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Abstract

This paper describes an automatic algorithm that uses a geometry-driven optimization approach to restore the shape of
three-dimensional (3D) left ventricular (LV) models created from magnetic resonance imaging (MRI) data. The basic premise
is to restore the LV shape such that the LV epicardial surface is smooth after the restoration and that the general shape
characteristic of the LV is not altered. The Maximum Principle Curvature (k1 ) and the Minimum Principle Curvature (k2 ) of
the LV epicardial surface are used to construct a shape-based optimization objective function to restore the shape of a
motion-affected LV via a dual-resolution semi-rigid deformation process and a free-form geometric deformation process. A
limited memory quasi-Newton algorithm, L-BFGS-B, is then used to solve the optimization problem. The goal of the
optimization is to achieve a smooth epicardial shape by iterative in-plane and through-plane translation of vertices in the LV
model. We tested our algorithm on 30 sets of LV models with simulated motion artifact generated from a very smooth
patient sample, and 20 in vivo patient-specific models which contain significant motion artifacts. In the 30 simulated
samples, the Hausdorff distances with respect to the Ground Truth are significantly reduced after restoration, signifying that
the algorithm can restore geometrical accuracy of motion-affected LV models. In the 20 in vivo patient-specific models, the
results show that our method is able to restore the shape of LV models without altering the general shape of the model. The
magnitudes of in-plane translations are also consistent with existing registration techniques and experimental findings.
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Introduction

Breath-hold cine Magnetic Resonance Imaging (MRI) is an

advanced imaging technique for cardiac morphological and

functional assessment in clinical practice. While conventional

methods of evaluation are based on MRI images, several recent

methods [1], [2], [3] have been developed to utilize three-

dimensional (3D) models reconstructed from the MRI data. A 3D

model of the LV provides a more comprehensive and accurate

description of the ventricular shape and function as properties can

be extracted from a combination of in-plane and out-of-plane

information, as compared to analysis done on 2D methods. This

has a direct impact on the evaluation of LV chamber properties

such as its chamber volume, local wall curvature, myocardial wall

thickness and wall stress. In our prior study, we have compared the

results obtained by conventional 2D methods and 3D methods [2]

and found that 3D-based quantification of regional wall stress

provides more precise evaluation of cardiac mechanics.

However, factors such as respiration and patient movement

contribute to misalignments in the MRI data which results in

inaccuracies in the 3D models. MRI data acquired over different

breath-hold positions also induce errors in the reconstructed

models. [4] aims to correct for misaligned cardiac anatomy,

caused by differing breath-hold positions, in multi-slice short-axis

(SA) images, by rigidly registering stacks of two slices to a high-

resolution 3D MR axial cardiac volume. Existing registration

methods also include multi-modal dynamic cardiac image

registration [5], external skin marker-based techniques [6],

landmark-based techniques [7] and thorax surface-based tech-

niques [8]. A number of cardiac image registration methods are

reviewed in [9]. They are categorized into the geometric image

feature approach and voxel similarity measure approach. Recent-

ly, some post-processing methods have also been proposed. The

method proposed by Elen et al. [10] demonstrates the use of

constrained optimization, on the assumption that the similarity of

gray values at the intersection lines of different slices is higher

when the relative positioning of the slices is correct than when the

slices are misaligned.

The main dilemma of using an image registration approach to

restore the shape of the LV is that errors induced by motion are

already embedded in the images. While multi-view image

registration techniques could potentially reduce such errors, these

methods are essentially using data which contain error for self-

correction. In our work, we make use of morphological knowledge

of the LV to drive the shape restoration. Instead of using image-

based parameters, such as gray values, our LV shape restoration

method is based on geometrical consideration. The basic premise

is that the LV epicardial surface must be smooth after the

restoration, which is a reasonable assumption based on observed
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morphology, that the myocardial surface tension or force of the

LV wall forces the hearts to minimize the wall surface area,

creating a smooth epicardial surface. In addition, the general

shape of the LV cannot be lost in the process such as its skewness

and asymmetrical configuration. The Maximum Principle Curva-

ture (k1) and Minimum Principle Curvature k2 of the LV

epicardial surface are used as the geometric measure to quantitate

the local shape characteristics.

Figure 1(a) shows a reconstructed 3D LV mesh model from

MRI data containing motion artifacts. We aim to achieve a

smooth LV mesh as shown in Figure 1(b) after shape restoration.

This is achieved by a dual-resolution semi-rigid deformation,

followed by a free-form geometric deformation process. The semi-

rigid deformation process involves shifting of the myocardium

contours by translating each slice in the in-plane direction (xy -

plane), while the free-form deformation process involves translat-

ing each individual vertex of the LV model in the x -, y - and z -

directions. We formulate a smoothness objective function based on

k1 and k2 , and solve the problem using a limited-memory quasi-

Newton optimization algorithm, L-BFGS-B [11]. The L-BFGS-B

algorithm is an adaptation of the BFGS algorithm with limited

matrix update and it is adept at solving multivariate nonlinear

bound constrained optimization problems. This paper is organized

as follows: First, we provide detailed explanation of the method-

ology of our LV shape restoration algorithm. Next we describe the

experiments done on the 30 simulated samples and the 20 in vivo

patient-specific models to test the performance of the algorithm,

followed by a discussion on the implications of the experimental

results, and finally conclude the paper.

Methods

The input to our algorithm is an initial 3D LV mesh model

M~fCk jk~1,2,3:::,Ng reconstructed from a set of contours

{C} representing the myocardial borders delineated from the SA-

planes, such that N is the total number of contours. Each contour

Ck~fVk,i ji~1,2,3,:::mkg consists of a set of closed connected

vertices {V} where mk is the total number of vertices in the k -th

contour. The convention used is such that the SA-slices are

parallel to the xy-plane; the contours are arranged from the apex

to basal region in increasing z-values; and the vertices in the

contours are cyclic (i.e., Vk,mk
is connected to Vk,1 , since they

represent a closed connected curve).

Shape Quantification Using Principle Curvatures k1 and
k2

In this section, we briefly outline the formulation of k1 and k2 .

In order to interrogate the geometrical properties of the LV

epicardial surface mesh, we use a quadric fitting method to

approximate the underlying geometry at every vertex of the mesh.

A quadric surface S in 3D space can be expressed in the

parametric form

S(u,v)~

u

v

au2zbuvzcv2zduzev

2
64

3
75 ð1Þ

where u and v are the surface parameters and fa,b,c,d,eg are

the quadric coefficients. To fit S at a vertex p , we select a

neighborhood around p which represents the region over which

S is to be fitted. The extent of this neighborhood is quantified by

a n -ring value. The quadric coefficients of S are then obtained by

solving a system of linear equations associated with the n -ring

neighborhood using a least square method [12]. The surface S

approximates the local geometry in the vicinity of a point p on the

3D mesh model. In differential geometry, the curvature of a

surface S(u,v) at a point p(u,v) is evaluated with respect to a

normal section. This is done by constructing a plane p such that it

passes through the unit surface normal n̂n and unit tangent vector

in the direction of _vv (where _vv~½ _uu, _vv�T ). The intersection of p
with S results in a curve called the normal section. The normal

curvature k( _vv) can be evaluated by

k( _vv)~
_vvT D _vv

_vvT G _vv
ð2Þ

where G~½Su:Su Su:Sv

Su:Sv Sv:Sv
�~½E F

F G
� and

D~½Suu:n̂n Suv:n̂n
Suv:n̂n Svv:n̂n

�~½ L M

M N
� are the first and second funda-

mental matrices of the surface, respectively. The unit surface

normal can be calculated by

Figure 1. Three-dimensional left ventricle mesh models. (a) with motion artifacts, and (b) desired result after shape restoration.
doi:10.1371/journal.pone.0068615.g001

Shape Restoration of the Left Ventricle
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n̂n~
Su|Sv

jSu|Svj
ð3Þ

In terms of the quadric coefficients, the equations to calculate k1

and k2 are

k1~
Bz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2{A2(4ac{b2)

p
A3

k2~
B{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2{A2(4ac{b2)

p
A3

ð4Þ

where A~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2ze2z1

p
and B~azae2zczcd2zbde .

The value of n -ring used in the quadric fitting affects the value

of k1 and k2 because it determines how sensitive the method is to

the effect of geometrical variation. With a bigger n -ring value,

shape of the surface over a larger extent is interrogated. This takes

into account the general variation of the shape, ignoring the high

frequency variation in the geometry. With a smaller n -ring value,

the shape of the surface over a localized region is inspected. This

captures the inter-slice variations in shape.

Shape-based Optimization Objective Function
The basic premise of the shape restoration is the assumption

that the LV epicardial surface is smooth. From a shape

characterization perspective, this implies that it should have

minimum local concavity. The objective is then to find the optimal

modifications in the LV model such that its total concavity is at a

global minimum. Computationally, we can calculate the maxi-

mum and minimum principle curvatures (k1 and k2 , respectively)

for every point on the LV epicardial surface mesh to assess the

amount of concavity or convexity of the surface. When k1 or k2

is negative, it implies that the surface at which a point lies on is

concaved. Therefore, to minimize concavity, the objective

function F only takes into account the summation of k1 and

k2 values of all points with negative k1 or negative k2 , that is,

F~f
Xm

i~1

jjk1,ijj j k1,iv0gzf
Xm

i~1

jjk2,ijj j k2,iv0g ð5Þ

where k1,i is the maximum principal curvature and k2,i is the

minimum principal curvature at vertex i and m is the total

number of vertices in the epicardial surface mesh.

This non-linear objective function can be minimized using the

L-BFGS-B algorithm [11] which is adept at solving multivariate

nonlinear bound constrained optimization problems. It is based on

the gradient projection method and uses a limited-memory BFGS

matrix to approximate the Hessian of the objective function. The

algorithm does not store the results from all iterations but only a

user-specified subset. Its advantage is that it makes simple

approximations of the Hessian matrices which are still good

enough for a fast rate linear convergence and requires minimal

Figure 2. Shape Restoration of LV mesh in the x- and y-directions. Modifying shape of 3D LV epicardial surface mesh by translating the
contours on SA slice in x- and y-directions.
doi:10.1371/journal.pone.0068615.g002

Figure 3. Shape restoration using dual resolution semi-rigid deformation. (a) original mesh with motion artifact, (b) intermediate mesh
after optimization using n-ring = 5, and (c) final mesh after optimization using n-ring = 2.
doi:10.1371/journal.pone.0068615.g003

Shape Restoration of the Left Ventricle
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storage [11]. This will result in geometrical kinks being smoothed

out but not at the expense of creating more kinks in other

locations. The result is an improvement in the overall smoothness

of the LV shape.

In order to maintain the overall shape characteristic of the LV

model, such as its skewness and asymmetrical configuration, the

optimization is performed in a dual-resolution semi-rigid geomet-

rical deformation whereby the LV model is modified from a global

and regional consideration, followed by a freeform geometrical

deformation process for localized optimization.

Dual-resolution Semi-rigid Geometric Deformation
As the 3D LV models are reconstructed from contours of the

myocardial borders, the first stage of the shape restoration process

works by progressively translating these contours in the plane of

their respective SA-slice. Figure 2 illustrates the shifting of the

contour on a SA-slice in the in-plane direction. One can view this

as a semi-rigid mesh modification since we are keeping the shape

of the contours constant while shifting their position. For every

slice, a centroid (XC,i,YC,i) is calculated by averaging the x - and

y -coordinates of all the points from that particular slice, where i is

the slice index. The optimization algorithm, L-BFGS-B, will solve

for the optimal (X 0C ,Y 0C) for all the slices to satisfy the objective

function in Equation (5).

To set up the optimization problem, we can write Equation (5)

as F (x) with n variables, such that x contains the centroid

coordinates (XC ,YC) of the contours on the SA-slices, i.e

x~

x1 ~ XC,1

x2 ~ YC,1

x3 ~ XC,2

x4 ~ YC,2

..

. ..
. ..

.

xn{1 ~ XC,N

xn ~ YC,N

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

To retain the skewness and asymmetry of the dataset, we fix the

centroid coordinates of the top and bottom SA slices as boundary

conditions, i.e. (X 0C,1,Y 0C,1)~(XC,1,YC,1) and (X 0C,N ,Y 0C,N )~

(XC,N ,YC,N ) . Hence, the number of variables in the optimization

problem is n~2|(N{2) . Each of the variables xi in F(x) is

subjected to the bounded-constraints

lbiƒxiƒubi k~1,2,3,:::,n ð6Þ

where lbi and ubi are the lower and upper bounds of xi ,

respectively. In this work, the variables are constrained to translate

within a bound of + 20 mm. This value is consistent with what

was observed experimentally [13] (maximum displacement

recorded upon inhalation is 23.5 mm). The constraint on the

translation in the x-direction is

{20ƒX
0
C ,k{XC,kƒ20 ð7Þ

where X 0C,k is the solution and XC,k s is the initial x-coordinate

of the centroid position of the k -th contour. Similarly, the

constraint on the translation in the y -direction is

{20ƒY
0
C ,k{YC,kƒ20 ð8Þ

where Y 0C,k is the solution and YC,k is the initial y -coordinate of

the centroid position of the k-th contour. In addition, the gradient

gk associated with each variable xk must also be defined such that

gk~
LF (x)

Lxk

ð9Þ

Since F (x) is in a non-analytical form, we need to approximate

gi using finite differences. In this work, we use the forward

difference method to approximate the gradient, i.e.,

gk~
F (x1,:::,xizDxi,:::xn){F(x1,:::,xi,:::,xn)

Dxi

ð10Þ

where Dxk is a small increment in xk .

In order to retain the general variation of the LV shape, we

perform the optimization in dual stages – a global stage and a

regional stage. As the objective function in the optimization is

computed using a n -ring setting, we employ that to determine the

nature of the shape characterization of the LV. In general, a large

n -ring will result in shape characterization from a global

Figure 4. Constraint in the z axis. (a) Angle h between vertex normal N and the z-axis, and the impact on volume change due to translation, (b)
LV epicaridal surface modified by the free-form deformation process.
doi:10.1371/journal.pone.0068615.g004

Shape Restoration of the Left Ventricle
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perspective while a smaller n-ring will result in a regional/local

shape characterization.

In the global stage, the value of n -ring selected is adaptive to

the sampling resolution of the LV model. For our application, it is

half the number of MRI stacks constituting the whole LV.

However, the n -ring selected cannot be too huge as computation

time increases with the value of n -ring. Therefore, we enforce that

n{ring~
Ck=2 ifkƒ10

5 ifkw10

� �
ð11Þ

In the example shown in Figure 3(a), it shows an original mesh

with motion artifact, where the n-ring selected is 4 due to it having

8 MRI stacks. When n -ring = 4, k1 and k2 are calculated by

taking into account points from 4 layers above and below the

current SA slice, and 4 points to the right and left of the point of

interest. All the slices will shift to minimize the objection function

in Equation (5). Next, to further minimize surface concavity over a

smaller region of consideration, the intermediate mesh (updated

with the previously obtained solution using n -ring = 4) is

subjected to a second pass of optimization using a fixed n -ring

= 2. This second pass is essential to further minimize the concavity

over a localized region. The results from setting n-ring value = 4

and then n-ring = 2 are shown in Figure 3(b), intermediate mesh

after optimization using n -ring = 4 and Figure 3(c), final mesh

after optimization using n -ring = 2. As observed, the LV

smoothness was restored.

Free-form Geometric Deformation
In the previous section, we discussed a dual-resolution semi-

rigid deformation process, whereby only translational displace-

ment of the SA-slices is considered. However, in actual fact,

motion artifacts are also generated by motions in and out of the

SA-planes. Therefore, in the next stage, a local free-form

geometric deformation is performed. Here, the output from the

semi-rigid geometric deformation process forms the input to the

free-form deformation process. The shape restoration is done by

progressively translating each individual vertex of the LV model in

the x -, y - and z -directions. Using the same assumption that the

LV epicardial surface is smooth, our objective is to find the

optimal translations in the x -, y - and z-directions for each

individual vertex such that the total concavity of the whole LV is at

its global minimum. The same objective function F in Equation

(5) is used and after the constraints on the translation distance

(XV ,YV ,ZV ) are set, the L-BFGS-B algorithm is used to solve for

the optimal translations of all the vertices of the LV mesh. The

optimal (X
0

V ,Y
0

V ,Z
0

V ) are then used to update the mesh. To set up

the optimization problem, we can write Equation (5) as F (x ) with

n variables, such that x consists of the vertex coordinates

(XV ,YV ,ZV ) of the mesh, i.e.,

Figure 5. Flow chart of the restoration process. Flow chart of the dual-resolution semi rigid and free-form restoration process.
doi:10.1371/journal.pone.0068615.g005

Figure 6. Changes in k1 and k2 before and after dual and free form geometric restoration. One sample of patient-specific 3D LV mesh
model with its k1 and k2 values before and after dual and free form geometric deformation.
doi:10.1371/journal.pone.0068615.g006
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x~

x1 ~ XV1,1

x2 ~ YV1,1

x3 ~ ZV1,1

x4 ~ XV1,2

x5 ~ YV1,2

x6 ~ ZV1,2

..

. ..
. ..

.

xn{2 ~ XVN,mN

xn{1 ~ YVN,mN

xn ~ ZVN,mN

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;

To retain the skewness and asymmetry of the dataset, we fix all

the vertex coordinates of the top and bottom SA slices as boundary

conditions, i.e. (X
0

V 1,k,Y
0

V1,k
,Z

0

V1,k
)~(XV1,k

,YV1,k
,ZV1,k

) for all

k~1,2:::m1 and (X
0

V N,k,Y
0

V N,k,Z
0

V N,k)~(XVN,k
,YVN,k

,ZVN,k
)

for all k~1,2:::mN . The total number of vertices in the mesh is

M~
XN

k~1

mk . Hence, the number of variables in the optimization

problem is n~3|(M{m1{mN ) . Again, each of the variables

Figure 7. Patient-specific 3D LV mesh model restoration results. Two samples of patient-specific 3D LV mesh model before and after dual
and free form geometric deformation.
doi:10.1371/journal.pone.0068615.g007

Table 1. Overview of Evaluated Cardiac and Thorax Image
Registration Methods [9].

Reference Movement Correction (mm)

[21] 2.1960.52

[15] (x,y) 3.0

[14] 2.860.5

[22] 2.7

[23] 1.9561.6

[24] 2.5

[17] (x)1.2360.06, (y) 3.2561.04

[16] (x) 3.0, (y) 1.6

[25] (x,y,z) 1.0

[26] (x,y) 1.7

[8] (x) 1.9, (y) 2.4

[27] (x,y) 0.560.5

[28] 2.561.2

[29] 3.161.7

[18] (x,y,z) 1.5

doi:10.1371/journal.pone.0068615.t001
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xi in F (x) is subjected to the bounded-constraints. The

constraints in the x - and y -directions are determined by the

distance between the vertex and its immediate neighboring

vertices on the same slice/contour:

{0:5D(XVk,i{1
{XVk,i

)DƒX
0
V k,i{XVk,i

ƒ0:5D(XVk,iz1
{XVk,i

)D
ð12Þ

where X
0
V k,i is the solution and XVk,i

is the initial x-coordinate of

the position of vertex Vk,i. Similarly, the constraint on the

translation in the y-direction is

{0:5D(YVk,i{1
{YVk,i

)DƒY
0
V k,i{YVk,i

ƒ0:5D(YVk,iz1
{YVk,i

)D
ð13Þ

The constraint on the translation in the z -direction is determined

by the inter-slice distance such that

{0:5D(ZVk,i
{ZVk{1,i

)D sin hƒZ
0
V k,i{ZVk,i

ƒ0:5D(ZVk,i
{ZVkz1,i

)D sin h
ð14Þ

where j(ZVk,i
{ZVk{1,i

)j is the original distance between contour

Ck and its lower adjacent contour Ck{1; j(ZVk,i
{ZVkz1,i

)j is

the original distance between contour Ck and its upper adjacent

contour Ckz1; and h is the angle between the vertex normal and

the z-axis.

In Figure 4(a), we illustrate the impact of h on the volume of the

LV mesh with respect to the vertical shift of the vertices. Two

vertices V1 and V2 on the same contour Ck are such that

h1 .h2 . Given the same allowance of vertical shift such that their

new positions become V
0

1 and V2 , we observed that the deviation

of V
0

2 from the original surface of the mesh is greater than V
0

1,

indicating that when h is smaller, the resulting volume change due

to the vertical vertex shift is larger. Therefore, the sin h function in

Equation (14) is used to constrain the vertices such that if there is

greater deviation between the vertex normal from the SA-plane

(i.e., h is small), the allowable vertical translation in the z-direction

will be less. This will prevent unduly large change in the volume of

the restored mesh. Figure 4(b) illustrates an LV epicardial surface

modified by the free-form deformation process.

Figure 5 shows the flow chart of the whole restoration process.

Results and Discussion

In vivo Patient-specific Models
In this section, we tested our algorithm on 20 patient-specific

3D LV models reconstructed from MRI data containing motion

artifacts. This study was approved by the SingHealth Centralised

Institutional Review Board (CIRB No: 2009/705/C) for Human

Research. All enrolled participants gave written informed consent.

The MRI scan was performed using breath-held steady-state free

precession technique on a 1.5T Siemens scanner (Avanto, Siemens

Medical Solutions, Erlangen). TrueFISP (fast imaging with steady-

state precession) MR pulse sequence with segmented k-space and

retrospective electrocardiographic gating were used to acquire 2D

cine images of the LV in the long-axis (LA) plane, as well as a

parallel stack of 2D cine images of the LV in the SA plane, from

the LV base to apex (8 mm inter-slice thickness, no inter-slice gap).

Each slice was acquired in a single breath hold, with 25 temporal

phases per heart cycle. The epicardial borders of contiguous SA-

slices were manually delineated by an experienced cardiologist

using commercially-available software CMRtools (Cardiovascular

Imaging Solution, UK). Both SA- and LA-views were utilized to

carry out 3D LV reconstruction at the end-diastole phase. Figure 6

plots the absolute values of k1 and k2 before and after restoration

of one of the patient sample. Quantitatively, the absolute values of

k1 and k2 were reduced considerably after the shape restoration.

Visually, we observed that the asymmetry of the LV geometry was

preserved while the geometrical kinks on the surface were

significantly reduced. Figure 7 shows that the shape of 2 other

patient samples became smoother and retained their asymmetry

after the whole dual and free form geometric deformation process.

The results indicated that average contour displacements in the

SA-planes were 1.36 mm and 1.30 mm, with a maximum

translation magnitude of 8.68 mm and 8.65 mm in the x- and

y-directions respectively. The vertices are further displaced in the

free-form deformation by an average of 0.10 mm, 0.11 mm and

0.07 mm, with a maximum translation magnitude of 1.73 mm,

1.95 mm and 2.93 mm in the x-, y- and z-directions, respectively.

Table 2. Hausdorff Distance w.r.t Ground Truth Before and
After Restoration.

Sample Before(mm) After(mm) Improvement

1 1.03 1.25 20.22 (221%)

2 8.87 3.14 5.73 (65%)

3 8.56 3.18 5.39 (63%)

4 8.49 2.31 6.18 (73%)

5 9.27 3.74 5.53 (60%)

6 12.35 3.56 8.79 (71%)

7 9.38 2.53 6.85 (73%)

8 4.86 1.67 3.19 (66%)

9 11.7 2.37 9.33 (80%)

10 9.38 2.6 6.78 (72%)

11 6.95 3.7 3.25 (47%)

12 6.8 2.8 4.01 (59%)

13 11.3 2.34 8.95 (79%)

14 2.79 1.59 1.20 (43%)

15 8.78 3.65 5.13 (58%)

16 6.52 2.78 3.74 (57%)

17 9.75 3.46 6.29 (64%)

18 10.09 3.32 6.76 (67%)

19 6.7 3.21 3.49 (52%)

20 6.85 2.92 3.93 (57%)

21 10 3.19 6.81(68%)

22 8.35 3.89 4.46 (53%)

23 9.35 2.89 6.46 (69%)

24 6.77 2.39 4.38 (65%)

25 10.81 3.38 7.43(69%)

26 4.87 2.1 2.78 (57%)

27 5.62 2.74 2.88 (51%)

28 8.79 2.26 6.53 (74%)

29 11.25 4.69 6.55 (58%)

30 1.29 1.27 0.02 (1%)

doi:10.1371/journal.pone.0068615.t002
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As it is difficult to obtain the corresponding ground truth for

each of the 20 in vivo patient-specific model, we assess the

performance of our restoration algorithm by comparing the mean

contour displacement values of our method with those of existing

image registration techniques [14], as shown in Table 1, whereby

the mean translations in the x-direction are 3 mm [15], [16] and

y-direction is 3.25 mm [17] and z-direction is 1.5 mm [18]. The

maximum experimental translation observed in [13] is 23.5 mm.

Our results are observed to lie within the range of existing

literatures.

Models with Simulated Motion
To further validate the applicability of our method, we study the

performance of our method on a set of LV data with simulated

motion. This is done by selecting a gold standard to act as a

reference or ground truth for comparison. Ten healthy volunteers

underwent breath hold cine-MRI scan. The sample with the

smoothest epicardial surface is selected as the gold standard. To do

this, the respective 3D models of the LV were reconstructed for

each of the 10 volunteers and we subject these 3D models to a

computational algorithm to assess the quantitative value of the

local curvature. In addition, we apply our shape restoration

method to these 3D models. The model which yields the minimum

concavity and has the least modification in the restoration process

is selected as the Ground Truth.

This Ground Truth model is then used as a reference to

investigate our algorithm’s ability in performing LV shape

restoration. We proceed to construct a set of 30 random samples

from the ground truth model by translating three randomly

selected but consecutive slices to simulate motion artifacts. They

are translated within the range of 620 mm. These 30 randomized

samples are then restored using our proposed algorithm and

compared against the ground truth model for validation. To

evaluate the accuracy of the restoration, we make use of The

Metro Software [19] a tool designed to evaluate the difference

between two triangular meshes. Metro adopts an approximated

approach based on surface sampling and point-to-surface distance

computation. The Hausdorff distance evaluated by the Metro

Software measures the dissimilarity between two shapes, and it is

used to quantify how different the LV mesh is before and after

restoration, as compared to the ground truth. From Table 2, we

can see that the Hausdorff distance after restoration w.r.t the

Table 3. Curvedness Values of Ground Truth and Mean Curvedness Values of 30 Samples before and after Restoration over 16
Regions.

Region Ground Truth Before Restoration(Mean) After Restoration(Mean)

1 0.0179 0.0213 0.0191

2 0.0178 0.0212 0.0188

3 0.0171 0.0192 0.0174

4 0.0177 0.0206 0.0173

5 0.0203 0.0231 0.0194

6 0.0196 0.0218 0.0199

7 0.0202 0.0248 0.0196

8 0.0187 0.0241 0.0188

9 0.0185 0.0233 0.0187

10 0.0211 0.025 0.0212

11 0.0166 0.0219 0.0167

12 0.0222 0.027 0.022

13 0.0249 0.0281 0.0259

14 0.0285 0.0333 0.0281

15 0.0273 0.0321 0.0273

16 0.0242 0.0281 0.0248

Total 0.3327 0.3948 0.3351

doi:10.1371/journal.pone.0068615.t003

Table 4. Absolute Difference and Percentage Difference in
Curvedness w.r.t Ground Truth.

Region Before Restoration(Mean) After Restoration(Mean)

1 0.0034 (19%) 0.0012 (7%)

2 0.0033 (19%) 0.0009 (5%)

3 0.0021 (12%) 0.0003 (2%)

4 0.0028 (16%) 0.0005 (3%)

5 0.0028 (14%) 0.0008 (4%)

6 0.0022 (11%) 0.0003 (1%)

7 0.0046 (23%) 0.0006 (3%)

8 0.0054 (29%) 0.0001 (0%)

9 0.0049 (26%) 0.0003 (1%)

10 0.0039 (18%) 0.0001 (0%)

11 0.0053 (32%) 0.0000 (0%)

12 0.0048 (22%) 0.0002 (1%)

13 0.0033 (13%) 0.0010 (4%)

14 0.0048 (17%) 0.0004 (1%)

15 0.0047 (17%) 0.0000 (0%)

16 0.0039 (16%) 0.0006 (2%)

Total 0.0621 (19%) 0.0073 (2%)

doi:10.1371/journal.pone.0068615.t004
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ground truth model is much smaller than that before restoration,

except for Sample 1. This indicates that the restored meshes are

more similar to the ground truth after the restoration process. In

Sample 1, it is noticed that the Hausdorff distance w.r.t the ground

truth model before restoration is just 1.03 mm. This implies that

the randomly generated sample did not differ much from the

ground truth model. The huge percentage difference of 21% is due

to this small Hausdorff distance w.r.t the ground truth model

before restoration. In addition to the analysis using Hausdorff

distance, we evaluated the restoration using curvedness compar-

ison. We have previously shown that curvedness is an important

shape characterization measure for LV models and that it is

associated with important LV functions [2]. Table 3 shows the

curvedness results of the ground truth and the mean curvedness

results of the 30 samples before and after restoration over 16

regions. Table 4 shows the absolute difference in curvedness with

respect to the ground truth over 16 regions. The absolute

difference in value and percentage of the curvedness with respect

to the ground truth after restoration improved significantly for

each region, which implies that curvedness value is closer to the

ground truth after restoration.

Limitations and Challenges
As mentioned in the above section, the limitation of this study is

in the validation of the restoration results of the 20 in vivo patient-

specific models. While we do not have the ground truth for each of

the patient-specific model, we compared the results of the mean

contour displacements and observed that the values lie within the

range reported in existing literatures. In addition, we attempted to

account for this limitation by performing an experiment with

simulated motion and observed significant improvement in terms

of Hausdorff distance and curvedness.

We would also like to highlight that the derivation of the

optimization function that drives the shape restoration is based on

the observed morphology that the surface tension of the LV wall

physically forces the heart to minimize the wall surface area,

creating a smooth epicardial surface. However there are questions

if this assumption still holds true for severe pathological conditions

such as acute myocardial infarction. In a study of ventricular shape

after myocardial infarction by Mitchell et al. [20], global LV

geometry was assessed on cine angiography by means of a

sphericity index. This index is the ratio of LV volume and a sphere

with similar circumference. After myocardial infarction, the heart

assumes a more spherical conformation (i.e., sphericity index

increases), implying an overall diminution of surface concavity.

This argument is also supported by calculating the total ventricular

force or tension (T ) from T~s x S, wherein s is the ventricular

wall stress, and S is the surface area. For any given pressure and

wall stress s, S being smallest would offer an optimal energy

solution for moving blood. From clinical observation, the

ventricles of patients with pathological condition remodel towards

a spherical configuration (i.e., for any given ventricular volume,

the surface area S is the smallest when the ventricular geometry is

spherical), implying a ‘‘smoother’’ epicardial surface.

Conclusion

In this paper, we presented an automatic algorithm to restore

the shape of a 3D LV mesh model using a geometry-driven

optimization approach. The method used an analytical surface

fitting method to approximate the geometry of the LV mesh and

computed the minimum principal curvature as a quantification of

the surface smoothness. Next, a limited memory quasi-Newton

algorithm, L-BFGS-B, was used to correct the positions of all SA-

slices to achieve an optimal shape with minimal concavity. To

retain the overall shape of the LV mesh, such as its asymmetrical

configuration, we performed optimization using n-ring to be half

the number of contours representing the myocardial borders.

Next, to achieve localized smoothing, we performed a second pass

of optimization using n-ring = 2. 30 sets of simulated data and 20

in vivo LV epicardial datasets at end-diastole are used as inputs to

investigate the performance of our shape restoration algorithm.

The results showed that there were significant improvements in

the smoothness of the LV mesh both visually and quantitatively (in

terms of the magnitude of maximum and minimum principal

curvatures). Also, our algorithm was successful in preserving the

overall shape of the LV mesh without over smoothing. Our results

are also consistent with results of existing image registration

techniques. Another 30 samples of data sets generated from a

smooth patient set (i.e. Ground Truth), were restored and the

difference in Hausdorff distance and curvedness values w.r.t the

Ground Truth were smaller after restoration.
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