to the number of

proliferating migrating neuroblasts in the anterior RMS (BrdU/

DCX+), the number of DCX+neuroblasts in the granular layer,

and the number of Calretinin+periglomerular interneurons. All

time-points were compared to cell counts from age-matched

controls. Statistical testing performed using ANOVA followed by

post-hoc analysis (Newman-Keuls). Data is presented as mean cell

number6standard error.

Fluorescence Intensity Quantification
Measurements of fluorescence staining intensity were made on

digital images obtained from cryopreserved brain specimens
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stained for MBP, MAG, and O4 using NIH ImageJ software.

Random sections were selected from a pre-defined region of

interest that encompassed the corpus callosum from genu to

splenium. The sections were immunostained concomitantly using

strictly identical immunohistochemistry protocols and the same

antibody lots. Intensity was analyzed in two regions of the corpus

callosum per section at three sections per brain for two animals per

time point. Briefly, measurement involved acquiring color images

at the same exposure level, converting images to 8-bit gray scale

(fluorescence intensity from 0 to 255), and calculating mean

intensity in the region from thresholded pixels excluding

background fluorescence. Statistical testing performed using

ANOVA followed by post-hoc analysis (Newman-Keuls).Data is

presented as mean6standard error.

Human Tissue
Human normal brain and radiated white matter samples were

obtained intraoperatively at various time points following whole brain

irradiation. Tissues were obtained after patients’ written consent

under a general tissue collection protocol approved by the institution’s

Institutional Review Board (IRB). Specific experimental use of the

tissue was also approved by the Human Tissue Utilization Committee

(HTUC) and the IRB. Human material consisted of glial tissue in the

immediate vicinity of brain lesions. Patients had either received no

radiation or had received radiation as a clinically determined

treatment modality at various intervals prior to surgery. Only tissues

ascertained to be tumor free by our pathologist were used. Two

samples were obtained from patients with clinically symptomatic

radiation necrosis rather than tumor recurrence and were analyzed

separately. ‘‘Normal control’’ consisted of glial tissue around a lesion

in a brain that never received radiation. Samples obtained 2–

7 months following irradiation were identified as ‘‘early post-

irradiation’’ and samples obtained beyond 9 months after irradiation

were classified as ‘‘late post-irradiation’’. Tissue samples were fixed

overnight in 4% PFA in PBS at 4uC and subsequently transferred to

30% sucrose at 4uC until embedding in O.C.T. compound and

sectioning at 10um on a freezing cryostat. Sample numbers: controls

(n = 7); early post XRT (n = 5); late post XRT (n = 6).

Electron Microscopy
Tissues from irradiated and control rat brains, as well as from human

control and irradiated brain specimens, were processed for electron

microscopy by fixation in 5% glutaraldehyde and 2% formaldehyde

in 0.075M Cacodylate buffer, followed by postfixation in 1%

osmium tetroxide and 1.5% potassium ferricyanide for 1 hour.

Tissues were subsequently stained for 1 hour in 1.5% uranyl acetate,

dehydrated through a graded ethanol series followed by 100%

acetone, embedded in epoxy Embed 812 resin (Electron Microscopy

Sciences, Hatfield, PA) and polymerized at 60 degrees C overnight.

Semithin (1 mm) and ultrathin (60 nm) sections were cut using

a Diatome diamond knife (Diatome USA, Hatfield, PA) on a Leica

Ultracut S ultramicrotome. Semithin sections were stained in

toluidine blue (pH 2.0–2.5) and ultrathin sections were contrasted

with lead citrate for electron microscopy. Ultrathin sections were

viewed on a JSM 100 CX-11 electron microscope (JEOL USA, Inc.,

Peabody, MA) and images recorded on Kodak 4489 Electron Image

film and subsequently digitized on an Epson Expression 1600 Pro

Scanner at 900dpi. These procedures were performed at EM core

facilities at Sloan Kettering and Cornell University.

MRI
Female irradiated (n = 3) and age-matched non-irradiated rats

(n = 1) were anesthetized using 1.5–2% isoflurane in

a 70%N2O+30%O2 mixture. In vivo magnetic resonance (MR)

imaging experiments were performed on a Bruker Biospec 4.7-

Tesla 40 cm horizontal bore magnet. The system is equipped with

a 200 mT/m gradient system. Examinations were conducted using

a 72-mm birdcage resonator for excitation, and detection was

achieved using a 3 cm surface coil. An initial sagittal scout image

was obtained in order to reproducibly localize transverse sections

from the cerebellum to the olfactory bulbs. Ten transverse and

thirteen sagittal sections of T2-weighted spin echo images were

acquired consecutively using a rapid-acquisition relaxation-

enhanced sequence (RARE) with the following parameters: TR,

4075 ms; slice thickness, 1 mm; distance between slices, 0.2 mm;

field of view, 35625 mm; matrix, 2566192; and number of

averages, 8. For the transverse plane, a TE value of 100 ms was

used to facilitate detection of abnormal T2 signal, while a TE

value of 40 ms was used to improved conspicuity of the corpus

callosum in the sagittal plane. The total scan time was about

12 minutes for each transverse and sagittal set of MR images.

Volumetric analyses of the corpus callosum were performed on

sagittal MR images using Bruker image processing and analysis

software. Total volumes were computed by combining the results

from a series of ten MR imaging slices, with the resulting data

expressed as mean values.

Animals were housed and cared for in accordance with the

National Institutes of Health (NIH) guidelines for animal welfare

and all animal experiments were performed in accordance with

protocols approved by our Institutional Animal Care and Use

Committee (IACUC).

RESULTS

Whole brain irradiation permanently decreases the

number of proliferating cells in the SVZ, the corpus

callosum and the cortex
Animals received a single dose of whole brain X-irradiation (25Gy)

at age 3 months and were sacrificed at various time points

following administration ranging from 24 hours to 15 months.

Data were compared to untreated age-matched control animals.

All animals (irradiated and control group) were injected with BrdU

for 3 consecutive days just prior to sacrifice.

The radiation set-up was designed to deliver whole brain

radiation excluding the olfactory bulbs which were covered by lead

shielding (see methods and Figure 1A–1D). Sparing of the

olfactory bulbs was confirmed by a double exposure X-ray of

the skull prior to each radiation exposure (Fig. 1A). We also

performed magnetic resonance imaging (MRI) on representative

animals after covering the opening in the lead shield with MRI-

sensitive material (Figure 1B–1C). Both imaging modalities served

to confirm that the entire telencephalon was included in the

radiation field to the exclusion of the olfactory bulbs. Scatter at the

edge of the lead shield is considered minimal.

Using stereological methods (optical fractionator, Stereo In-

vestigator, Microbrightfield, Vermont) we quantified the total

number of BrdU+cells in three brain regions (SVZ, cortex and

corpus callosum) at about 3 month intervals. The total number of

BrdU+cells in the SVZ was significantly decreased one day after

radiation (91,039+/23,783 prior to irradiation, 10,469+/2311

one day after radiation). The number of BrdU+cells in the SVZ

remained suppressed throughout the entire period of analysis

without an obvious attempt at recovery (Figure 1E). At 15 months

post radiation, corresponding to 18 months of age, the average

number of BrdU+cells in the SVZ was 5,541+/2624 compared to

34,680+/29,413BrdU+cells in age-matched control animals.

Statistical analysis confirmed a significant decrease in BrdU+cells
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Figure 1. Experimental set-up and definition of radiation field as demonstrated in a representative double-exposure X-ray of the skull of a rat
secured in the radiation device (A). The red circle indicates the opening in the radiation shield and the skull components that are exposed to
radiation. MRI detectable gel polymer (IZI Medical Products, Baltimore MD) was placed over the area defined by the shield opening and sagittal MRI
images performed (B, C) in order to demonstrate the brain volumes exposed to radiation. Red lines demonstrate the path of the radiation beam, at
5.7 degrees from the vertical. This is represented schematically in (D) to clearly illustrate the exclusion of the olfactory bulb and the distal most
portion of the RMS from the radiation field. Stereological estimates of absolute BrdU counts in the SVZ, corpus callosum (CC) and cortex (Cx) (E–G) in
irradiated (blue) and normal aging (red) rats. There is significant suppression of proliferation on day 1 post radiation in all 3 regions. BrdU levels are
most significantly suppressed in the SVZ. In the cortex there is recovery to age-matched control levels at 3–6 months post radiation. In parallel,
doublecortin labeled neuroblasts in the SVZ (H) are completely suppressed as of day 1 post radiation and do not recover up to 15 months post XRT.
Stars indicate statistical significance (*** p,0.001; ** p,0.01; * p,0.05; ANOVA). Bars = SEM. Scale bar = 100 mm.
doi:10.1371/journal.pone.0000588.g001
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in the SVZ of irradiated animals compared with control animals at

all points examined (ANOVA, p,0.05, Newman-Keuls). In

addition to the suppression of proliferating cells, the SVZ looses

all its doublecortin (DCX)-expressing neuroblasts permanently as

of day 1 and up to 15 months post radiation (Figure 1H).

In the cortex and the corpus callosum (Cx and CC respectively),

the initial decline in the number of proliferating cells (one day post

XRT) was even larger in magnitude compared with that in the

SVZ (16-fold decrease in BrdU+cells in the CC, 17-fold in the Cx

and 9-fold in the SVZ). However, unlike in the SVZ, both Cx and

CC demonstrate a transient increase in BrdU+cells over time. This

was most evident in the cortex whereby at 3 months post XRT,

the irradiated animals exhibit essentially the same number of

proliferating cells compared with normal age-matched controls.

This ‘‘recovery period’’ is maintained up to 6–9 months post

XRT, but is not sustained at later time points (Figure 1F–1G). This

data suggests that the local pool of proliferating cells is capable of

compensation for acute cell loss for a fairly sustained period; its

failure at a late time point may be related to the absence of input

from the stem cell compartment in the SVZ.

The olfactory bulb exhibits sustained but non-

permanent recovery of neurogenesis despite

complete SVZ suppression by radiation
We next addressed the impact of radiation-induced loss of

BrdU+cells in the SVZ on olfactory neurogenesis. To this end

we quantitated the number of BrdU+cells in the entire olfactory

bulb (OB), the number of BrdU+/DCX+cells in the rostral

migratory stream (RMS), the number of neuroblasts (immunos-

tained for doublecortin, DCX) in the granular layer of the OB,

and the number of mature interneurons (calretinin+cells) in the

glomerular layer. Twenty-four hours after irradiation, BrdU+cells

in the olfactory bulb (OB), excluded from the radiation field in our

model, are unaffected (Figure 2A–2B). However, by two weeks

after irradiation BrdU+cells in the OB and proliferating

neuroblasts (BrdU/DCX+) decrease dramatically in numbers to

2% and 1.3% of control levels respectively (Figure 2B–2C). The

delayed loss in proliferating cells likely reflects the absence of

incoming neuroblasts due to the suppression of SVZ neurogenesis.

The total number of doublecortin+cells in the granular cell layer

declines to 24% of control levels at two weeks (Figure 2D). In the

normal rat OB, these cells migrate radially to give rise to

glomerular olfactory interneurons. In contrast, the number of fully

differentiated Calretinin+olfactory interneurons in the glomerular

cell layer exhibits only a moderate decline at two weeks post-

radiation to 62% of control levels (Figure 2E). The relative sparing

of the Calretinin+interneurons at two weeks probably reflects the

slower turn over rate of mature interneurons in the OB compared

with the DCX+cell compartments.

Interestingly, despite the persistent suppression of the SVZ,

robust proliferation resumes in the olfactory bulb over time. At

3 months post radiation, the total number of BrdU+cells in the

OB is up to 52% of control levels and continues to increase up to

6 months after irradiation, reaching near control levels (Figure 2B).

Similarly, the number of proliferating DCX+neuroblasts increases

to 16% of control levels at 3 months and reaches near control

levels by 6 months after irradiation (Figure 2C). Calretinin+neur-

ons continue to decline in number for the first 3 months after

irradiation but rebound back to near control levels by 6 months.

The robust recovery of proliferating cells, neuroblasts and

interneurons in the OB at 6 months after irradiation is remarkable

considering a complete lack of recovery in the SVZ for both

BrdU+and doublecortin+cells at the same time point (Figure 1C

and Figure 1H). Systematic analysis of BrdU+cells along the RMS

demonstrates this surge of proliferating cells to persist from the OB

back into the distal RMS. A sharp transition into a region of

Figure 2. Effect of radiation on the olfactory bulb. (A) Immunohisto-
chemistry of BrdU/doublecortin (DCX) labeled cells shown in cross
sections of the olfactory bulb at progressive time points post radiation.
Quantitative measurements of total BrdU cells, BrdU/doublecortin in the
distal RMS, doublecortin cells in the granular cell layer (DCX) and
periglomerular calretinin-expressing interneurons are shown in B–E.
Suppression of BrdU and DCX cells is delayed to 2 weeks post radiation
but is followed by an immediate attempt at recovery peaking at 6 months
post XRT. The origin of this recovery is thought to be due to proliferating
neuroblasts in the distal RMS just proximal to the olfactory bulb.
Concomitantly the SVZ and proximal RMS are devoid of proliferative
activity and DCX expressing neuroblasts (F–G). Stars indicate statistical
significance (*** p,0.001; ** p,0.01; * p,0.05; ANOVA). Bars = SEM. Scale
bar in (A) corresponds to 50 mm; in (F) and (G) to 35 mm.
doi:10.1371/journal.pone.0000588.g002
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complete absence of BrdU uptake follows, corresponding to the

margin of the radiation field at the proximal RMS (Figure 2F–2G).

Nonetheless, the recovery at 6 months after irradiation is not

sustained long-term. All cell subpopulations subsequently exhibit

a dramatic decline in numbers over time. By 15 months after

irradiation, proliferating DCX+cells are absent in the olfactory

bulb of irradiated animals and the total number of BrdU+cells in

the OB declines sharply to 1.6% of control levels. Granular layer

DCX+neuroblasts drop to 2% and calretinin+olfactory interneur-

ons decline to 15.9% of control levels.

Radiation results in a progressive decline of

oligodendrocyte precursor cells and late widespread

demyelination
We evaluated the impact of radiation on the number of

proliferating and mature oligodendrocytes at various time points

after irradiation. We quantified the number of BrdU+/NG2+cells

in multiple brain regions and the expression of O4 in the corpus

callosum as indicators of oligodendrocyte progenitors. We also

quantified the expression of MAG (myelin associated glycoprotein)

and MBP (myelin basic protein) as markers of mature oligoden-

drocytes and myelination parameters. The diffuse pattern of

immunostaining for O4, MAG and MBP prohibits accurate

stereological cell counts. We thus performed fluorescence image

intensity analysis for each of these markers using NIH Image

software (see material and methods for technical details).

We demonstrate significant and permanent suppression of

proliferating NG2 cells in the SVZ immediately after radiation

down to 8% of control levels, with a small but statistically

insignificant rise at 9 months post treatment (Figure S1). The

response in the corpus callosum and cortex differs significantly, as

the proliferating NG2 cells exhibit an initial steep decline followed

by a fast and successful compensatory response that results in near

normal cell numbers by 6 months post XRT in the cortex with

a similar but less extensive response in the corpus callosum (Figure

S1C–D). Interestingly, NG2+cycling cells decrease steadily with

aging in the normal animal. In the irradiated brains, the number

of proliferating NG2 cells decreases again at 1 year and at

15 months post XRT but is not significantly different from normal

age-dependent decline.

The impact of irradiation on oligodendrocyte precursor cells

was further examined by quantitative fluorescence imaging for

O4. We observed a steady decline in O4 signal starting one day

after radiation and reaching about 30% of control levels by

3 months. At 6 months there is a surge in O4 levels followed by

a more significant decline at one year and thereafter. The aging

normal animals maintain a very steady level of O4 at least until

18 months of age despite decreasing levels of proliferating NG2

cells. This suggests highly controlled and efficient regulation of the

O4 cell subpopulation (Figure 3A–3B).

MBP, a marker of mature oligodendrocytes, exhibits a different

pattern. It remains essentially unchanged for the first 9 months

following irradiation. However, later time points show a significant

decrease in MBP image intensity to levels corresponding to 54% of

control values by 15 months (Figure 3C–3D). Histological

examination of tissue sections demonstrates a diffuse pattern of

myelin loss throughout the corpus callosum as well as the fimbriae,

the external capsule and the deep white matter. Similar results

were observed when quantifying image intensity for MAG (data

not shown).

We also analyzed other markers of the oligodendrocyte lineage

that cover the early, intermediate and more mature stages of

oligodendrocytic differentiation. PDGFRA and NG2 followed

a pattern very similar to O4 with early loss and no recovery

(Figure 3E–3F); CNPase decreased measurably in later time points

post XRT (Figure 3G) as did O1 and MAG (Figure S2) with

perhaps an earlier onset of O1 loss. The expression pattern of

these markers is compatible with early loss of immature

oligodendrocyte precursors and delayed loss of more mature

progeny, confirming our stereological and intensity quantification

analyses.

Areas of patchy necrosis and focal total demyelination with

significant cell loss are seen only beyond 15 months post XRT in

about 30% of all animals allowed to live up to that time point

(n = 9) (Figure S4). The incidence of necrosis post XRT in this

study is similar to what is reported in the literature [19].

Magnetic resonance imaging demonstrates early

reduction in corpus callosum volume and T2

changes correlating with loss of progenitors and

demyelination
Serial T2-weighted MR imaging was performed on irradiated and

control animals in order to detect structural or signal changes that

may correlate with the histological findings above. Description of

MRI findings in the literature often pertains to supra therapeutic

doses and very late changes associated with necrosis. Here we

follow animals with monthly scans starting at 5 months post

radiation and spanning a period of 9 months (Figure 4). No signal

changes are noted in the early and intermediate phases post

radiation. By 12 months, subtle T2 signal increases are seen within

the periventricular white matter and corpus callosum suggestive of

demyelination as seen concomitantly by immunohistological

examination. Progressive thinning and loss of definition of the

corpus callosal margins, primarily along the body, are difficult to

detect qualitatively until 13 months. However, serial volumetric

measurements of the callosal contours identify definite loss of

volume starting as early as 5 months post XRT (Figure 4B). These

changes in volume are seen well before significant demyelination is

identified by histology or MRI, and could possibly be related to the

significant loss of oligodendrocyte precursors. An increase in the

size of the ventricular system is also identified as a function of time

following radiation treatment, and could be attributed to similar

cell losses in the brain parenchyma. Later time points demonstrate

worsening T2 signal abnormality within the periventricular and

deep cerebral white matter structures, the external capsule, and

the fimbriae (white arrows, Figure 5). These imaging features

precede histological findings of patchy demyelination and necrosis

seen beyond 15 months (Figure S4).

Endothelial cell number declines immediately

following high dose X-irradiation but is restored to

control levels as early as two months after exposure
Endothelial cells are recognized targets of early radiation-induced

apoptosis and are likely involved in delayed vascular necrosis.

Some authors have implicated endothelial cell damage as a prime

element in the pathogenesis of demyelination. Here we serially

follow the number of capillary segments for 15 months post

radiation. Using immunostaining for rat endothelial cell antigen

(RECA, Figure 5A) and previously described stereological

methods[17,18,20], we calculated the total number of capillary

segments as well as capillary length in the cortex and the corpus

callosum. The total number of capillary segments decreases

significantly one day after radiation in both the CC and Cx by

33% and 36%, respectively (Figure 5B–5C). This is followed by

rapid recovery to normal levels, particularly in the corpus callosum

CNS Radiation Injury
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Figure 3. Fluorescence intensity quantification of O4 and MBP and immunohistological assessment of oligodendrocyte markers.
(A)Representative contoured sections from the genu of the corpus callosum at serial time points post radiation immunostained for O4 (green).
Quantitative measurements are shown in (B). A steady decline in O4 expression is seen immediately following administration of radiation until
3 months post XRT. At 6 months post radiation, a spike in O4 levels is followed by a significant decrease that persists until one year and thereafter. By
15 months, the majority of O4+cells are depleted. In comparison, aged control animals maintain a steady level of O4 until 18 months of age. (C) Serial
immunohistochemical stains for MBP (red) on representative sections from the genu of the corpus callosum at various time points post radiation.
Quantitative measurements are shown in (D). MBP expression is sustained until 6 months post radiation. By 9 months, patchy loss of myelin is
observed throughout the corpus callosum. Demyelination is widespread by 15 months. Oligodendrocyte precursor markers, PDGFR (E) and NG2 (F)
exhibit no significant change in intensity in aging animals but decrease rapidly after radiation without recovery, up to 15 months later. Markers of
more mature oligodendrocytes such as CNP (G) exhibit a delayed decrease in expression starting at 8 months post XRT. CNP is significantly depleted
at 15 months post XRT. DAPI in blue. (*** p,0.001; ** p,0.01; * p,0.05; ANOVA). Bars = SEM. Scale bar corresponds to 100 mm in all panels.
doi:10.1371/journal.pone.0000588.g003
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which recovers in 2 weeks. The number of vessels remains steady

until about 15 months post radiation when it decreases again,

reaching a statistically significant difference in the cortex only.

Capillary length was estimated using the virtual sphere probe

method (Stereo-Investigator, Microbrightfield, VT)[17] and was

found to be lower than normal throughout the entire period

studied, but never reaching a statistically significant difference

from age-matched control (Figure 5D–5E).

Histological assessment of patient-derived

irradiated white matter reveals early loss of

oligoprogenitor markers and delayed

disappearance of myelin
Irradiated human tissues are difficult to obtain due to the relative

infrequence of surgical intervention after irradiation and the

absence of adequate annotation of tissues obtained from large

tissue banks. In addition, such samples have to be meticulously

acquired in order to avoid contamination by neighboring tumor

tissue. Our tissues were collected in accordance with federal and

institutional guidelines and following IRB approval. The majority

of samples consisted of subcortical white matter resected in the

periphery of a brain metastasis or a meningioma. These tumors

are usually non-infiltrating and surrounding brain tissue is

removed occasionally as part of standard neurosurgical techniques

to allow access to the lesion. Patients with CNS metastases present

to surgery soon after diagnosis or upon recurrence following the

administration of radiation. Most patients received radiosurgery

which consists of high dose focal irradiation (18–21 Gy). Normal

control consisted of white matter tissue surrounding a lesion in the

context of a previously untreated patient. Both ‘‘normal’’ and

‘‘irradiated’’ tissues are likely to have exhibited a degree of edema,

as is common in brain tissue surrounding a neoplastic process. A

total of 7 normal controls and 11 irradiated samples ranging from

2 months to 7 years post radiation were collected over 3 years.

Two of the irradiated samples were obtained due to clinically

relevant ‘‘radiation necrosis’’ and were confirmed upon patholog-

ical analysis to represent frank necrosis and no tumor. Those

samples were analyzed separately (Figure S4). We grouped

samples dating up to 7 months post XRT under ‘‘early/subacute’’

and those obtained at longer intervals (9 months to 7 years post

XRT) as ‘‘Late’’. Mean patient age was 55 years in the non-

irradiated control group and 56.2 and 52 years in the ‘‘early’’ and

‘‘late’’ groups respectively. Compared to ‘‘normal brain’’,

irradiated samples exhibit evidence of early loss of O4 and

PDGFRA expressing oligoprogenitors (as early as 2 months post

XRT, our earliest time point) (Figure 6A–6B), that persisted up to

several years post treatment. Markers of intermediate stages of

differentiation (O1 and CNP, Figure 6C and Figure S2) were

reduced at later time points but also remained suppressed

throughout the observation period (up to 7 years). More mature

markers such as MBP (Figure 6D) and MAG (Figure S2), in

addition to Galactocerebroside (Galc), remain strongly expressed

at early time points post-radiation but decline dramatically over

time beyond a year after exposure (Figure S2). We also evaluated

capillaries by immunostaining for von Willebrand Factor (vWF,

Figure 6E) and found a trend similar to what is seen in the rat with

early loss of endothelial cells but a more significant presence of

endothelial cells and capillaries at later time points. A quantitative

study could not be undertaken in view of the small number of

tissues and the wide range of doses and times post XRT but the

trend of early loss of oligodendrocyte progenitors and endothelial

cells was definite in all tissues examined. Also highly consistent was

the near absence of oligodendrocyte progenitors in all late tissues

examined (up to 7 years post XRT). Endothelial cells clearly were

present in late tissues, although we could not assess capillary

complexity or branching. Loss of myelin and preservation of axons

was also very consistent in late tissues in both rats and humans

(Figure S3).

Electron micrographs of irradiated rat and human tissues

showed a very similar process of degradation of the myelin sheaths,

which acquire an irregular appearance with segmental loss of

lamellar compaction associated with separation at the intraperiod

line (Figure 7A–7F). The axons within the myelin sheaths

appeared normal with appropriate orientation of microtubules

and intermediate filaments and only occasional dense bodies; no

spheroids or filamentous aggregates were seen. Myelin changes

were patchy in nature and mixed with normal appearing myelin

Figure 4. MRI imaging post radiation. Representative sagittal (A, upper panel) and axial (A, lower panel) images of control or irradiated rats. At
12 months, subtle T2 changes are seen in the corpus callosum (arrows) that correspond to demyelination changes observed histologically. At
14 months post radiation, the T2 signal changes are more definite. (B) Graph depicts changes in the corpus callosum volume in irradiated animals as
compared to aging control.
doi:10.1371/journal.pone.0000588.g004
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sheaths in the same regions. As time post XRT progressed, an

increasing number of fragmented myelin sheaths was observed,

primarily surrounding larger axons. Ultrastructural changes

suggestive of axonal damage were seen within myelin sheaths

exhibiting significant fragmentation and vesiculation at late times

post XRT, but overall evidence for injury to neuronal cell bodies

was scarce. Scattered fibers possessing inappropriately thin myelin

sheaths for their axonal diameter were noted. In the two cases

where white matter was resected specifically due to symptomatic

radiation necrosis, areas of acellular amorphous debris and

hyalinization of blood vessels could be seen (Figure S4).

Examination of tissues stained in toluidine blue demonstrated

a progressive degeneration of the myelin sheaths over time,

associated with a moderate number of microglia or macrophages

containing cytoplasmic lipid (Figure 7G–7H). An assessment of

neuronal and oligodendroglial counts using toluidine semithin

sections could not be performed due to lack of normative data

necessary to control for regional differences in cell distribution

between tissues obtained from different sites.

DISCUSSION
The main findings of this study pertain to the dramatic and

irreversible suppression of subventricular zone neurogenesis and

the loss of oligodendrocyte precursors following whole brain

radiation. There was no significant recovery in the SVZ up to

15 months post radiation. The irreversible and progressive loss of

proliferating cells in the SVZ could be due to a loss in stem cell

numbers or the functional inactivation of the stem cell pool. Our

data stand in marked contrast to data based on pharmacological

suppression using antimitotic agents such as Ara-C [21]. SVZ

Figure 6. Radiation effects in human tissue samples. Human white
matter samples acquired from non-irradiated brain (normal), irradiated
specimens up to 7 months post XRT (labeled ‘‘early’’), and irradiated
specimens beyond 9 months up to 7 years (labeled ‘‘late’’). Immuno-
histochemistry for early oligodendrocyte progenitor markers (O4,
PDGFR), more mature oligoprogenitors (CNP) and fully differentiated
oligodendrocytes (MBP) and endothelial cells (von Willebrand factor,
vWF). Human tissues exhibit a pattern of early loss of young
oligodendrocyte progenitors and delayed loss of more mature
oligodendrocyte lineage cells, similar to what was described in the
irradiated rat brain. Endothelial cells are scarce in early post radiation
tissues and commonly normal in number in late post XRT tissues
(7 years in this panel). DAPI in blue. Scale bar corresponds to 100 mm in
all panels.
doi:10.1371/journal.pone.0000588.g006

Figure 5. Endothelial cell number and capillary length post radiation.
(A) Representative images of sections from the corpus callosum
immunostained for rat endothelial cell antigen (RECA) at various time
points post radiation. RECA expression declines immediately post
radiation but is restored and maintained through 15 months. Stereo-
logical estimates of the number of capillary segments in the cortex (B)
and corpus callosum (C) and of capillary length in both regions (D, E).
(*** p,0.001; ** p,0.01; * p,0.05; ANOVA). Bars = SEM. Scale bar in A
corresponds to 100 mm.
doi:10.1371/journal.pone.0000588.g005
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exposure to AraC leads to a dramatic but transient loss of all

precursors (type A and C cells). The relatively quiescent SVZ

astrocytes (type B cells) remain largely intact, reenter the cell cycle

after washout of AraC and repopulate the entire SVZ within

a week [21].

Previous studies have suggested that radiation can suppress

proliferating SVZ cells for at least 3 months [12]. Our data extend

these observations for up to 15 months confirming that SVZ

damage is truly irreversible. Interestingly, regions outside the SVZ

such as the corpus callosum and the cortex are capable of at least

partial recovery. An increase in proliferating cell numbers is seen

in both regions within 2 weeks post radiation. This recovery

approaches age-matched control cell numbers, particularly in the

cortex, but is not sustained beyond 9 months post XRT. Such

a transient proliferation response is compatible with the activation

of neural precursors with limited self-renewal potential resulting in

a transient recovery followed by exhaustion of the precursor pool.

It also implicates the loss of long-term self-renewing stem cells or

their inability to re-enter the cell cycle.

One particular feature in our experimental design was the

shielding of the olfactory bulb from radiation exposure. The

response in the OB is essentially tri-phasic. There is initial loss of

neuroblasts coming in from the SVZ with delayed loss of

glomerular calretinin-expressing neurons. A second phase involves

a robust recovery characterized by neuroblast proliferation and

leading to a successful and complete repopulation of the

glomerular neurons by 6 months post XRT. This occurs despite

continued suppression of proliferating cells and complete absence

of DCX+cells in the SVZ and proximal RMS. This proliferative

activity is initiated in the distal RMS, which was effectively

shielded from high dose irradiation and is likely due to the ability

of local neural precursors to self-renew and repair their niche

independently of the SVZ[22]. Nonetheless, the recovery fails

dramatically beyond one year, with complete exhaustion of

proliferating doublecortin cells and significantly reduced calretinin

neurons. We hypothesize that this result is due to the continued

suppression of the SVZ and the lack of long-term renewing

precursors in the RMS and OB. Therefore high dose radiation

resulted in greater suppression of the quiescent SVZ stem cell

compartment compared with the cycling progenitor populations

outside the SVZ. Additional regional influences may also play

a role since the same cell populations (BrdU/NG2) follow different

kinetics depending on their location, with greater and permanent

suppression experienced in the SVZ, compared to the cortex or

callosum. An alternative explanation for this finding is a region or

niche-dependent difference in stem cell or precursor origin.

Previous studies suggested that niche-dependent inhibition of

stem cell function is responsible for the reduction in hippocampal

neurogenesis observed after radiation [23]. While the OB here was

shielded from the direct effects of radiation, it could have been

affected by a bystander effect [24]. This phenomenon is

considered an important mediator of the delayed effects of

Figure 7. Ultrastructural features of irradiated rat and human brain tissue. Electron microscopy of rat (upper panel) and human (lower panel)
tissues in normal controls (A, D), an early/intermediate time point post radiation (B, E, 11 months and 7 months, respectively) and a late time point
(15 months in the rat (C) and 7 years in the human (F)). Ultrastructural analysis of the myelin sheaths demonstrates normally compacted lamellae in
the normal brains. At about 7 months post XRT, myelin sheaths in both human and rats (B and E and insets) acquire an irregular appearance with
segmental loss of lamellar compaction associated with separation at the intraperiod line. These changes are more prevalent in larger myelin sheaths
and are often mixed with normal myelinated fibers (arrows in (B) and (E)). Later times post XRT are associated with an increasing frequency and
severity of myelin sheath degradation and vesiculation. Insets are magnifications of representative areas of myelin sheaths in each panel. Semithin
toluidine sections of irradiated human tissue are shown in (G) and (H). Evidence of myelin sheath fragmentation is seen in the early/intermediate time
point (14 months post XRT in (G)) as well as cytoplasmic lipid debris (white arrows) suggestive of active myelin degradation. Abnormal myelin
sheaths persist and occur at higher frequency at late time points (7 years in H). Scale bar in (F) corresponds to 0.85 mm in (A), (D) and (E), 0.3 mm in (B)
and (F) and 0.5 mm in (C). Scale bar in (H) corresponds to 10 mm in (G) and (H).
doi:10.1371/journal.pone.0000588.g007
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radiation and is typically transmitted via cytokine secretion or

intercellular contacts such as gap junctions. In our study we cannot

rule out that perturbations in the OB niche occurred in a delayed

fashion. However this appears to be an unlikely interpretation of

the data since the decrease in calretinin neurons is accompanied

with a decrease in both total and proliferating doublecortin+neur-

oblasts. Our data strongly suggest that neuron loss in the OB is

dependent on SVZ precursor cell loss rather than niche related

changes in the OB.

Outside of the SVZ and hippocampal progenitor pools, the

long-term effects of brain irradiation are poorly understood. In the

normal brain, the majority of cycling cells are thought to be NG2-

expressing oligodendrocyte progenitors. While there is data

suggesting they may have multiple functional roles within the

adult CNS[25], NG2+cells are considered part of the oligoden-

drocyte lineage and are capable of giving rise to new oligoden-

drocytes under both normal and demyelinating conditions[26–28].

During differentiation, NG2 cells, often co-expressing PDGFRA,

are gradually downregulated and cells enter a transitory pro-

oligodendrocyte stage where they express the O4 antigen. As cells

mature, they progressively lose expression of progenitor markers

and acquire markers of mature oligodendrocytes, including MBP,

MAG and CNP[29,30]. Other data show that NG2 cells may be

recruited to a demyelinated area[31,32] but do not always contribute

to efficient remyelination. These studies suggest that environmental

factors play a significant modulatory role that may inhibit NG2 cell

differentiation. The interpretation of our NG2 findings is compli-

cated by the effect of aging whereby proliferating NG2 cells decrease

steadily especially beyond a year of age. There are also regional

differences, with the cortex and callosum exhibiting some recovery of

NG2 proliferation following radiation, but not the SVZ. This could

indicate context dependent alterations in NG2 cell behavior or fate.

More recently lineage tracing studies have shown that the adult SVZ

can contribute to oligodendrogenesis [33,34]. Despite questions

about the fate of NG2 cells and their pleomorphic role and in light of

the concomitant loss of PDGFRA and O4 it is reasonable to

conclude that the depletion of cycling NG2 cells contributes to the

inability to remyelinate.

Our data suggest that normal animals have the ability to

maintain O4 levels in aging despite a decrease in cycling NG2

precursor cell numbers. In contrast irradiated animals are

incapable of maintaining O4 levels either due to loss of NG2

precursors below a critical threshold or loss of the mechanism that

controls O4 homeostasis. The robust recovery response of the

NG2/BrdU+precursors to near normal levels argues against NG2

precursor cell loss as the primary reason for the inability to

maintain O4 levels post radiation. However at late time points

(beyond 1 year post XRT) the number of NG2 BrdU+cells may be

below a potential critical threshold required for replenishment of the

O4 pool. In normal animals, a relatively small number of cycling

NG2 cells (30% of 3-month control animals) is sufficient to maintain

O4 levels during aging while irradiated animals with similar NG2/

BrdU cell numbers are unable to sustain O4 levels. The factors that

control O4 levels for a given number of oligodendrocyte precursors

are not known but may include cell autonomous or environmental

factors that impact progression along the oligodendrocyte lineage.

Alternatively NG2 progeny may not survive due to radiation-related

mitotic cell death or to the perpetuation of cytokine cascades

triggered by tissue response to XRT[35].

The response of MBP expressing cells is unique among all the

cell populations described here. In contrast to the oligodendrocyte

precursor markers such as NG2/BrdU, PDGFRA or O4, MBP in

irradiated animals was maintained at close to control levels until

9 months post radiation. However, beyond 1 year we observed

a rapid decrease in MBP. Late onset demyelination after brain

irradiation has been described in multiple species including

humans[36] but the mechanism for this delayed response has

remained unclear[37]. One possible explanation is a tight control

of MBP levels despite a significant decrease in oligodendrocyte

precursor cells. The lack of an initial MBP loss suggests that MBP

producing cells are relatively resistant to the immediate effects of

radiation presumably due to their highly differentiated nature.

While the exact turn-over rate of mature MBP+cells is not known,

the kinetics of MBP loss after radiation is compatible with a very

slow turn over rate keeping MBP at near normal levels for up to

12 months. The loss of MBP levels beyond the putative MBP turn-

over rate could not be compensated due to the lack of functional

oligodendrocyte precursors. Alternatively, MBP turn-over rates

may be faster and MBP levels actively maintained through

proliferation and differentiation of the oligodendrocyte precursor

cell compartment. In such a scenario loss of oligodendrocyte

precursors below a critical threshold or an inability to maintain

MBP homeostasis may trigger late onset MBP loss. Ultrastructural

studies demonstrate clearly that MBP levels are not only down-

regulated but are associated with structural damage to the myelin

sheath indicative of oligodendrocyte death or dysfunction. The

failure of recovery could be due to the transmission of radiation-

induced genetic instability over many cell divisions leading to

delayed reproductive death of cells in the oligodendrocyte lineage

[38].

Some authors have attributed demyelination to endothelial cell

damage, ischemia and necrosis[39]. In fact, endothelial cells have

been invoked as the primary target of radiation to the CNS as they

are sensitive to acute radiation damage. However there is limited

information about the long-term effects of radiation on endothelial

cell numbers[40] . Here we report that endothelial cell numbers

recover to near control levels within 2 weeks and remain within

normal range for periods beyond onset of demyelination. In recent

work Hopewell’s group[41] demonstrated that radioprotection of

endothelial cells against apoptosis reduces the risk of delayed

radiation-induced necrosis but did not comment on the impact of

radioprotection on demyelination. There are additional recent

investigations that suggest that depletion of precursors is in-

dependent of damage to the vasculature.[42]. Here we demon-

strate demyelination by radiographic and histological methods

prior to the occurrence of vascular necrosis at a stage when

endothelial cell numbers are close to normal levels. Furthermore,

demyelination occurs in a diffuse histological pattern while

necrotic events, observed several months after onset of de-

myelination, occur in focal areas, particularly in the corpus

callosum and fornix. It is important to note that the study of the

vascular system here is purely structural. Changes in endothelial

cell function such as capillary permeability and status of VEGF

pathways have not been investigated and may still play a role in

facilitating demyelination[39].

Interestingly our data in the rat model were further corrobo-

rated by the analysis of clinical specimens of human brain at early

and late time points post radiation. An early loss of oligodendro-

cyte precursors, as evidenced by loss of O4 and PDGFRA

expression, preceding demyelination and a near complete recovery

of endothelial cell numbers supports the hypothesis that loss of

oligodendrocyte precursors is a primary event. Additionally,

electron micrographs of human and rat specimens at various time

points after radiation support our findings by revealing a similar

pattern of myelin sheath degradation over time post radiation with

absence of significant axonal damage. This pattern of loss of

lamellar compaction and subsequent vesiculation of myelin

sheaths coupled with a moderate influx of lipid laden macrophages
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is consistent with pathological findings of primary demyelination.

Importantly, neurofilament integrity and organization of the

axoplasm appeared normal; staining for MBP and neurofilament

proteins in late post radiation rat and human samples confirmed

a loss of myelin with apparent preservation of axons.

In summary this study demonstrates permanent suppression of

the SVZ stem cell compartment following radiation as well as an

early and sustained loss of oligodendrocyte precursor cells with

subsequent delayed demyelination. The detailed analysis of

various cell populations over time reveals potential therapeutic

windows that could target the recovery phases of neural precursors

post injury prior to the occurrence of structural damage to the

myelin sheaths. The rat model is validated by similar findings in

human tissue. Based on this model, therapeutic strategies may be

directed at reducing initial precursor cell loss or possibly at

replacing the lost precursor cells via transplantation of primary or

stem cell derived oligodendrocyte precursors as a means of

preventing late radiation-induced demyelination.

SUPPORTING INFORMATION

Figure S1 Immunohistochemistry of coronal sections through

the SVZ at various times post radiation (A). Quantitative

measurements shown in (B) demonstrate significant suppression

on day 1 that is maintained well below normal controls with

a minor recovery peak at 9 months post radiation, also illustrated

in (A). BrdU/NG2 kinetics in the corpus callosum (CC) and cortex

(Cx) are noted for a more sustained recovery of cell numbers to

approach those of normal age-matched controls, particularly

beyond 9 months post XRT. (*** p,0.001; ** p,0.01; * p,0.05;

ANOVA). Bars = SEM. Scale bar in (A) corresponds to 50 mm in

all panels except 12 months where it corresponds to 100 mm.

Found at: doi:10.1371/journal.pone.0000588.s001 (3.14 MB TIF)

Figure S2 Rat samples in (A) demonstrate progressive loss of O1

noted at 2 months post XRT with further decrease and no

recovery at 15 months post radiation. MAG, a marker associated

with more mature oligodendrocytes, is depleted only at late time

points. Human white matter samples in (B) were acquired from

non-irradiated (normal brain) and irradiated specimens up to

7 months post XRT (labeled ‘‘early’’) and between 9 months and

7 years (labeled ‘‘late’’). Immunohistochemistry for markers of

intermediate/late oligodendrocyte progenitors O1, Galc and

MAG show a similar pattern of delayed loss of expression with

profound loss and no evidence of recovery in the late phases. Scale

bar corresponds to 100 mm in all panels.

Found at: doi:10.1371/journal.pone.0000588.s002 (6.67 MB TIF)

Figure S3 Panels of human (A) and rat (B) control and irradiated

tissues at 14 months post XRT in both specimens. Immunohistol-

ogy for MBP demonstrates loss of myelin (red) without obvious loss

of neurofilament (green). Antibodies against NF-70 were used for

human tissues and NF-M for rat tissues. Scale bar corresponds to

100 mm in all panels. Representative sections at the level of the

hippocampal commissure and dorsal fornix in the rat are shown in

the normal age-matched and irradiated rat brain in (A) and (B)

respectively. There is severe focal necrosis with myelin (red) and

cell loss (DAPI, blue nuclei). Two of the human specimens were

acquired in the context of symptomatic radiation necrosis.

Histological assessment (H&E) demonstrates pale-staining foci of

necrosis without surrounding hypercellularity (C) and amorphous

necrotic debris with scattered macrophages in (D). Scale bars

correspond to 100 mm in (A), (B) and (C) and to 50 mm in (D).

Found at: doi:10.1371/journal.pone.0000588.s003 (6.13 MB TIF)

Figure S4 Necrosis is seen in some rat tissues beyond 15 months

and in select patients presenting with clinical symptoms post

radiation. Representative sections at the level of the hippocampal

commissure and dorsal fornix in the rat are shown in the normal

age-matched and irradiated rat brain in (A) and (B) respectively.

There is severe focal necrosis with myelin (red) and cell loss (DAPI,

blue nuclei). Two of the human specimens were acquired in the

context of symptomatic radiation necrosis. Histological assessment

(H&E) demonstrates pale-staining foci of necrosis without

surrounding hypercellularity (C) and amorphous necrotic debris

with scattered macrophages in (D). Scale bars correspond to

100 mm in (A), (B) and (C) and to 50 mm in (D).

Found at: doi:10.1371/journal.pone.0000588.s004 (5.01 MB TIF)
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