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Abstract

Background: Recent studies have identified several single nucleotide polymorphisms (SNPs) in the population that are
associated with variations in the risks of many different diseases including cancers such as breast, prostate and colorectal.
For ovarian cancer, the known highly penetrant susceptibility genes (BRCA1 and BRCA2) are probably responsible for only
40% of the excess familial ovarian cancer risks, suggesting that other susceptibility genes of lower penetrance exist.

Methods: We have taken a candidate approach to identifying moderate risk susceptibility alleles for ovarian cancer. To date,
we have genotyped 340 SNPs from 94 candidate genes or regions, in up to 1,491 invasive epithelial ovarian cancer cases
and 3,145 unaffected controls from three different population based studies from the UK, Denmark and USA.

Results: After adjusting for population stratification by genomic control, 18 SNPs (5.3%) were significant at the 5% level, and
5 SNPs (1.5%) were significant at the 1% level. The most significant association was for the SNP rs2107425, located on
chromosome 11p15.5, which has previously been identified as a susceptibility allele for breast cancer from a genome wide
association study (P-trend = 0.0012). When SNPs/genes were stratified into 7 different pathways or groups of validation
SNPs, the breast cancer associated SNPs were the only group of SNPs that were significantly associated with ovarian cancer
risk (P-heterogeneity = 0.0003; P-trend = 0.0028; adjusted (for population stratification) P-trend = 0.006). We did not find
statistically significant associations when the combined data for all SNPs were analysed using an admixture maximum
likelihood (AML) experiment-wise test for association (P-heterogeneity = 0.051; P-trend = 0.068).

Conclusion: These data suggest that a proportion of the SNPs we evaluated were associated with ovarian cancer risk, but
that the effect sizes were too small to detect associations with individual SNPs.
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Introduction

One of the strongest risk factors for invasive epithelial ovarian

cancer is a family history of the disease; a woman with a single first-

degree relative diagnosed with ovarian cancer has a 2–3 fold

increased risk [1]. Familial aggregation of cancer could be due to

either a sharing of environmental or lifestyle risk factors within

families, or through the inheritance of genetic risk factors. The higher

rates of cancer in monozoygotic twins, compared with dizygotic twins

or other siblings of individuals with cancer, suggests that genetic

factors play a greater role [2].

Germline mutations in the high penetrance genes BRCA1 and

BRCA2 are responsible for the vast majority of families containing

multiple cases of ovarian cancer (.3 cases) and two or more cases
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of breast and ovarian cancer [3–5]. Other highly penetrant genes

may exist, but these are likely to be rare and account for only a

small fraction of the excess familial risk. The risk of ovarian cancer

in first-degree relatives of ovarian cancer patients compared to the

population risk is estimated to be about 2.4 [6]. Approximately

60% of this familial relative risk is not accounted for by the known

high risk loci [7]. This remaining risk is likely to be caused by a

combination of common low penetrance genes (the common

variant: common disease hypothesis) and/or rare variants of

moderate penetrance [8].

Genetic association studies, which compare the frequencies of

common genetic variants between cases and unaffected controls,

have become the preferred approach to look for low penetrance

cancer susceptibility genes. Candidate gene studies have focused

on common variants in genes that may play a role in cancer (e.g.

cell cycle control; DNA damage repair and response; proliferation

and apoptosis) with some success [9–14]. However, they have

often been limited by small sample sizes, which reduce the power

to detect associations at very stringent levels of significance.

Consortium based studies have been used to increase the samples

size and attempt to validate preliminary results [15–19]. More

recently, genome-wide association studies, an approach that

compares the frequency of hundreds of thousands of SNPs

distributed evenly throughout the genome, have been successful in

identifying low penetrance susceptibility variants for breast,

colorectal and prostate cancers [20–25]. There are, as yet, no

published genome-wide association studies for ovarian cancer.

Therefore, we have continued to take a candidate gene approach

to identify ovarian cancer susceptibility markers. We have mainly

used an empirical approach, in which a minimal set of ’’tagging’’

single nucleotide polymorphisms (SNPs) that efficiently capture all

the common genetic variation in a gene, to find genetic

susceptibility markers for ovarian cancer [11–14]. The candidate

genes in this study were involved in several cancer related

pathways; but we have also analysed candidate SNPs from the

Ovarian Cancer Association Consortium (OCAC) validation

studies and from two recently completed breast cancer genome

wide association studies [20,21].

The analysis of genetic association studies inevitably involves a

large number of statistical tests, and there has been much debate

about how to correct for multiple hypothesis testing. This has

usually been considered a hypothesis-testing problem in which the

aim is to control the overall ‘‘experiment-wise’’ type I error. The

null hypothesis is that there is no association between any of the

SNPs being tested with disease, and the aim is to test whether this

global null hypothesis of no association can be rejected. A variety

of methods have been proposed to test the global null hypothesis

[26–30]. One of these, the admixture maximum likelihood (AML)

test, simultaneously estimates the proportion of associated SNPs

and their typical effect size. The power of the AML test has been

found to be similar to or better than all other tests (rank truncated

product, unrestricted maximum likelihood, restricted space

maximum likelihood, most significant SNP, Global x2, Best subset

x2) across a wide range of scenarios for the alternative hypothesis

[31]. The simple Bonferroni correction performed best only when

the number of associated SNPs was small (typically #3 or ,5% of

SNPs tested, whichever is smaller).

The AML method has been used to evaluate the overall

evidence of association between 710 common variants in 117

candidate genes and breast cancer risk [32]. The results of this

study showed that a proportion of SNPs in these candidate genes

were associated with breast cancer risk, but that the effects of

individual SNPs were likely to be small. In the current study, we

use the AML method to evaluate data from 12 previous studies [9–

19] for global evidence of associations between the risk of invasive

epithelial ovarian cancer and 340 SNPs from 84 genes and 10

different chromosomal regions – SNPs in these regions are not

within known genes or open reading frames. Three population-

based studies comprising approximately 1,500 cases of invasive

epithelial ovarian cancer and 3,100 unaffected controls were

analysed.

Materials and Methods

Ethics Statement
Ethics committee approval was obtained for the collection and

genetic analysis of all samples, and an informed written consent

was obtained from all participants. Ethics approvals were granted

by; the Danish Ethical Committees of Copenhagen and Freder-

iksberg (MALOVA), Anglia and Oxford Multi Centre Research

Ethics Committee (SEARCH) and the Institutional Review Boards

of Stanford University School of Medicine and Roswell Park

Cancer Institute (GEOCS).

Study individuals
Three population-based ovarian cancer case-control series were

used in this research [9]: MALOVA (446 cases, 1,221 controls)

from Denmark, SEARCH (719 cases, 855 controls) from the UK,

and GEOCS (325 cases, 429 controls) from the USA. The case

collection for MALOVA ran from 1994 to 1999 in Danish

counties with a gynaecological hospital department. Cases were

women diagnosed with invasive epithelial ovarian cancer aged 30–

80 years. Controls were age-matched (within 3 years) and were

randomly drawn from Danish born women in the study area by

means of the computerized Danish Central Population Register.

SEARCH began recruitment in 1998 and covers the regions

served by the East Anglian and West Midlands cancer registries in

the UK. Eligible women were those diagnosed since 1991 with

invasive epithelial ovarian cancer under the age of 70 years.

Controls, aged 45–74 years, from the same geographical region as

the cases, were from the Norfolk constituent of the European

Prospective Investigation of Cancer (EPIC) cohort. The Genetic

Epidemiology Ovarian Cancer Study (GEOCS, formerly known

as FROC) recruited participants from 6 counties in the San

Francisco Bay area USA from 1997 to 2002. Patients, aged

between 23–64 years, with invasive epithelial ovarian cancer were

identified via rapid case ascertainment through the Greater Bay

Area Cancer Registry operated by the Northern California Cancer

Centre as part of the SEER Program. Control women were

identified through random-digit dial and were frequency-matched

to cases on race/ethnicity and five-year age group. Cases in

MALOVA were collected prospectively, GEOCS retrospectively

and SEARCH both prospectively and retrospectively. For all three

studies, DNA samples were extracted from blood by Whatman

International. Further details of these studies have been published

previously [9–14].

Gene and tag SNP selection
Candidate gene selection was primarily based on biological

pathways that are predicted to be involved in ovarian carcino-

genesis. The major pathways evaluated were DNA double strand

break repair, cell cycle control and DNA mismatch repair (MMR).

We also analysed several known or candidate tumour suppressor

genes and oncogenes for ovarian cancer and a series of genes that

we identified from the analysis of an in vitro functional model of

ovarian cancer [33]. Finally, we analysed SNPs that have

previously shown weak evidence of association with ovarian

cancer risks and SNPs that are known to be associated with breast

SNP Analysis of Ovarian Cancer
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cancer risk. The pathways, genes and SNPs analysed are listed in

Table S1. Further details on some of these genes and SNPs, and

their association with ovarian cancer have been published [9–14].

For most genes, a tagging SNP approach was used to select

known common variants. Haploview and Tagger were used for

the selection of common variants from the reference CEPH

genotypes. The approach involved the tagging of common SNPs

with a tagging SNP (tSNP) with a minimum r2 of 0.8. If a SNP was

poorly correlated with other SNPs, then 2- or 3-marker haplotypes

were used, (an approach called ‘‘aggressive tagging’’), if the

haplotypes tagged the SNP(s) with a minimum r2 of 0.8. SNP

tagging reduces the number of SNPs that require genotyping in

association studies. The MMR gene study was completed before

tagging SNP approaches were widely used due to the lack of

available information from the International HapMap Project;

and so we analysed SNPs of varying frequencies selected from

public databases such as the dbSNP database (http://www.ncbi.

nlm.nih.gov/SNP) and from the NIEHS Environmental Genome

Project (EGP) (http://egp.gs.washington.edu/) [12].

The genotyping methods used in these studies have been

described previously (9–14). All assays were carried out in 384-well

plates and included 12 duplicate samples per plate (3%).

Genotypes were excluded if duplicate concordance rates for a

study were ,98%. Plates also included non-template negative test

controls. Finally genotypes were excluded from the analysis if call

rates were ,90% per plate. The average call rates for these SNP

were 94% in cases and 96% in controls. A list of the SNPs

genotyped in this study is provided in Table S1.

Statistical methods
Associations between invasive epithelial ovarian cancer and

each SNP were assessed using two tests; the one-degree of freedom

Cochran–Armitage trend test and the general two-degrees of

freedom x2 test (heterogeneity test). Both tests were stratified by

study to account for any differences within the sample sets. The

overall evidence for an excess of associations between common

variants and ovarian cancer risk was evaluated with the AML

method, which is described in detail in Tyrer et al [31]. Briefly, the

AML method formulates the alternative hypothesis in terms of the

probability (a) that a given SNP is associated with disease and a

measured effect size. When a SNP is associated with disease, the

calculated x2 statistic will be distributed, asymptotically, as a non-

central x2 distribution with the usual degrees of freedom and a

non-centrality parameter g. The non-centrality parameter is a

measure of the size of effect of the SNP, and is closely related to

the contribution of the SNP to the genetic variance of the trait.

The non-centrality parameter was assumed to be the same for all

SNPs to make the model more parsimonious. This was an

approximation but improves power if the non-centrality parameter

is roughly the same for associated SNPs as fewer parameters have

to be optimized. If g is assumed to be the same for each associated

SNP, then both a and g can be estimated by maximum likelihood,

and a test of the null hypothesis can then be obtained as a

likelihood ratio test. In instances such as this, where some SNPs

were correlated, pseudo-maximum likelihood estimates can still be

produced by the same procedure, as if the SNPs were

independent. Therefore the pseudo-maximum-likelihood method

was applied to account for LD between SNPs. Simulation can

subsequently be used to establish the statistical significance of the

test. We applied the AML method using both the trend and

heterogeneity tests. All analyses were adjusted for cryptic

population stratification using the method described by Devlin et

al [32,33]. Genotyping data from 280 randomly selected, unlinked

SNPs were used to adjust for population stratification using the

genomic control method [33]. These genotyping data were from

cases and controls derived from a breast cancer genome-wide

association study [20]. The inflation test statistic we used was

based on the inflation seen in genomic control samples for the

breast cancer study and was chosen to be slightly higher than the

estimated inflation as a ‘‘conservative’’ correction. We therefore

adjusted the p-trend by 10% (1.1) and p-heterogeneity by 5%

(1.05) as a means of conservatively allowing for any cryptic

population stratification. Statistical significance is at the 5% level

unless stated otherwise.

Results

We have genotyped 340 SNPs in up to 1,491 invasive epithelial

ovarian cancer cases and 3,145 unaffected controls from three

different population based studies from the UK, Denmark and

USA. SNPs were either tagging SNPs located in 84 candidate

genes from pathways implicated in ovarian cancer development,

or candidate SNPs located in 10 different regions on chromosomes

2, 3, 5, 8, 11, 12 and 17 that had been chosen for validation by the

Ovarian Cancer Association Consortium (OCAC) or had been

identified in a breast cancer genome-wide association study [9–

21]. Genotype frequencies for these SNPs in cases and controls are

given in Table S1.

Using the trend test for association, 22 SNPs (6.5%) were

significant at the 5% level, and 5 SNPs (1.5%) were significant at

the 1% level. After adjusting for population stratification by

genomic control, 18 SNPs (5.3%) were significant at the 5% level,

and 5 SNPs (1.5%) were significant at the 1% level (Table 1). The

test results for every SNP are given in Table S2. Figure 1 illustrates

the results of the univariate trend test shown as a quantile-quantile

(Q-Q) plot, in which the ordered test statistics are plotted against

the expected statistics given the rank. The Q–Q plot follows the

line of equivalence for the first 240 SNPs and then starts to deviate,

as would be expected if a modest proportion of SNPs were

associated with disease.

Of the 22 SNPs that were significant at the 5% level, three were

SNPs that had been selected because of their association with

breast cancer in genome wide association studies (of 16 in that

group), eight were from the cell-cycle control pathway (of 101),

two were from the DNA mismatch repair pathway (of 43), one was

from the DNA double strand break repair pathway (of 28), two

were from the MMCT-18 (functional candidate gene) group (of

63) and five were from the OCAC group of SNPs (of 55).

However, no single SNP reached a level of significance to provide

definitive evidence of association - the most significant association

was for a breast cancer associated SNP, rs2107425, located on

chromosome 11p15.5 (unadjusted P-trend = 0.0012). The SNP

was still significantly associated with ovarian cancer risk after

adjustment for population stratification (P-trend = 0.0019).

Table 2 shows the results of the AML experiment-wise tests

summarised for the complete set of SNPs categorised according to

functional group, biological pathway or genotyping group. The

test for overall association was significant for the breast cancer

associated group of SNPs identified by genome wide association

studies (P-het. = 0.0003, P-trend = 0.0028; adjusted P-

trend = 0.0059). No other group of SNPs was significant. When

all the data were combined, the AML experiment-wise test for

association was not significant for both the heterogeneity test

(P = 0.051) and the trend test (P = 0.068). This suggests that,

although not statistically significant, there is a trend towards a

proportion of the SNPs evaluated being associated with disease

and that the effect sizes were too small to detect for individual

SNPs.

SNP Analysis of Ovarian Cancer
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Discussion

There are many studies in the published literature describing a

candidate SNP/gene approach to search for common, germline

genetic variants associated with epithelial ovarian cancer risk.

These studies provide some evidence of association with disease

risk for some SNPs [9–19,34,35]. In the current study, we have

used data from 12 of these studies from three population based

ovarian cancer case-control series. In total, 340 SNPs in 94 genes

or regions were analysed in approximately 1,500 cases and 3,100

controls. Based on results of univariate analyses, we found

borderline evidence of association for several SNPs, but no

susceptibility alleles significant at the P,0.00001 level, which has

been suggested as the threshold for candidate gene studies [36]. In

the current analysis, the most significant SNPs identified in this

dataset were rs2107425 on chr 11p15.5 (P = 0.0012) and

rs3817198 in LSP1 (P = 0.0016), both of which have been

identified as susceptibility alleles for breast cancer, and

rs9322336, which is located in the oestrogen receptor (ESR1)

gene (P = 0.0013). All three SNPs remained significant after

adjusting for population stratification.

Even though none of the associations we found were highly

statistically significant, we cannot rule out that one or more of these

SNPs, or alternative SNPs within the candidate genes we analysed

were associated with ovarian cancer risk. The combined sample size

from the three case-control studies did not have sufficient statistical

power to detect associations with highly stringent levels of statistical

significance. For individual variants, the statistical power of the

study depends on the minor allele frequency, the risks conferred,

and the genetic model. For this study, we had 97% power at the 5%

significance level to detect a co-dominant allele with a minor allele

frequency of 0.3 that confers an odds ratio of 1.2, and 96% power to

detect a dominant allele with a minor allele frequency of 0.1 that

confers an odds ratio of 1.3. For the top three SNPs, we used

Pupasuite PupaSNP (http://pupasuite.bioinfo.cipf.es/) [37] to look

for additional evidence that they may be involved in cancer

aetiology, but found nothing striking. rs2107425 is located in a

region of chromosome 11p15.5 which has no known genes or open

reading frames; but it tags another SNP (rs2251375) with r2 = 1 that

is in a region conserved in mice. rs3817198 is in the lymphocyte-

specific protein 1 (LSP1) gene, also on chromosome 11p15.5, and

also in a region conserved in mice. Loss of heterozygosity in this

region has been found in ovarian, breast, lung, stomach and bladder

cancers, and has been described as a tumour suppressor region in

lung and breast cancers [38–44]. rs9322336 is in intron 2 of ESR1;

no other common variants appear to tag this SNP. ESR1 is a ligand

activated transcription factor, which has been implicated in ovarian

and breast cancer [45,46].

Table 1. All 22 SNPs with significant associations identified using the trend test for association.

Group
Gene
location rs number MAF Controls Cases HetOR{(95% CI) HomOR{ (95% CI) P-het*

Unadjusted
P-trend

Adjusted
P-trend1

BCAC 11p15.5 rs2107425 0.32 1460 2463 0.71 (0.6220.82) 0.88 (0.7021.10) ,0.0001 0.0012 0.0019

OCAC ESR rs9322336 0.23 1453 2464 0.81 (0.7020.93) 0.73 (0.5221.02) 0.005 0.0013 0.0021

BCAC LSP1 rs3817198 0.3 1457 2435 1.16 (1.0121.34) 1.40 (1.1121.75) 0.006 0.0016 0.0026

Cell cycle CDKN1B rs2066827 0.26 1481 2484 0.88 (0.7721.01) 0.68 (0.5120.90) 0.011 0.0035 0.0053

Cell cycle CDK6 rs8 0.21 1473 2481 1.17 (1.0221.35) 1.44 (1.0421.99) 0.015 0.0039 0.0059

Mismatch PMS2 rs7797466 0.18 1305 1968 1.18 (1.0121.38) 1.38 (0.9622.00) 0.039 0.0108 0.0142

Cell cycle CCND1 rs603965 0.44 1476 2464 1.06 (0.9121.23) 1.28 (1.0621.55) 0.027 0.013 0.0178

MMCT-18 RUVBL1 rs13063604 0.22 564 785 1.23 (0.9821.56) 1.54 (1.0022.39) 0.0556 0.016 0.0181

OCAC PGR rs1042838 0.14 1424 2408 1.25 (1.0721.46) 1.09 (0.7321.64) 0.019 0.0161 0.0215

Cell cycle CCND1 rs7178 0.07 1480 2491 1.24 (1.0421.49) 1.24 (0.5023.04) 0.063 0.021 0.0278

OCAC IL18 rs1834481 0.25 1449 2435 0.89 (0.7721.02) 0.77 (0.5921.01) 0.074 0.0227 0.0295

Cell cycle CCND1 rs602652 0.46 1468 2493 1.13 (0.9721.32) 1.24 (1.0321.49) 0.074 0.0235 0.0307

OCAC 11p15.55 SNP1 0.2 1473 2402 0.84 (0.7320.97) 0.86 (0.6021.22) 0.0529 0.0243 0.0314

MMCT-18 CASP5 rs518604 0.44 1041 2029 1.11 (0.9321.33) 1.27 (1.0221.58) 0.0987 0.032 0.0387

Cell cycle CCND1 rs3212879 0.49 1472 2491 0.85 (0.7320.99) 0.82 (0.6820.99) 0.063 0.0321 0.0409

DNA repair XRCC2 rs3218536 0.08 1337 1787 0.88 (0.7221.08) 0.23 (0.0720.79) 0.014 0.0364 0.0439

Cell cycle CCND1 rs3212891 0.46 1475 2476 0.86 (0.7421.00) 0.83 (0.6921.00) 0.082 0.0376 0.0472

Mismatch PMS1 rs256563 0.12 1456 2446 2.50 (0.9926.33) 2.15 (0.8425.48) 0.0435 0.04 0.04

BCAC 8q24.21 rs10808556 0.4 1462 2453 1.15 (0.9921.33) 1.20 (0.9921.46) 0.1071 0.0446 0.0552

Cell cycle CDKN2A rs3731257 0.26 1480 2476 0.89 (0.7821.03) 0.80 (0.6021.07) 0.1345 0.0451 0.056

Cell cycle CCNE1 rs3218036 0.31 1476 2481 1.07 (0.9321.23) 1.27 (1.0121.59) 0.1126 0.0458 0.0567

OCAC 11p15.55 SNP2 0.49 1459 2407 1.20 (1.0221.40) 1.20 (1.0021.44) 0.0611 0.0473 0.0581

{compared with common homozygous.
HetOR – heterozygous odds ratio, HomOR – homozygous odds ratio.
CI – confidence interval.
*P-heterogeneity.
1Adjusted for population stratification.
The P-trend looks for a trend between the OR and the heterozygous (Het); and rare homozygous (Hom) when compared with the common homozygous; the P-
heterogeneity (P-het) does not assume a correlation with increasing number of rare allele.
doi:10.1371/journal.pone.0005983.t001
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Table 2. AML experiment-wise test results for genotyping groups.

Pathway/Group Genes/regions{ No. SNPs
LR P-trend of most
significant SNP* AML P-het* AML P-trend*

Reference with original single
SNP analysis

BCAC{ 5 (51) 16 0.0012 0.0003 0.0028 Song et al. 2009 [19]

OCAC{ 36 (61) 55 0.0014 0.863 0.806 Ramus et al. 2008; [16]; Pearce et al.
2008 [15]; Palmeieri et al. 2008 [17]

MMCT-18 9 63 0.016 0.609 0.468 Quaye et al. in preparation

Cell cycle control 15 101 0.0035 0.274 0.225 DiCioccio et al. 2004 [9]; Song et al.
2006 [11]; Gayther et al. 2007 [14]

Mismatch repair 7 43 0.0106 0.706 0.702 Song et al. 2006 [12]

DNA repair 7 28 0.0374 0.366 0.444 Auranen et al. 2005 [10]; Song et al.
2007 [13]

Ovarian Cancer Oncogenes 5 34 0.0671 0.524 0.528 Quaye et al. 2009 [18]

Total 84 (10) 340 0.051 0.068

*Based on GEOCS, MALOVA and SEARCH genotypes.
{SNPs in regions with no known genes or open reading frames are in parenthesis.
{candidate SNPs validated from the Breast Cancer Association Consortium (BCAC) and Ovarian Cancer Association Consortium (OCAC).
1different SNPs from 8q24.21 were genotyped in both BCAC and OCAC sets; LR – logistic regression; AML – admixture maximum likelihood; het – heterogeneity.
doi:10.1371/journal.pone.0005983.t002

Figure 1. A quantile-quantile (Q-Q) plot of the univariate trend test results. The ordered test statistics are plotted against the expected
statistics given the rank.
doi:10.1371/journal.pone.0005983.g001
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Simple multiple testing correcting methods such as the Bonferroni

or Sidak are too stringent for adjusting the results for the individual

SNPs. Neither of these methods take into account the correlation that

exists between SNPs that tag the genetic variation across gene

regions. Therefore the results reported have not been adjusted for

multiple testing. However, these SNPs may not be significant after

adjusting for multiple testing. We have recently shown that methods

that take into account the totality of the data have greater power to

detect associations [33]. Therefore, we used the AML method to test

the hypothesis that subsets of the SNPs we evaluated, rather than

individual SNPs, were associated with ovarian cancer risk. We did not

find evidence for an overall association between common genetic

variation in the 94 candidate genes or regions and ovarian cancer

risk. However we found evidence of an association for SNPs that had

been identified from breast cancer association studies. This is

intriguing given previous studies that have shown strong genetic

links between breast and ovarian cancer for the highly the penetrant

genes BRCA1 and BRCA2 [3] and recent association studies that

suggest some common variants may be low-penetrance susceptibility

alleles for multiple phenotypes (i.e. pleiotropism). For example SNPs

in a region of chromosome 8q24 appear to be associated with breast,

prostate and ovarian cancer risk [47].

In conclusion, the only significant global association identified

was with the breast cancer associated SNPs. However, providing

definitive evidence that any of these variants represents a true

susceptibility allele is limited by the sample size and consequently

the statistical power to identify risk alleles for which the effect size

is likely to be small. It must also be considered that many

associations are not validated in a second stage study. Genome

wide association studies have successfully identified common risk

alleles for some common cancers, including breast and prostate

cancers [20,48]. In both studies, the sample sizes were much larger

than those used in the current study. These studies also showed

that empirical genome-wide studies represent an efficient ap-

proach to identifying low-penetrance susceptibility alleles, but that

the most significant alleles only confer small relative risks (,1.3). It

will require larger numbers from more extensive multi-centre

collaborations to find ovarian cancer susceptibility alleles that

confer such modest risks. This has recently been achieved with the

development of the ovarian cancer association consortium

(OCAC), which comprises more than 20 ovarian cancer case-

control studies throughout the world [49]; but as the experiences

of the breast and prostate consortia show, common risk alleles for

ovarian cancer are likely to exist and a combination of both

candidate gene and genome wide association studies have the

potential to identify them. However, it has so far proved difficult to

identify highly significant SNPs for ovarian cancer using the

candidate gene approach. GWAS studies of other cancers have

shown that this is likely to prove a more successful approach to

identify low-moderate risk alleles for ovarian cancer in the future.
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