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Abstract

We aimed to produce intrinsically L-[1-13C]phenylalanine labeled milk and beef for subsequent use in human nutrition
research. The collection of the various organ tissues after slaughter allowed for us to gain insight into the dynamics of tissue
protein turnover in vivo in a lactating dairy cow. One lactating dairy cow received a constant infusion of L-
[1-13C]phenylalanine (450 mmol/min) for 96 h. Plasma and milk were collected prior to, during, and after the stable
isotope infusion. Twenty-four hours after cessation of the infusion the cow was slaughtered. The meat and samples of the
various organ tissues (liver, heart, lung, udder, kidney, rumen, small intestine, and colon) were collected and stored.
Approximately 210 kg of intrinsically labeled beef (bone and fat free) with an average L-[1-13C]phenylalanine enrichment of
1.860.1 mole percent excess (MPE) was obtained. The various organ tissues differed substantially in L-[1-13C]phenylalanine
enrichments in the tissue protein bound pool, the highest enrichment levels were achieved in the kidney (11.7 MPE) and the
lowest enrichment levels in the skeletal muscle tissue protein of the cow (between 1.5–2.4 MPE). The estimated protein
synthesis rates of the various organ tissues should be regarded as underestimates, particularly for the organs with the
higher turnover rates and high secretory activity, due to the lengthened (96 h) measurement period necessary for the
production of the intrinsically labeled beef. Our data demonstrates that there are relatively small differences in L-
[1-13C]phenylalanine enrichments between the various meat cuts, but substantial higher enrichment values are observed in
the various organ tissues. We conclude that protein turnover rates of various organs are much higher when compared to
skeletal muscle protein turnover rates in large lactating ruminants.
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Introduction

Protein intake stimulates muscle protein synthesis rates [1].

The digestion and absorption kinetics of the ingested dietary

protein, and the subsequent release of amino acids in the

circulation, modulates the amplitude of the stimulation of

postprandial muscle protein synthesis rates [2,3]. To accurately

measure the amino acids appearance rates derived from the

digestion and absorption of dietary protein requires that the

labeled amino acid is incorporated directly within the dietary

protein source as the absorption kinetics of free amino acids

differs from dietary intact protein digestion and subsequent

amino acid absorption kinetics [4]. Innovative work has

demonstrated the feasibility of producing intrinsically labeled

milk for the use in human nutrition research [5,6,7]. Our past

efforts established that it is also feasible to produce intrinsically

labeled meat for the assessment of protein digestion and amino

acid absorption kinetics in vivo in humans [7]. The labeled meat

provides researchers with another protein-rich food source to

develop novel nutritional strategies aimed at maximizing

postprandial skeletal muscle protein accretion.

Since the production of intrinsically labeled milk and meat

involves a prolonged continuous intravenous infusion of L-

[1-13C]phenylalanine in a lactating dairy cow, it provided us with

an opportunity to gain information with regards to both muscle as

well as organ-specific L-[1-13C]phenylalanine enrichments. Few

studies have used stable isotope labeled amino acid administration

in an attempt to assess skeletal muscle tissue and/or organ protein

turnover of large livestock species, such as a dairy cow. Continuous

intravenous infusions of stable isotope labeled amino acids are

routinely applied to study skeletal muscle protein metabolism

in vivo in humans [8], and some data have been collected in smaller

livestock animals [9]. To the authors’ knowledge, however, no

study has ever attempted to employ a constant intravenous tracer

infusion protocol to allow a comprehensive assessment of muscle

and various organ tissue protein enrichments. The interesting

advantage of such an approach is that the constant amino acid

tracer infusion allows for a steady delivery of the amino acid tracer
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in the blood stream. Hence, the subsequent amino acid tracer

incorporation into the various tissues will provide more insight in

organ and skeletal muscle tissue specific protein turnover rates.

In the current study, we continuously infused a large amount of

L-[1-13C]phenylalanine for 96 h into a lactating dairy cow for the

production of labeled milk and meat protein for subsequent use in

human nutrition research. Besides collecting skeletal muscle tissue

from the various skeletal muscle groups, various organs were also

sampled to gain more insight in organ-specific protein turnover

rates. Finally, we made comparisons of the concentrations of

amino acids in proteins of the various cow meat/organ tissues

against human skeletal muscle. This study was more comprehen-

sive in nature (e.g., the quantity of meat cuts examined and the

organ tissue enrichments) when compared with our previous work

[7]. Naturally, applying constant stable isotope labeled amino acid

infusion experiments on a large-scale basis (i.e., in numerous large

livestock animals) is prohibitively expensive and, as such, our

report is limited to a single lactating dairy cow. The present study

provides unique insight in the dynamics of tissue turnover and

provides proof of a large variety in muscle and organ specific

turnover rates.

Materials and Methods

Animal Characteristics
One lactating Holstein-Friesian dairy cow (5th parity, ,680 kg

live weight, 42 days in milk at the start of the infusion period) was

selected for this experiment. The animal was fed a mixed ratio of

grass silage (40.7%), maize silage (42.9%), wheat straw (3.2%), soy-

rape seed mix (11.4%), lime (0.4%), salt (0.4%), and a mineral mix

(0.9%) on a dry matter (DM) basis. During the experiment, the

cow consumed 24.361.0 kg dry matter (DM) per day, which

covered 8463% of the net energy lactation (NEL) requirements

and 8263% of the protein requirements [10,11]. The forage

mixture was offered ad libitum 3 times daily allowing 10% orts. In

addition, the cow received a commercially available concentrate

(9.0 kg DM/d) divided into three equal portions of concentrate

given at 6:00, 14:00, and 22:00 h (provided at the milk collection

times). The animal was housed in an individual tie stall and water

was available ad libitum. The experiment and animal handling

procedures were approved by the Institutional Animal Care and

Use Committee of Wageningen University and carried out under

the Dutch Law on Animal Experimentation.

Stable Isotope Infusion
An outline of the experimental tracer infusion protocol is shown

in Figure 1. A total of 400 g L-[1-13C]phenylalanine (Cambridge

Isotopes Laboratories, Andover, MA, USA) was dissolved in 40 L

of an isotonic glucose (5%) solution (Braun Melsungen AG,

Germany) with a final concentration of 278 mmol glucose/L and

60.5 mmol L-[1-13C]phenylalanine/L. The amount of tracer and

the duration of the infusion was selected to achieve high labeled

milk protein and labeled meat of sufficient enrichment for use in

human nutrition research [7]. The infusates were stored at 4uC
and allowed to warm to room temperature prior to use. Two days

before the tracer infusion (248 h), catheters (Careflow 16

gauge6300 mm with 18 gauge670 mm needle introducer; Becton

Dickinson, BD, Netherlands) were inserted percutaneously under

local anaesthetics in the right and left jugular vein for the

intravenous tracer infusion and blood sampling, as previously

described [6]. Directly following catheterization, a glucose infusion

was initiated at a rate of 116 mmol/h. The continuous glucose

infusion was maintained for 48 h prior to the experimental stable

isotope infusion to maximize milk protein synthesis rates [12] and

reduce amino acid oxidation to maximize the tracer incorporation

in endogenous protein [13]. After 48 h, the continuous infusion of

glucose and L-[1-13C]phenylalanine was started at a rate of

7.5 mL/min (450 mmol/min) and maintained for 96 h. Milk was

collected at regular intervals (6.00, 12.00, and 18.00 h of each day)

during the experimental protocol. The general health of the cow

was continuously monitored and all procedures were well-

tolerated by the animal. Prior to the milk fractionation process,

the collected milk was thawed and pooled into low and high level

labeled batches. The processing and the fractionation of the milk

into whey and casein protein concentrate was performed at NIZO

Food Research (Ede, the Netherlands) as described in detail

elsewhere [6].

Meat and Organ Collection
The cow was transported to a commercial butchery (Henk

Worst, Nijkerk, The Netherlands) and slaughtered after the

infusion period. Immediately after the slaughter, large samples

(200–500 g) of the heart, liver, lung, udder, kidney, rumen, small

intestine, and colon were collected and stored at -18 uC until

further analysis. Only a minor part of the overall tissue sample was

used for the analysis (see below). The remaining carcass was

refrigerated at 4 uC for 2 d postmortem. Afterwards, the carcass

was deboned and meat cuts from the rib, shoulder and leg regions

of the cow were collected. The meat cuts corresponding to

portions of the chuck, foreshank, rib, short loin, sirloin, round were

weighted in portions of 150 g, vacuumed sealed, and labeled

before storage at 218 uC. Prior to packaging of the meat cuts, a

large portion of the meat was ground into hamburger. The

hamburger meat mainly originated from the brisket, plate, and

flank meat cuts, but also contained other meat cut portions of the

cow. The slaughter and processing of the meat followed strict Food

and Consumer Product Safety Authority regulations to assure that

no contamination occurred during processing of the meat and the

meat products were fully qualified for human consumption.

Cow Plasma and Protein Analysis
Plasma phenylalanine and tyrosine were derivatized to their t-

butyldimethylsilyl (TBDMS) derivatives and their 13C enrichments

were determined by electron ionization gas chromatography-mass

spectrometry (GC-MS, Agilent 6890N GC/5973N MSD Little

Falls, USA) using selected ion monitoring of masses 336 and 337

for unlabeled and labeled L-[1-13C]phenylalanine, respectively;

and masses 466, 467, for unlabeled and labeled L-[1-13C]tyrosine,

respectively.

The tissue protein-bound L-[1-13C]phenylalanine enrichments

were determined from ,50 mg of wet weight meat and organ

tissue. The larger pieces of skeletal muscle and organ tissue

samples (200–500 g) were cut. Subsequently, smaller pieces of

samples (,50 mg) were extracted from the various regions of the

larger tissue sample to provide a general enrichment value. The

,50 mg wet wt. tissue was freeze-dried, collagen, blood, and other

non-relevant material were removed from the muscle or organ

tissue under a light microscope. The isolated tissue mass (8 mg dry

weight) was weighed and 8 volumes (86dry weight of isolated

tissue6wet/dry ratio) ice-cold 2% perchloric acid (PCA) were

added. The tissue was then homogenized and centrifuged. The

mixed tissue protein pellet was washed with 1.5 mL of 2% PCA

and the pellet was lyophilized. Amino acids were liberated by

adding 6 M HCl after which the hydrolyzed protein fraction was

dried under a nitrogen stream while being heated to 120̊C. The

protein fraction was than dissolved in a 25% acetic acid solution

and passed over a Dowex exchange resin. The amino acids were

eluted with 2 M NH4OH, dried, and the purified amino acids were
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derivatized into their N(O,S)-ethoxycarbonyl ethyl esters to

determine the 13C enrichment of tissue protein phenylalanine

using gas chromatography-combustion-isotope ratio mass spec-

trometry (GC-C-IRMS; MAT 252, Finnigan, Breman, Germany).

Standard regression curves were applied from a series of known

standard enrichment values against the measured values to assess

the linearity of the mass spectrometer (r2 = 0.99; y = 0.9894x+0.0)

and to account for any isotope fractionation which may have

occurred during the analysis.

Amino Acid Concentrations
The quantification of amino acids in biological samples has

been described in detail elsewhere [14]. The human skeletal

muscle tissue was collected from healthy older men (n = 8) in the

postabsorptive-state. The subjects were part of a larger ongoing

investigation being conducted in our laboratory. The human study

was approved by the Medical Ethics Committee of the Maastricht

University Medical Centre, Maastricht, the Netherlands. Briefly,

,10–15 mg of human skeletal muscle and cow meat/organ tissue

were lyophilized after which they were put in a hydrolysis

container containing 10 mL 6 M HCl [14]. The container was

placed in an oven for 6 h at 150 C. The samples were re-dissolved

in 250 mL of water, transferred to a 2 mL crimp cap vial, and

lyophilized again. Subsequently, the protein hydrolysates were

derivatized, and the protein amino acid concentrations were

determined by HPLC as described previously [14].

Calculations
Estimates of cow skeletal muscle and organ tissue protein

fractional synthetic rates (FSR) were calculated as follows: FSR

(%h21) =DEp/[Eprecursor6t]6100. Where DEp is the change in

protein bound L-[1-13C]phenylalanine enrichments in the skeletal

muscle and organ tissues. Eprecursor is the integral of the plasma

free L-[1-13C]phenylalanine enrichment over time curve, and t

indicates the tracer incorporation time (0–120 h).

Statistical Analysis
Linear regression analyses were performed on the cow plasma

enrichments to assess the existence of any deviation in tracer

enrichment during the tracer infusion protocol.

Results

Plasma Enrichments
As shown in Figure 2, plasma free L-[1-13C]phenylalanine

enrichments increased during the infusion. During the infusion

period, the average L-[1-13C]phenylalanine enrichments were

36.061 MPE. Linear regression analysis indicated that the slope

of the plasma L-[1-13C]phenylalanine enrichments were not

significantly different from zero during the continuous infusion

(P = 0.11), indicating that an isotopic steady state was achieved. In

addition, plasma L-[1-13C]tyrosine increased to 6.260.3 MPE as

a result of the L-[1-13C]phenylalanine infusion and subsequent

conversion into tyrosine.

Protein Enrichments and Tissue Synthesis Rates
The mean L-[1-13C]phenylalanine enrichments of the meat cuts

were 1.7660.1 MPE. The highest observed enrichment of the

meat cuts was gained into the chuck steak (Figure 3). Notable, is

the filet mignon (tenderloin) steak cut also accrued a relative high

enrichment (2.0 MPE). The filet mignon is a steak cut, generally

located in the short loin, which originates from the narrow end of

the tenderloin (situated in the short loin/sirloin region). Of the

400 g of L-[1-13C]phenylalanine infused into the cow, approxi-

mately 8.4 g was recovered in the meat. Based on the estimated

net meat weight of 210 kg (absent of bone and fat) and a total

phenylalanine content of 8.4 kg, the recovery rate of the tracer in

the meat was calculated at ,6%. The organ tissue enrichments

Figure 1. Study protocol of the cow infusion protocol.
doi:10.1371/journal.pone.0068109.g001

Figure 2. Cow plasma enrichments of L-[1-13C]phenylalanine
and L-[1-13C]tyrosine before, during, and after the infusion
protocol. Values are expressed as mole percent excess (MPE).
doi:10.1371/journal.pone.0068109.g002
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are presented in Figure 4. The various organ tissues differed in

their observed L-[1-13C]phenylalanine enrichments which em-

phasizes the large variance in tissue protein turnover rates. The

highest enrichments were achieved in the kidney (11.7 MPE),

udder (10.3 MPE), and the liver (9.4 MPE), whereas L-

[1-13C]phenylalanine enrichments were lower in cardiac

(4.7 MPE) and skeletal muscle tissue of the cow. Using estimates

of the various organ weights of a cow, the % tracer recovery rate

into total organ tissue was ,9.7%.

Estimations of the skeletal muscle and organ tissue protein

synthesis rates, using the plasma free L-[1-13C]phenylalanine

enrichment as the precursor pool, are shown in Table 1. The milk

L-[1-13C]phenylalanine enrichments averaged 35.561.2 MPE

and 7.263.1 MPE in the high- and low-labeled batches,

respectively. Both high- and low- labeled batches were fractionated

into a high- and low-labeled casein protein concentrates (28 and

23 kg, respectively) and high- and low-labeled whey protein

concentrates (12 and 10 kg, respectively). The total amount of

intrinsically L-[1-13C]phenylalanine high and low labeled casein

were 4 and 3 kg, respectively. The total amount of intrinsically L-

[1-13C]phenylalanine high and low labeled whey was 0.8 and

0.5 kg, respectively. Of the 400 g of L-[1-13C]phenylalanine that

was infused into the cow, approximately 95 g was recovered in the

collected milk. Thus, the recovery rate of the tracer in the milk was

calculated to be 24%.

Amino Acid Concentrations
The human skeletal muscle, cow beef, whey and casein protein

amino acid concentrations are shown in Table 2. Human and

cow skeletal muscle tissues were similar in leucine and phenylal-

anine by total amino acid content (,9% and 4%, respectively).

Whey protein contained the highest leucine by total amino acid

content (,14%). The amino acid concentrations of the sampled

organ tissues are shown in Table 3. Across the various sampled

organ tissues, the bound phenylalanine by total amino acid

content ranged from ,5% (liver and kidney) to ,3% (rumen).

The total essential amino acid concentrations were similar across

all the various sampled organ tissues, but were lower in total

content of essential amino acids when compared with the beef

samples.

Discussion

The current work demonstrates the feasibility of producing

intrinsically-labeled meat protein for use in human nutrition

research. We demonstrate that the enrichment of organs and

skeletal muscle tissue vary in a lactating dairy cow after a 96 h

constant infusion of L-[1-13C]phenylalanine. The highest level of

L-[1-13C]phenylalanine enrichment was observed in the kidney,

udder, and liver (Figure 3). Skeletal muscle tissue had a lower

amount of L-[1-13C]phenylalanine enrichment (,4-fold) when

compared with most of the organ tissues, but it has the most

fundamental role in amino acid accretion due to its overall mass

[15].

Protein turnover is cyclical in nature, with the synthesis of

proteins being counterbalanced by their degradation rates such

that tissue protein mass remains constant in a mature dry (non-

lactating) well-nourished animal. It has long been recognized that

fluctuations in tissue protein synthesis rates (also protein mass) can

occur during a transition from dry to lactating-states in smaller

sized ruminants [16,17] and/or the nutritional-state of the animal

[18,19,20]. Tissue protein fractional synthesis rates (FSR) are

calculated by the change in tissue protein enrichment over time

with respect to the precursor pool (usually plasma or tissue free)

Figure 3. The L-[1-13C]phenylalanine enrichments of the meat cuts collected from different locations of a lactating dairy cow. The
filet mignon is a steak cut that is, generally, positioned in the short loin steak cut. Values are expressed as mole percent excess (MPE).
doi:10.1371/journal.pone.0068109.g003

Table 1. Estimates of fractional synthesis rates (FSR) of tissue
proteins and the fold difference from skeletal muscle tissue in
a lactating dairy cow.

Tissue FSR (%Nh-1)
Fold difference from
skeletal muscle tissue

Skeletal muscle 0.06

Liver 0.31 5.3

Heart 0.15 2.6

Lung 0.20 3.4

Udder 0.34 5.8

Kidney 0.38 6.6

Rumen 0.17 2.9

Small intestine 0.27 4.6

Colon 0.19 3.3

doi:10.1371/journal.pone.0068109.t001
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from which the labeled amino acid is incorporated into the protein

[8]. Tissue protein FSR relies fundamentally on a number of basic

assumptions, many of which were not adhered to within our

infusion protocol [8]. Our infusion protocol was selected to

achieve the highest possible L-[1-13C]phenylalanine enrichment in

the meat/milk, and not purposely designed for the determination

of muscle and organ tissue specific protein synthesis rates. We were

successful in achieving a ‘steady-state’ of labeling of tracer amino

acid in the plasma free amino acid pool during the infusion

(Figure 2), and the prolonged (96 h) continuous infusion would

have inevitability resulted in a steady labeling of the tissue free

amino acid pool [21], an effect that would occur regardless of

tissue protein turnover rates. Thus, the level of L-[1-13C]phenyl-

alanine enrichment in the various collected muscle and organ

tissue samples provides a proxy measurement for tissue protein

turnover rates.

Cows have an innate ability to convert the relatively low quality

plant-derived protein in consumed in their diet into higher quality

meat and milk proteins; albeit inefficiently [22]. Here, we observed

an average L-[1-13C]phenylalanine enrichment of 1.760.1 MPE

in the various meat cuts, and equates to an average FSR value of

,1.39%Nd-1 (Figure 3). This observation is similar to our previous

work where we produced meat that was intrinsically L-

[1-13C]phenylalanine labeled to ,1.4 MPE [7]. Perhaps most

interesting is that L-[1-13C]phenylalanine enrichments were,

generally, uniform over the whole skeletal muscle mass of the

cow, but the enrichments were slightly higher in the meat collected

from the shoulder area. Such a finding may, at least partly, relate

to the increased activity of the shoulder muscles of the cow that

occurred during the infusion period, as increased physical activity

stimulates skeletal muscle protein synthesis rates [23]. Skeletal

muscle activity increases considerably during eating and rumina-

tion in a cow [24] and the muscle free precursor pool for protein

synthesis does not fluctuate greatly in various muscles of large

Table 2. Protein-bound amino acid concentrations in human
skeletal muscle (n = 10) and in cow beef, whey and casein
protein (n = 1).

Human
Muscle Beef

Whey
Protein

Casein
Protein

nmol/mg of protein

Alanine 466618 480 428 274

Arginine 25267 282 127 181

Aspartic acid 498615 511 619 422

Glutamine 889622 929 909 1386

Glycine 409612 464 200 205

Histidine 181609 178 156 162

Isoleucine 255610 301 375 354

Leucine 483616 471 751 587

Lysine 449612 477 585 464

Methionine 113602 131 127 157

Phenylalanine 231609 215 217 288

Serine 215607 212 237 324

Threonine 245607 253 283 251

Tyrosine 112605 113 142 190

Valine 365615 337 386 494

g EAA 2323664 2363 2882 2757

% Leucine 9 9 14 10

EAA are the sum of His, Ile, Val, Phe, Lys, His, Met, and Thr; note that Trp, Pro,
Cys were not measured. Human muscle was collected from healthy older men
(n = 8). Human muscle values 6 SEM.
doi:10.1371/journal.pone.0068109.t002

Table 3. Protein-bound amino acid concentrations in the cow organ tissues (n = 1).

Skeletal
muscle Liver Heart Lung Udder Kidney Rumen

Small
intestine Colon

nmol/mg of protein

Alanine 480 304 352 439 246 337 447 512 432

Arginine 282 168 196 207 137 206 273 310 284

Aspartic acid 511 304 309 337 205 333 376 432 464

Glutamine 929 496 590 569 384 541 738 744 806

Glycine 464 344 296 488 280 387 514 758 460

Histidine 178 104 98 110 58 104 82 95 97

Isoleucine 301 192 193 175 128 213 216 209 212

Leucine 471 320 317 337 212 357 330 353 374

Lysine 477 240 296 272 191 276 291 339 324

Methionine 131 64 80 69 44 81 99 91 94

Phenylalanine 215 176 151 159 94 188 149 176 165

Serine 212 180 158 195 121 190 209 217 223

Threonine 253 168 171 187 116 186 199 215 227

Tyrosine 113 48 60 57 27 68 74 178 169

Valine 337 268 256 333 183 299 294 287 309

g EAA 2363 1532 1563 1642 1026 1704 1660 1764 1802

% Leucine 9 9 9 9 9 9 8 7 8

EAA are the sum of His, Ile, Val, Phe, Lys, His, Met, and Thr; note that Trp, Pro, Cys were not measured.
doi:10.1371/journal.pone.0068109.t003
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ruminates [25], and provides support for this observation.

Regional differences in fiber type composition, capillary density,

and blood flow may also contribute to the variance in the

proportion L-[1-13C]phenylalanine that was incorporated into the

various meat cuts. Notable is that the enrichment in the meat,

regardless of the cut, is much lower than the enrichment that is

attained in the (high-labeled) milk [6,7], and precludes its use in

experiments where the metabolic fate of the ingested meat derived

amino acids is directly determined in skeletal muscle tissue of the

consumer [2,3,23,26]. Nonetheless, the ingestion of 158 g of

intrinsically L-[1-13C]phenylalanine labeled minced foreshank

(30 g protein; 1.7 MPE) resulted in plasma L-[1-13C]phenylala-

nine enrichments between 0.3–0.7 MPE at 30–90 min in healthy

young men (Burd NA, unpublished observation); an enrichment value

that can be measured in the plasma using GC-MS analysis. The

combination of continuous intravenous L-[ring-2H5]phenylalanine

infusions with the ingestion of labeled meat provides a useful tool

for the in vivo assessment of digestion and absorption rates

following beef ingestion in humans [7].

As illustrated in Figure 4, there were considerable differences

in L-[1-13C]phenylalanine enrichments in the sampled organ

tissues of the lactating dairy cow. The highest observed protein

bound L-[1-13C]phenylalanine enrichments were observed in the

udder and kidney. Notable, is that changes in the mammary gland

occur during lactation such that this tissue becomes more

energetically expensive, metabolically active, and gains tissue

protein mass [9,27]. Mammary tissue protein synthesis rates can

increase ,15 fold in lactating (as compared to dry) goats [16].

Given this, it is clear that the higher L-[1-13C]phenylalanine

enrichment in the udder is reflective of the increased protein

synthesis rates occurring in this tissue during lactation in the dairy

cow. Baracos et al. [17] demonstrated that kidney protein synthesis

rates increased in ruminants during lactation, and can account for

,9% (despite their small protein mass by weight) of whole body

protein synthesis rates in humans [28]. Also, early work

demonstrated that ,70–90% of kidney proteins are replaced

after 50 days in well fed rodents [29]. Here, we provide in vivo

evidence that kidney protein turnover rates are high in a lactating

dairy cow, as noted by a L-[1-13C]phenylalanine enrichment of

11.7 MPE (the highest observed enrichment amount of all the

sampled tissues). The liver is classically recognized as an organ

with high protein synthesis rates across various mammalian species

[17,30,31,32], and our data broadly agrees with this notion.

Indeed, the amplitude of our reported L-[1-13C]phenylalanine

enrichment in the liver (9.4 MPE) may be an underestimate of the

‘exact’ enrichment value (see below).

The gastro-intestinal tract is an area of increased metabolic

activity, especially in ruminants [33,34]. Besides data in goats and

sheep [33], a paucity of information is available describing tissue

protein turnover rates of larger ruminants. We collected tissue

samples from the ruminal, small intestine, and colon tissues of the

cow to provide insight into their protein turnover rates. We

observed higher L-[1-13C]phenylalanine enrichments in the small

intestine than the rumen or colon, which is a finding comparable

to data in smaller ruminants [33]. Our in vivo measurements of

cardiac muscle protein L-[1-13C]phenylalanine enrichments

(4.7 MPE) demonstrated that protein turnover in the heart is

dynamic as well and not as inert as often thought. A strong point of

our work is that, while limited on overall number of animals

studied, it provides the L-[1-13C]phenylalanine enrichments in

multiple organ and skeletal muscle tissues within the same

physiological and experimental environment (the animal served

as its own control) to provide in vivo information on the dynamics

of protein metabolism. As such, we calculated turnover rates of

various tissues (see Table 1).

In this study, we collected the samples of the various organ and

skeletal muscle tissues immediately following the butchering of the

cow. We sought to collect large portions of the tissues to serve as

representative pieces for the overall organ protein composition.

We did not specifically seek to collect isolated portions of the

organ, for example, the heart (atria vs. ventricles), kidney (medulla

vs. cortex) etc. Future work is warranted to address whether there

are large regional differences in protein turnover rates in various

organs. In addition to this, the recycling of the amino acid label

into the target tissue can be a concern during prolonged periods of

a stable isotope amino acid infusion [35]. It is possible the labeled

phenylalanine was incorporated into the tissue protein and

subsequently released from the protein over the 96 h of tracer

infusion. Since we cannot separate whether there was any re-entry

of L-[1-13C]phenylalanine into the target tissue from protein

breakdown, there was likely some ‘error’ that was introduced into

the tissue protein enrichments. The extent of tracer recycling will

also be dependent on the turnover rates of the sampled tissue. For

slowly turning over muscle proteins, it has been estimated that

,15% of the tracer incorporated into the muscle protein may

reappear as a result of protein breakdown during a 5 day

continuous stable isotope amino acid infusion in humans [36].

For organs (such as the liver) that export proteins into the blood

and contain small intracellular free pools, but with high turnover

rates [25], it is possible that we are providing an undervalue of the

‘true’ L-[1-13C]phenylalanine enrichment. Of course, the intrave-

nous injection of a large amount of tracer and tracee amino acids

(the flooding dose method) has been used to rapidly increase the

labeling of all precursor pools, thereby shortening the measure-

ment time, and presumably eliminate the uncertainty with the

amount of tracer recycling occurring in a variety of organs [37].

However, the use of the large-flood dose method would not be

practical to maximize the production of intrinsically labeled meat/

milk for use in subsequent human nutritional studies. The

presented data are simply being used to provide a general

overview and lend some insight into the dynamic nature of protein

turnover in various organs, most of which show much more rapid

turnover when compared with skeletal muscle tissue. The fact that

there might be more tracer recycling in these organ tissues only

further underlines our message.

It is important to outline further that the measurement of the

transfer RNA (tRNA) charged with the amino acid tracer, the true

precursor for protein synthesis, is practically challenging due to the

low concentrations and high turnover rates of aminoacyl-tRNA in

tissue as well as the increased risk for contamination from other

amino acids during its isolation/purification [38]. Workers have

used other precursor pools, which are more easily accessible, as a

surrogate for the aminoacyl-tRNA enrichment. The assumption is

that the various free amino acid pools enrichments (i.e.,

extracellular plasma free or the intracellular free) closely corre-

spond to the aminoacyl-tRNA enrichment [39]. Baumann et al.

[39] demonstrated that the intracellular phenylalanine precursor

pool may better represent the tRNA pool in the liver during a

continuous stable isotope amino acid infusion, while the extracel-

lular free pool may have greater predictive potential for the labeled

tracer acylated to the tRNA in skeletal muscle and heart tissue.

Notwithstanding, the aminoacyl-tRNA enrichment value is

generally considered to fall in between the plasma free and

intracellular free enrichment values amongst the various tissues

[8]. The calculation of tissue protein FSR based on the plasma free

or intracellular free precursor enrichment will provide estimates

for the lower and upper limits of FSR, respectively.
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Here, we used the labeling of the plasma free enrichment to

represent the precursor pool for all tissues. The level error

associated with any given FSR calculation using the plasma free as

the precursor pool enrichment value may be more reliable for

some tissues (skeletal muscle or heart) when compared to other

organ tissues (liver) [39]. The estimated FSR values (Table 1.)
should be considered underestimates of the true organ protein

fractional synthesis rates. Data in rodents and other farm animals

(e.g., sheep and piglets) using other experimental models, like the

flooding dose method and/or the use of radioisotopes, have shown

higher tissue protein synthesis rates for the liver, gut, and skeletal

muscle tissues [38,40,41]. As described by G.E. Lobley [40], the

small intestine protein synthesis rates of sheep (a ruminant) has

been measured at 45.0%Nd-1, a value that is ,7–fold higher than

the data we observed in the lactating dairy cow. Baracos et al. [17]

reported tissue protein synthesis rates values of ,42.0, 20.0, and

13.0%Nd-1 in the udder, kidney, and liver, respectively, of a

lactating goat. Again, these tissue protein FSR values in the goat

are 5.0, 1.7, 2.2-fold higher for the udder, kidney, and liver,

respectively, than we have reported in this paper for the cow. Both

the prolonged 96 h measurement period [34], especially prob-

lematic for the organs with rapid protein export/turnover rates,

and the use of the extracellular plasma free enrichment [42] likely

contribute to the lower reported tissue protein synthesis rates in

the lactating dairy cow. It is often difficult to compare tissue

protein FSR values between studies that use vastly different

experimental approaches (various mammalian species, precursor

pool selection, etc.), but we emphasize that the FSR values should

be considered crude (under) estimates. Overall, the presented FSR

values provide comparative values, and unique insight, between a

large variety of organ and skeletal muscle tissues within a single

study and the same experimental approach. Our data highlight

that there are high tissue protein synthesis rates in organs of a

lactating cow, and these values are much higher than skeletal

muscle protein synthesis rates.

In human nutrition research the amino acid composition of a

protein-rich food is one of the characteristics used to predict its

anabolic potential for the stimulation of postprandial muscle

protein synthesis rates [43], and it is often proposed that a high

quality protein source has a similar amino acid concentration to

that of human body protein [44]. The evidence suggests that milk-

derived whey protein is the most anabolic, when compared with

other dietary protein sources, allowing for the maximal stimulation

of postprandial muscle protein synthesis rates. It is assumed that

the high(er) leucine content of whey protein is critically important

to maximize postprandial muscle protein synthesis rates [2,45,46].

We assessed the protein-bound amino acid concentrations of a

piece of the beef (foreshank), and compared it with whey and

casein protein fractionated from the collected dairy milk and a

series of human skeletal muscle biopsies that we analyzed. As

shown in Table 2, the amino acid concentrations are similar

between human and cow meat, but the leucine concentration in

the meat is lower when compared with the leucine content of milk-

derived whey protein (,9 vs. ,14% leucine by content). While

some data suggest that beef is an effective food source to stimulate

muscle protein synthesis rates [47], it remains to be investigated

whether beef ingestion stimulates postprandial muscle protein

synthesis rates of equal magnitude when compared with the

ingestion of iso-nitrogenous amount of casein or whey protein.

Figure 4. The L-[1-13C]phenylalanine enrichments of various collected tissues of a lactating dairy cow. The skeletal muscle tissue
enrichments are a collective sum of the various collected skeletal muscle tissue. Values are expressed as mole percent excess (MPE).
doi:10.1371/journal.pone.0068109.g004
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In conclusion, our data shows there is large variance in L-

[1-13C]phenylalanine enrichments between the various meat cuts,

but the enrichment value is quite minimal when comparing the

meat enrichments with the various organs. We provide evidence

that there are high protein turnover rates in the kidney, udder, and

liver of a lactating dairy cow. The infusion of a large amount of L-

[1-13C]phenylalanine produces ,210 kg of intrinsically labeled

beef for use in the study of protein digestion and amino acid

absorption kinetics in vivo in humans. The relative proportion of

the measured protein-bound essential amino acid concentrations is

similar between human skeletal muscle and cow meat. Further

work is warranted to assess the effectiveness of beef for the

stimulation of postprandial skeletal muscle anabolism when

compared against other protein-rich food sources.
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