
Differences in Patient Age Distribution between
Influenza A Subtypes
Hossein Khiabanian1*, Gregory M. Farrell2, Kirsten St. George2, Raul Rabadan1

1 Department of Biomedical Informatics and Center for Computational Biology and Bioinformatics, Columbia University College of Physicians and Surgeons, New York,

New York, United States of America, 2 Laboratory of Viral Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America

Abstract

Since the spring of 1977, two subtypes of influenza A virus (H3N2 and H1N1) have been seasonally infecting the human
population. In this work we study the distribution of patient ages within the populations that exhibit the symptomatic
disease caused by each of the different subtypes of seasonal influenza viruses. When the publicly available extensive
information is pooled across multiple geographical locations and seasons, striking differences emerge between these
subtypes. We report that the symptomatic flu due to H1N1 is distributed mainly in a younger population relative to H3N2.
(The median age of the H3N2 patients is 23 years while H1N1 patients are 9 years old.) These distinct characteristic spectra
of age groups, possibly carried over from previous pandemics, are consistent with previous reports from various regional
population studies and also findings on the evolutionary dynamics of each subtype. Moreover, they are relevant to age-
related risk assessments, modeling of epidemiological networks for specific age groups, and age-specific vaccine design.
Recently, a novel H1N1 virus has spread around the world. Preliminary reports suggest that this new strain causes
symptomatic disease in the younger population in a similar fashion to the seasonal H1N1 strains.
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Introduction

The year 1918 was marked by the ‘‘Spanish flu’’ H1N1

pandemic that killed more than 50 million people worldwide [1].

The H1N1 virus disappeared from the human population nearly

forty years later, when in 1957 the H2N2 pandemic propagated

around the globe. Except for a few singular reports, such as the

Fort Dix swine flu case in 1976 [2], H1N1 was not isolated from

humans for another 20 years. In May of 1977, the human H1N1

strain reappeared in Northern China [3]. At the time, the main

concern was for the younger population born after 1957, which

had never been exposed to this subtype of the virus. As expected,

the spreading epidemic was almost entirely restricted to the sub-

adult population [4].

Due to improvements in public health conditions, the life

expectancy in Europe and North America has increased. In

contrast however, most probably because of the growing size of the

older population, the US influenza death toll surged fourfold from

1976 to 1999. Older people, along with young children, are

particularly vulnerable to severe outcomes and secondary

infections [5,6].

Over the last few years, the information available in various

public influenza databases has expanded dramatically. This

information, appended to the sequences of viral isolates, includes

the age and sex of the patient, and the date and geographical

location of specimen collection. Thus, the probing of databases to

attempt to uncover demographic trends has become feasible.

Furthermore, the statistical significance of the conclusions that are

drawn is reinforced when the same trends are observed across

independent datasets, and most particularly when datasets are

merged in various combinations.

An important limitation for the collection of a truly random set

of influenza isolates is the fact that not all persons infected by

influenza virus clearly show the symptoms of influenza-like illness

(ILI). Any strain of the virus can infect an individual without

causing acute symptomatic disease. Thus, the content of the

datasets is generally restricted to isolates from persons who were

exhibiting at least fairly severe symptomatic disease, who are

henceforth referred to as ‘‘patients’’ of a given subtype.

Past family and community-based studies, some testing the serum

specimens for antibodies to the prevalent influenza viruses and some

based on a broader interpretation of ILI symptoms, have

demonstrated patterns in age-specific occurrence of illness caused

by the different types and subtypes of influenza virus [7–11]. In

particular, the Houston Family Study, which was conducted from

1977 through 1989, reported a significantly different age distribu-

tions of patients with H1N1 and H3N2 infections, where more than

50% of H1N1 infections were detected among the 10–34 years old

patients and persons born before 1951 had a decreased risk of

developing a virus-positive, medically attended illness. Glezen et al.

[7] attribute this striking difference to the development of lasting

immunity against H1N1 viruses due to exposure to previous

epidemics.

Since March 2009 a new H1N1 strain of influenza A virus of swine

origin has been infecting humans [12]. Most of the patients that show

symptomatic disease from infection by this new strain are also young.

In particular, Kelly et al. [13] report a similar median age of infection

of 2063 years for both the new and the seasonal strains,
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In this work, we extended the analyses of age-specific

occurrence of illness to geographically diverse populations within

several recent influenza seasons. We analyzed samples from

seasonal influenza in New York State collected by the Wadsworth

Center, New York State Department of Health, and also datasets

entailing temporally and geographically diverse information

deposited in the Influenza Virus Resource of the National Center

for Biotechnology Information (NCBI). [14] The vast majority of

the data, deposited by the Influenza Genome Sequencing Project

of the National Institute of Allergy and Infectious Diseases

(NIAID), are from sequence strains that were not pre-selected

for particular characteristics, such as subtype. [15] Therefore, the

concern regarding unknown biases in sequence datasets can be

mitigated by noting that although the samples were not

methodically collected by a random protocol within the popula-

tion, the number of incidents for both subtypes is sufficiently large

that the bias in the study is reduced. In other words, because the

sequences were not collected with a prior knowledge of the

subtype of the infecting virus, the statistical significance of the

conclusions solely depends on the quantities of the isolates for each

subtype, and their comparability in number. Obviously, the larger

the database, the higher the accuracy of probability estimates.

In this paper, we report a significant dissimilarity, relating to the

patient age distribution of infection, between the two circulating

influenza A subtypes and provide a more robust statistical measure

by combining several datasets and comparing the age distributions

of the influenza A subtypes. Our results are consistent with

previous reports from various population studies and also findings

on the evolutionary dynamics of each subtype.

Methods

We first studied a dataset compiled by the Laboratory of Viral

Diseases at the Wadsworth Center, New York State Department

of Health (NYSDOH). This dataset, which includes the infecting

virus subtype as well as the age and sex of the patient, spans the

influenza A-positive specimens received during the 2006–2007

and 2007–2008 influenza seasons. There are a total of 77 H1N1

and 139 H3N2 isolates in this dataset, the majority of which are

from sentinel physician submissions. The sentinel program, funded

by the Centers for Disease Control and Prevention, has

representative physicians enlisted throughout all regions of New

York State, in various types of clinical practice, who submit

specimens for testing from patients exhibiting influenza-like-illness

throughout the season.

For a more extensive dataset, we acquired a set of sequences for

the hemagglutinin (HA) segment from the H1N1 and H3N2

subtype isolates in the United States from the NCBI public

database. We chose the HA segment solely because of the great

number of available sequences. To try to ensure a high accuracy in

the sequences, we selected ones from large-scale genome-

sequencing projects, and we stipulated that the age and sex of

the patient be available for each isolate. This U.S. dataset contains

512 H1N1 and 1168 H3N2 sequences collected as early as 1995,

although the majority are from 2006–2008. Almost 700 of the

submissions in this dataset from New York State were carefully

selected for temporal and geographical diversity across each of the

seasons from which they were submitted. Additionally, the

majority of these samples originated from sentinel physician

specimens submitted to the Wadsworth Center, as described

above. By applying similar criteria for inclusion, we also acquired a

set of HA sequences from Oceania (mostly from New Zealand)

Table 1. The studied datasets from New York State and the NCBI.

DataSet Season H1N1 H3N2 P(MW)* P(KS)*

Mediana Oldestb Countc Mediana Oldestb Countc

New York State 2006–2008 21 1947 77 24 1914 139 3.91E-05 4.81E-04

NCBI: United States 2007–2008 21 1948 136 25 1930 478 6.64E-03 5.18E-05

NCBI: United States 2006–2007 7 1940 299 13 1923 77 2.15E-06 1.70E-06

NCBI: United States 1995–2008 9 1928 512 26 1911 1168 3.56E-48 2.15E-50

NCBI: Oceania 2000–2007 20 1923 179 23 1907 586 4.19E-01 4.03E-05

NCBI: All Data 2000–2007 9 1923 583 23 1907 1014 3.77E-18 1.57E-25

a: the median age.
b: the birth year of the oldest person.
c: number of counts.
*Probabilities computed for Mann-Whitney (P(MN)) and Kolmogorov-Smirnov (P(KS)) tests.
doi:10.1371/journal.pone.0006832.t001

Figure 1. Empirical cumulative distribution of ages for patietns
with H1N1 (blue) and H3N2 (red) in New York State during the
2006–2007 and 2007–2008 influenza seasons. The significantly
low probabilities computed via Mann-Whitney (P(MN)) and Kolmo-
gorov-Smirnov (P(KS)) tests indicate a remarkable dissimilarity between
the distributions.
doi:10.1371/journal.pone.0006832.g001

Flu Patient Age Distribution
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comprising 179 H1N1 and 586 H3N2 sequences collected from

2000 to 2007 (see Table 1).

As the information in both NYSDOH and NCBI datasets was

de-identified, no approval from an ethics committee was

necessary. Also, because the NCBI dataset is public and the

NYSDOH dataset only provided the aggregated information, no

patient consent was required.

The number of patients showing symptomatic disease in each of

the age groups is a function of the particular characteristics of the

analyzed subpopulation. For the purpose of assessing the age-trend

differences between the groups contracting influenza caused by

either the H1N1 or H3N2 subtype virus, we employed empirical

cumulative distribution functions in relation to age. To assess the

statistical significance of the trends, we chose the nonparametric

Mann-Whitney and Kolmogorov-Smirnov tests; these respectively

compare the two cumulative distributions via their ranking

difference and their maximum difference.

Results

We first examined age trends in the NYSDOH dataset. When

NYSDOH data from the 2006–2007 and 2007–2008 influenza

seasons were combined, we found that 47% of the detected H1N1

cases were reported in patients younger than 20 years.

Furthermore, only 14% of patients were older than 40 years,

and there were no reports of patients older than 61. The H3N2

strain, on the other hand, was contracted across all age groupings.

Approximately 27% of the reported H3N2 cases were in patients

younger than 20 years, and 27% were reported in patients older

than 40. More than 7% of the patients with symptomatic influenza

caused by subtype H3N2 were older than 80 years. Both statistical

measures confirmed a significant dissimilarity between the age

distributions for the two subtypes: the probabilities that the

observed age trends come from the same distribution are as low as

P(MW) = 3.91E-05 and P(KS) = 4.81E-04 according to Mann-

Whitney and Kolmogorov-Smirnov tests, respectively (Fig. 1).

When we examined the more extensive NCBI dataset for

similar trends in age distribution among the subtypes, we observed

the following in the 1995–2008 data from the United States (Fig. 2,

left): approximately 76% of the H1N1 patients were younger than

20 years old, and less than 8% were older than 40. There was no

report of any H1N1 patient older than 75 years in our dataset. On

the other hand, roughly 39% of the H3N2 patients were younger

than 20, and 32% were older than 40. Also, slightly less than 11%

were older than 80; the oldest H3N2 patient was 97. Overall, ILI

Figure 2. Empirical cumulative distribution of ages for patients with H1N1 (blue) and H3N2 (red), from the NCBI dataset, in the
United States, between 1995 and 2008 (left) and Oceania, between 2000 and 2007 (right). Complementary to the results from New York
State (Fig. 1), the low probabilities computed via Mann-Whitney (P(MN)) and Kolmogorov-Smirnov (P(KS)) tests show a significant difference between
the distributions, which is spatially and temporally consistent.
doi:10.1371/journal.pone.0006832.g002

Figure 3. Empirical cumulative distribution of ages for patients
with H1N1 (blue) and H3N2 (red), from the NCBI dataset in
United States and Oceania combined, between 2000 and 2007.
The low probabilities computed via Mann-Whitney (P(MN)) and
Kolmogorov-Smirnov (P(KS)) further confirm the results shown in Fig. 2.
doi:10.1371/journal.pone.0006832.g003
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caused by H3N2 was exhibited across all age groupings, whereas

H1N1 caused disease mainly in a younger population. The Mann-

Whitney test applied to the NCBI dataset indicated a significantly

low probability (P(MW) = 3.56E-48) that the age distribution was

similar between H1N1 and H3N2. This was confirmed by the

Kolmogorov-Smirnov test, with a very low probability of

P(KS) = 2.15E-50.

Analysis of the Oceania dataset also demonstrated the

contrasting age-wise distributions for H1N1 and H3N2. Although,

due to a large number of H3N2 isolates from younger patients,

and a higher variance in the data, the Mann-Whitney test failed

to demonstrate the dissimilarities (P(MW) = 4.19E-1), the Kol-

mogorov-Smirnov test did show a significant difference

(P(KS) = 4.03E-5) (Fig. 2, right).

Furthermore, combining the Oceania and United States

datasets from years 2000–2007, when there is available data from

both geographical subsets, we see the same kind of disparate age

trends between subtypes: P(MW) = 3.77E-18 and P(KS) = 1.57

E-25 (Fig. 3).

To refute the possibility that the statistical results could have

arisen due to a unique season, and to check the consistency of the

results within subsets of the data, we also studied each season

individually. The only two seasons in the United States for which

the NCBI database provided data adequate for statistical analysis,

were 2006–2007 and 2007–2008. We again observed different age

trends between influenza subtypes in each of these seasons, and

both the Mann-Whitney and Kolmogorov-Smirnov tests indicated

low probabilities that the distributions were the same (Figs. 4).

In addition, we evaluated the United States dataset from the

NCBI based on the birth year of the patients, in order to

investigate the correlation between the previous pandemics and

possible immunity to one of the subtypes (Fig. 5). Four percent of

the H1N1 patients were born before 1957 (the H2N2 pandemic),

versus 24% of the H3N2 patients; 10% of the H1N1 patients were

born before 1968 (the year of the H3N2 pandemic) versus 32% of

the H3N2 patients. Also, 16% of the H1N1 patients were born

before 1977 (the year of reemergence of H1N1), compared to 42%

of the H3N2 patients. The significant statistical dissimilarity

between the distributions of year of birth (P(MW) = 3.33E-22 and

P(KS) = 5.89E-34) hints at an existing immunity against one of the

subtypes in different age groups, possibly carried over from a

previous pandemic.

Figure 4. Empirical cumulative distribution of ages for patients with H1N1 (blue) and H3N2 (red), from the NCBI dataset, in United
States during the influenza seasons of 2006–2007 (left) and 2007–2008 (right). The significantly low probabilities computed via Mann-
Whitney (P(MN)) and Kolmogorov-Smirnov (P(KS)) tests during separate influenza seasons show the consistency in our results among sub-portions of
the data and refute the possibility that the previous statistical results are due to a unique season.
doi:10.1371/journal.pone.0006832.g004

Figure 5. Empirical cumulative distribution of birth year for
patients with H1N1 (blue) and H3N2 (red), from the NCBI
dataset, in the United States, between 1995 and 2008. The
significant statistical dissimilarity between the distribution for the year
of birth (P(MW) = 2.04E-24 and P(KS) = 1.13E-35) hints to an existing
immunity against one of the subtypes in different age groups, possibly
carried over from a previous pandemic.
doi:10.1371/journal.pone.0006832.g005
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Discussion

We have analyzed the differences in patient age distribution

between influenza A subtypes, using isolates from the 2006–2007

and 2007–2008 influenza seasons in New York State. These data

show a compelling trend that younger persons exhibit ILI caused

by the H1N1 subtype statistically more frequently than do older

persons. We confirmed the results by combining large datasets for

North America and Oceania, from 1995 to 2008, taken from the

NCBI database. The same trend is observed for every year and for

each geographical grouping. These results suggest that the two

influenza subtypes, which are co-circulating around the globe,

target two different age subpopulations with acute illness. These

observations, made within geographically and temporally diverse

datasets, are consistent with findings of the previous regional

populations studies, conducted in the 1970’s and 1980’s, [7] that a

lasting immunity to H1N1 subtypes of influenza virus, possibly

carried over from exposure to previous epidemics and pandemics,

exists in the older population that decreases their risk of developing

the acute symptomatic disease.

These observations also complement some of the previous

findings on the seasonal evolution of influenza A virus. For

example, Rambaut et al. [16], who studied a population that was

spatially and temporally similar to the one in our analysis,

identified a weaker antigenic drift in H1N1, leading to a global co-

circulation of multiple H1N1 lineages and weaker H1N1

bottleneck effects between seasons compared to those of H3N2.

If H1N1 does preferentially target a younger population, as our

results indicate, a lower antigenic pressure and less-severe

bottlenecks in the viral population, are expected. Furthermore,

the different host population of H3N2 could explain the subtype’s

lower diversity and more severe bottlenecks.

In addition, our analysis reflects the morbidity in the current

population, which is also affected by the new H1N1 strain of

influenza A virus that has been infecting humans since March

2009. Interestingly, most of the patients that show symptomatic

disease from infection by this new strain are also young as 60% of

the reported cases are 18 years old or younger [12,17]. This is very

similar to the distribution of age in seasonal H1N1 patients: 69%

in the United States and 49% in Oceania (Figure 2) and 68%

when the Oceania and United States datasets from years 2000–

2007 were combined (Figure 3).

These results are especially pertinent for the assessment of risks

in age-defined subpopulations. For example, in a year when H1N1

is predominant, public health resources should be focused on the

younger populations, by introducing age-specific vaccines. From

the point of view of epidemiological modeling, younger people

have social patterns different from those of the older population,

and it is likely that the two virus subtypes propagate differently in

these distinct networks. This factor again has public health

implications.

Author Contributions

Conceived and designed the experiments: HK RR. Performed the

experiments: HK GMF KSG RR. Analyzed the data: HK RR.

Contributed reagents/materials/analysis tools: HK GMF KSG RR. Wrote

the paper: HK GMF KSG RR.

References

1. Johnson NP, Mueller J (2002) Updating the accounts: global mortality of the

1918-1920 ‘‘Spanish’’ influenza pandemic. Bull Hist Med 76(1): 105–15.
2. Kilbourne ED (1976) The predictable natural disaster [op. ed.]. New York

Times Apr 13; 33.

3. Beveridge WIB (1978) Where did red flu come from? New Scientist 23: 790–1.
4. Kilbourne ED (2006) Influenza pandemics of the 20th century. Emerg Infect Dis

12(1): 9–14.
5. Thompson WW, Shay DK, Weintraub E, Brammer L, Cox N, et al. (2003)

Mortality associated with influenza and respiratory syncytial virus in the United

States. JAMA 289(2): 179–86.
6. Simonsen L, Clarke MJ, Schonberger LB, Arden NH, Cox NJ, et al. (1998)

Pandemic versus epidemic influenza mortality: a pattern of changing age
distribution. J Infect Dis 178(1): 53–60.

7. Glezen WP, Keitel WA, Taber LH, Piedra PA, Clover RD, et al. (1991) Age
distribution of patients with medically-attended illnesses caused by sequential

variants of influenza A/H1N1: comparison to age-specific infection rates, 1978-

1989. Am J Epidemiol 133(3): 296–304.
8. Monto AS, Koopman JS, Longini IM Jr (1985) Tecumseh study of illness. XIII.

Influenza infection and disease, 1976–1981. Am J Epidemiol 121(6): 811–22.
9. Monto AS, Ohmit SE, Margulies JR, Talsma A (1995) Medical practice-based

influenza surveillance: viral prevalence and assessment of morbidity.

Am J Epidemiol 141(6): 502–6.
10. Fox JP, Cooney MK, Hall CE, Foy HM (1982) Influenza virus infections in

Seattle families, 1975–1979. II. Pattern of infection in invaded households and

relation of age and prior antibody to occurrence of infection and related illness.

Am J Epidemiol 116(2): 228–42.
11. Olson DR, Heffernan RT, Paladini M, Konty K, Weiss D, et al. (2007)

Monitoring the Impact of Influenza by Age: Emergency Department Fever and

Respiratory Complaint Surveillance in New York City. PLoS Med 4(8): e247.
12. Trifonov V, Khiabanian H, Greenbaum B, Rabadan R (2009) The origin of the

recent swine influenza A(H1N1) virus infecting humans. Euro Surveill 14(17):
pii: 19193.

13. Kelly H, Grant K, Williams S, Smith D (2009) H1N1 swine origin influenza

infection in the United States and Europe in 2009 may be similar to H1N1
seasonal influenza infection in two Australian states in 2007 and 2008. Influenza

and Other Respiratory Viruses 3(4): 183–188.
14. Bao Y, Bolotov P, Dernovoy D, Kiryutin B, Zaslavsky L, et al. (2008) The

Influenza Virus Resource at the National Center for Biotechnology Information.
J Virol 82(2): 596–601.

15. Ghedin E, Sengamalay NA, Shumway M, Zaborsky J, Feldblyum T, et al. (2005)

Large-scale sequencing of human influenza reveals the dynamic nature of viral
genome evolution, Nature 437(7062): 1162–6.

16. Rambaut A, Pybus OG, Nelson MI, Viboud C, Taubenberger JK, et al. (2008)
The genomic and epidemiological dynamics of human influenza A virus. Nature

453(7195): 615–9.

17. Novel Swine-Origin Influenza A (H1N1) Virus Investigation Team (2009)
Emergence of a Novel Swine-Origin Influenza A (H1N1) Virus in Humans.

N Engl J Med 360(25): 2605–15.

Flu Patient Age Distribution

PLoS ONE | www.plosone.org 5 August 2009 | Volume 4 | Issue 8 | e6832


