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Abstract

Background: The enzymatic hydrolysis of a2mannosides is catalyzed by glycoside hydrolases (GH), termed
a2mannosidases. These enzymes are found in different GH sequence–based families. Considerable research has probed
the role of higher eukaryotic ‘‘GH38’’ a2mannosides that play a key role in the modification and diversification of hybrid N-
glycans; processes with strong cellular links to cancer and autoimmune disease. The most extensively studied of these
enzymes is the Drosophila GH38 a2mannosidase II, which has been shown to be a retaining a2mannosidase that targets
both a21,3 and a21,6 mannosyl linkages, an activity that enables the enzyme to process GlcNAc(Man)5(GlcNAc)2 hybrid N-
glycans to GlcNAc(Man)3(GlcNAc)2. Far less well understood is the observation that many bacterial species, predominantly
but not exclusively pathogens and symbionts, also possess putative GH38 a2mannosidases whose activity and specificity is
unknown.

Methodology/Principal Findings: Here we show that the Streptococcus pyogenes (M1 GAS SF370) GH38 enzyme (Spy1604;
hereafter SpGH38) is an a2mannosidase with specificity for a21,3 mannosidic linkages. The 3D X-ray structure of SpGH38,
obtained in native form at 1.9 Å resolution and in complex with the inhibitor swainsonine (Ki 18 mM) at 2.6 Å, reveals a
canonical GH38 five-domain structure in which the catalytic ‘‘–1’’ subsite shows high similarity with the Drosophila enzyme,
including the catalytic Zn2+ ion. In contrast, the ‘‘leaving group’’ subsites of SpGH38 display considerable differences to the
higher eukaryotic GH38s; features that contribute to their apparent specificity.

Conclusions/Significance: Although the in vivo function of this streptococcal GH38 a2mannosidase remains unknown, it is
shown to be an a2mannosidase active on N-glycans. SpGH38 lies on an operon that also contains the GH84
hexosaminidase (Spy1600) and an additional putative glycosidase. The activity of SpGH38, together with its genomic
context, strongly hints at a function in the degradation of host N- or possibly O-glycans. The absence of any classical signal
peptide further suggests that SpGH38 may be intracellular, perhaps functioning in the subsequent degradation of
extracellular host glycans following their initial digestion by secreted glycosidases.
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Introduction

The sugar mannose, particularly a2 and b2mannosides, play

many and varied roles in biological organisms. b2Mannan is a

plant polysaccharide recalcitrant to degradation whereas

a2mannans are found in the fungal cell-wall. More subtle roles

for a2 and b2mannosides are found in the glycans of higher

organisms, where oligosaccharide diversity affords cell signaling

and recognition events that lead oligosaccharides to play the role

of ‘‘glycocode’’; the language of cellular communication [1].

Furthermore, mannose chemistry itself is extremely challenging,

demanding inspired solutions to the problem of synthesis at its

occluded anomeric centre [2,3,4]. Not surprisingly, therefore,

there is considerable interest in the enzymatic synthesis and

degradation of mannosides. In the context of the glycoside

hydrolase (GH) catalyzed a2mannosidase hydrolysis, several of

the .100 GH sequence-based families (www.cazy.org [5];

reviewed in [6,7,8,9]) contain enzymes with putative a2man-

nosidase activity. These families include GH38 configuration-

retaining a2mannosidases and family GH47 inverting manno-

sidases, that together are the most studied of the known

a2mannosidases, as well as enzymes in GH76 and GH92; the

latter recently studied in the context of 3-D structure, specificity

and catalysis [10].
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Of particular relevance to the study described here, are the

GH38 a2mannosidases. Based on sequence similarity, these

enzymes are approximately 1000 residues in length and have been

found across the Archaea (19 ORFs, as of 18-Jan-2010), Bacteria

(295 ORFs) and Eukaryote (118 ORFs) domains of life. The

higher eukaryotic GH38 enzymes are involved in the processing

the high-mannose and hybrid N-glycans, Figure 1. During cancer

metastasis, the degree of branching in N-linked carbohydrate

structures has been correlated with malignancy and disease

progression through disruption of normal intracellular interactions

and effectively concealing cancerous cells from immune detection

[11]. Furthermore, mouse knock-outs show that mannosidase II

deficient animals suffer from lupus-like auto immune diseases [12].

Characterisation of the mechanisms responsible for the synthesis,

breakdown and recognition of oligosaccharides in N-linked

glycosylation has therefore inspired considerable interest in the

structural enzymology of GH38 enzymes.

At the 3-D level, the Drosophila a2mannosidase II [13] is the

most extensively studied GH38 enzyme. This Golgi localised

enzyme has dual a21,3 and a21,6 mannosidase activity and is

implicated in the maturation/diversification of ‘‘hybrid’’ N-glycans

prior to their augmentation into complex glycan structures,

Figure 1. The initial Drosophila a2mannosidase II structure was

solved in 2001 [14] and this has been followed by several 3-D

analyses designed primarily to probe sub-site specificity [15] and

the chemical [16] and conformational [17] aspects of mannosidase

catalysis as well as a2mannosidase inhibition [18,19,20,21,

22,23,24,25,26]. a2mannosidase II is considered a potential

anti-cancer target, not least because its action in hybrid N-glycan

modification is required prior to metastatic changes in N-glycans;

such as those involving GlcNAc Transferase V [27,28,29,30].

Indeed, the anti-cancer indolizidine alkaloid, swainsonine, is a

potent inhibitor of a2mannosidase II and has been shown to

reduced metastasis and improved clinical outcomes when used in

clinical trials for treatment of colon, breast, and skin cancers [11].

The GH38 bovine lysosomal a2mannosidase (bLAM) has also

been subjected to biochemical and structural analysis [31]. Despite

the complexities arising from the proteolytic cleavage of the bovine

enzyme into five fragments, the 3-D structure of bLAM confirms a

similar overall domain structure and catalytic center for the

mammalian enzyme. Yet, despite this wealth of structural

information, little is known of the bacterial GH38 enzymes, many

of which come from human symbionts and pathogens; although

the link between pathogen carbohydrate catabolism and patho-

genesis is well documented (for example refs. [32,33]).

The CAZy website (www.cazy.org) reveals that many bacterial

species encode GH38 enzymes. At the time of submission very few

of the ,300 open reading frames encoding putative GH38

a2mannosidases from bacteria have been characterised in any

way. One exception, however, is the Escherichia coli a2mannosi-

dase MngB, which converts 2-O-(6-phospho-a-mannosyl)-D-gly-

cerate to mannose-6-phosphate and glycerate in the pathway

which enables use of mannosyl-D-glycerate as a sole carbon source

[34]. Other bacterial GH38 representatives are from a diversity of

genera including Bacteroides (4), Clostridia (13), Listeria (28 with 4 or 5

GH38 entries per Listeria species), and Mycobacteria (20). However,

with 32 species represented out of 37 possible, the genus

Streptococcus constitutes the highest proportion of bacterial

GH38s, including many human pathogens such as S. pyogenes

(Group A Streptococcus or GAS). Group A streptococci are the

pathogenic bacteria responsible for many acute human infections

in the respiratory tract and skin including pharyngitis, impetigo,

rheumatic fever, and acute glomerulonephritis [35]. Alarmingly,

since the 1980s S. pyogenes has been identified to be globally

responsible for a class of emerging, life threatening, invasive

infections including the ‘‘flesh-eating’’ disease, necrotizing fasciitis,

septicemia, and the excretion of the pyrogenic exotoxin-associated

toxic shock syndrome [35]. Treatment of these invasive diseases,

even with broad spectra antibiotics, is not always effective, with

patient mortality exceeding 80% in cases of toxic shock [36]. The

paucity of information on the a2mannosidases from these

pathogenic bacteria, led us to study the S. pyogenes SpGH38

enzyme Spy1604. The SpGH38 gene is located on an operon that

contains (in addition to two sugar transporters, transcriptional

regulators and two-component putative histidine kinase) two other

glycoside hydrolase genes. These are the GH84 Spy1600 enzyme,

which is known to be a hexosaminidase that is able to cleave

b2linked N-acetylglucosaminyl moieties from diverse substrates

[37] and a GH1 ‘‘putative b2glucosidase’’ (a family that includes

varied b2D glycoside hydrolases including glucosidases, manno-

sidases, galactosidases and glucuronidases).

Here we report, what we believe to be, the first structure of a

bacterial a2mannosidase from the human pathogen S. pyogenes

bound to the therapeutically important inhibitor swainsonine.

Comparison of SpGH38 with Drosophila Golgi a2mannosidase II

suggests a conserved domain architecture and catalytic centre in

which diversification in the ‘‘leaving group’’ subsites accounts for

the subtly different specificity. We show that SpGH38 is specific

for a21,3 linkages, with high activity on an a21,3 disaccharide

Figure 1. Catalytic activity of GH38 a2mannosidases. (A) Golgi
a2mannosidase II is responsible for the hydrolysis of both a21,3 and
a21–6 mannosides during the diversification of hybrid N glycans
(GlcNAcMan5GlcNAc2 becoming GlcNAcMan3GlcNAc2). (B) The catalytic
action of a retaining a2mannosidase, here exemplified for the a21,3
mannosidase activity of GH38 enzymes; catalysis occurs with net
retention of anomeric configuration.
doi:10.1371/journal.pone.0009006.g001

Streptococcal GH38 Mannosidase
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but no appreciable activity on a21,6 linked substrate. SpGH38 is

also able to hydrolyse (Man)5(GlcNAc)2 N-glycans to (Man)3
(GlcNAc)2 consistent with an a21,3 mannosidase activity,

Figure 1b. Together with the operon organisation, the data

imply that SpGH38 is a component of a host N- or possibly O-

glycan degradation system.

Results and Discussion

SpGH38 Sequence Analysis
Streptococcus pyogenes M1 GAS SF370 ORF Spy1604 encodes a

putative GH38 a-mannosidase. The gene encoding the full length

enzyme (901 amino-acids) was cloned and subsequently over-

expressed using a York ligation-independent cloning strategy

(Ysbl-LIC) [38,39]. Protein was produced at high levels in E. coli

and purified using metal-ion affinity and gel filtration chromatog-

raphy (see Materials and Methods).

SpGH38 is distantly related to various mammalian and insect

a2manosidases including homologues from Bos taurus (2 ORFs),

Drosophila (8), and Homo sapiens (5), as well as a variety of plant

enzymes including a2mannosidases from Arabidopsis (4) and Oryza

sativa (4) where numbers in brackets represent the number of

family GH38 representatives from each species. These higher

eukaryotic GH38s are quite divergent, reflected in, for example 28

and 24% sequence similarity with bLAM and dGMII respectively

whilst within a ‘‘compartment’’ (such as human vs. Drosophila golgi

enzymes) the identity is typically far greater (.40%). Within the

Streptococcal species, sequence analyses reveals known GH38

homologs in group A S. pyogenes, group C Streptococcus

(YP_002997299), group D Streptococcus (ZP_03980341), and also

non-hemolytic Streptococcus (YP_002349517). Within S. pyogenes

strains, GH38 ORFs are observed in S. pyogenes serotypes (M49

591, NZ131, MGAS9429, Manfredo, MGAS10394, MGAS8232,

MGAS10270, MGAS6180, MGAS10750, MGAS315; see www.

cazy.org.

Catalytic Activity of SpGH38
Recombinant SpGH38 was tested for a2mannosidase activity

initially on a range of aryl a2mannosides (4-nitrophenyl a2D

mannoside, 2,4 dinitrophenyl a2D mannoside and 4-methylum-

belliferyl a2D mannoside). Activity was detectable, but poor, on

both the 2-nitrophenyl and 2,4 dinitrophenyl derivatives and this

prevented calculation of individual kcat and KM values for either

substrate. The 2,4 dinitrophenyl substrate alone allowed calcula-

tion of an approximate kcat/KM of ,0.6 min21mM21. Activity on

4-MeUMB-Man was greater, permitting full Michaelis-Menten

kinetics and allowing description of the SpGH38 as an

a2mannosidase with a kcat of 1.860.24 min21 and KM of

3.661.0 mM, Figure 2. SpGH38 activity was subsequently

measured on a range of commercial a2mannobioside disaccha-

rides (1,2/1,3/1,4 and 1,6 linked). The enzyme showed significant

activity only on the a21,3 linked disaccharide substrate yielding

kcat of 38466.2 min21 and KM of 2760.75 mM, Figure 2b. The

data show that SpGH38 acts as an effective a21,3 mannosidase

with a kcat/Km of 14.2 min21mM21 on the disaccharide.

In order to test the activity and specificity of the enzyme on

human N-glycans an unmodified human Man9GlcNAc2 glycan

was incubated with SpGH38. No activity on the intact glycan was

observed, Figure 3a, typical for many a2mannosidases whose

lack of a21,2 mannosidase activity prevents access to these

masked substrates. The Man9GlcNAc2 glycan was therefore co-

incubated with a specific a21,2 mannosidase, the Bacteroides

thetaiotaomicron Bt3990 enzyme (YP_210385) [10], to generate an

‘‘unmasked’’ Man5GlcNAc2 glycan (m/z 1580.2, Figure 3b).

This was indeed a substrate for SpGH38 which was able to

degrade it further to Man4GlcNAc2 (m/z 1376.0) and Man3-

GlcNAc2 (m/z 1171.8) Figure 3b. Although one cannot formally

exclude a small amount of a21,6 activity, in light both of the

previous observations on mannobioside specificity and the absence

of any significant amount of further degradation product, the most

likely interpretation of the mass spectrometry data is that SpGH38

is able to sequentially remove the two a21,3 linked mannobiosyl

moieties from Man5GlcNAc2 to yield a glycan in which the a21,6

linked mannosides remain, Figure 3b. This a21,3 specificity is

also in agreement with the active centre topography, described

below in light of the 3-D structure of the SpGH38 enzyme and a

comparison with the dual a21,3/a21,6 mannosidase in CAZY

family GH38 – the Drosophila a2mannosidase II.

SpGH38 Structure Determination
The three-dimensional structure of SpGH38 was determined by

the multiple anomalous dispersion phasing method using a

selenomethionine-derivative form of the protein and the native

structure refined to 1.90 Å resolution, Table 1. Subsequently, an

inhibited form of SpGH38 in complex with swainsonine was

determined at 2.6 Å resolution (discussed below). The selenome-

thionine-derived and native forms of SpGH38 each crystallize in

different space groups, tetragonal P43212 and monoclinic P21,

Figure 2. Catalytic activity of SpGH38 a2mannosidase and inhibition by swainsonine. (A) Activity on 4-methylumbelliferyl a2D mannoside
(4-MeUMB) and (B) a21,3 mannobiose (see text for details) Substrate insolubility under the conditions used precluded higher [S] values. (C) The Ki for
swainsonine was determined using a21,3 mannobiose as substrate with [S] , , Km and [I] straddling the Ki. V0 and Vi are the rates of the reaction in the
absence and presence of inhibitor, respectively. The Ki for a competitive inhibitor is derived from the gradient of 1/Ki (see Methods ); here 1860.5 mM.
doi:10.1371/journal.pone.0009006.g002
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respectively, each with two protein molecules in the asymmetric

unit. In each crystal form, the two SpGH38 molecules within the

asymmetric unit inter-digitate to form a dimer. These dimers are

essentially identical between crystal forms, overlapping with a root

mean squared deviation of 0.4 Å on C-alpha atoms. Furthermore,

molecular weight estimation for SpGH38 by size exclusion

chromatography indicated a molecular mass of 250 kDa (data

not shown). This suggests that SpGH38, with a monomer

molecular weight of 102,751, behaves as an elongated dimer in

solution. Of the GH38 structures of known function, the Bos

Taurus bLAM [31], is also believed to be a dimer, whereas the

Drosophila dGMII is believed to be monomeric [14].

Although exact delineation of domains is subjective, the

SpGH38 structure can be considered as five domains: an N-

terminal a/b-domain (residues 1-294), a three-helix bundle (295–

392) and three predominantly b -sheet domains (393–515/806–

824, 522–805, 825–901), Figure 4). The N-terminal a/b-domain,

three-helix bundle, and the b22 and b23 domains form the

‘‘core’’ of SpGH38 with all of these domains contributing to the

active center and substrate binding surface. The b21 domain

bows outward from the protein core, is involved in dimer

interactions whilst also forming a lid ‘‘above’’ and somewhat into

the active centre of its dimer mate. Broadly speaking SpGH38

resembles an elongated ellipse that is convex along the surface

where b22 and b23 domains interact, and concaved on the

three-helical bundle exposed surface.

The a/b-domain features a distorted b-barrel core composed of

primarily parallel strands, surrounded by eight helices of varying

length and an appreciable amount of coil. A metal ion, known to

be catalytic and presumed to be zinc (see below) is coordinated by

three residues derived from the coil elements: His13, Asp15 and

Asp125, together with a single residue, His351, from a loop of the

helical-bundle domain (Figure 4a, b). The three-helical bundle

runs across the narrow axis of the concaved surface of SpGH38,

serving as a central structural feature that makes many interactions

with each of the other domains. The b21 domain consists of seven

anti-parallel strands which form a twisted b-barrel in which three

of the strands along one side of the barrel extend beyond the edge

of the barrel, twisting away from the core. An a-helix connects the

two sides of the b1-barrel at this distal opening. Due to a lack of

clear electron density, a gap exists in the model between residues

515–521 which join the b21 and b22 domains. Central to the

b22 domain is a 17-stranded, twisted b-super-sandwich, punctu-

ated by an a-helix that joins strands 7 and 8, and terminating at

another helix before forming a strand that contributes to the b21

domain. The C-terminal b23 domain contains four twisted anti-

parallel b-strands and three extended coils resembling a distorted

b-sandwich. Furthermore, axial to the b21 domain and bordered

by the three-helix and b22 domains, a narrowing, cone-shaped

channel through SpGH38 is established. This structural feature is

of unknown function but is conserved in dGMII [14] and bLAM,

albeit narrower in the latter case.

Comparison of SpGH38 to Known Structures
Secondary structure matching of full length SpGH38 using

SSM [40] not surprisingly reveals the GH38 Drosophila a2man-

nosidase II as the top ‘‘hit’’ (Z score 9.8 with 664 residues aligning,

r.m.s.d 2.6 Å). Due to the bLAM structure being defined as five

separate chains in the PDB deposited coordinates it was not

highlighted from an initial SSM search. However, pair-wise

alignment of SpGH38 and bLAM is comparable to that observed

for dGMII (Z score 8.6 with 686 residues aligning, r.m.s.d 2.8 Å.

Beyond the GH38 family, very distant similarity is observed the

Bacteroides thetaiotaomicron a-glucosidase (GH97), and this is largely

due to similarity with the b22 and b23 domains of SpGH38.

Overall, the individual domains and architecture of SpGH38

are similar to both dGMII and bLAM, albeit different in spatial

arrangement and intra-domain contacts, overlapping full length

secondary structures with mean square deviations of 2.6 and

2.8 Å, respectively. However, the structural divergence was

significant enough to prevent either being used as a suitable

molecular replacement model for SpGH38, even when shorter,

more conserved, features were used. Crystallization and diffraction

data collection have also been reported for two other GH38 family

Figure 3. SpGH38-catalysed hydrolysis of Man9(GlcNAc)2 glycans. (A) Action of SpGH38, alone, on Man9(GlcNAc)2. The glycan remains
unmodified. (B) Action of SpGH38 in combination with a specific a21,2 mannosidase the Bacteroides thetaiotaomicron Bt3990. Following a21,2
mannoside removal (which has previously been shown to be specific, see Supplemental Figure 1 in [10], SpGH38 is able to further degrade the
unmasked glycans, with the action pattern most indicative of a21,3 mannosidase activity. An a21,3 mannosidase activity for SpGH38 is further
supported by the specificity of the enzyme for the disaccharide a21,3 mannobiose (see text).
doi:10.1371/journal.pone.0009006.g003
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members: the cytosolic a-mannosidase TM1851 from Thermotoga

maritima and the Saccharomyces cerevisiae a-mannosidase Ams1

[41,42]. However, molecular replacement using either dGMII or

bLAM failed to result in a solution for either case.

As discussed, SpGH38 appears to exist as an elongated dimer.

The SpGH38 dimer forms through an inter-digitation of the b23

domain into the opening formed between a/b and b22 domains

of an adjacent molecule. A series of van der Waals’ and hydrogen

bonding interactions stabilize this intra-molecular connection

involving hydrophobic residues Y574, V629, W764, Y766, F767

from the a/b and b22 domains with F429, F433, P434, Y438,

F474, Y476, L478, P479, F483, P486, and F488 of the b23

domain which would be surface exposed in a monomeric state.

This insertion of the b23 domain effectively reduces the area of

the putative Man5GlcNAc binding site in an adjacent molecule

and introduces Y476, F483, R484, and Q431 which could

putatively stabilize GlcNAc and Man substituents thereby

anchoring a high mannose substrate. This inter-digitation between

adjacent crystallographic dimers could also suggest a mechanism

for restricting substrate access to the active centre, thereby

providing added substrate specificity.

The putative high mannose anchoring site in bLAM is similar to

SpGH38 in that it extends longer and wider compared to dGMII.

Furthermore, although bLAM exists as a monomer in the crystal

state, it has been characterized to be a dimer in solution. Through

EM and crystal packing bLAM was hypothesized to form two

possible dimers; one in which contacts are made between regions

equivalent to the b22 and b23 domains in SpGH38, and another

in which contacts are made between equivalents to the a/b-

domain, the latter of which was more favored. The dimerization

observed for SpGH38 introduces an alternative possibility for

bLAM oligomerization.

Active Center and Swainsonine Complex
The natural product swainsonine is known to be a versatile

glycosidase inhibitor having previously been used to study the

active center of the Drosophila enzyme [14]. On SpGH38 it displays

a Ki value of 18 mM (Figure 2c) using the linked assay with a21,3

mannobiose as substrate. A complex was obtained of swainsonine

with SpGH38 and data collected to 2.6 Å resolution. The mean B

value for the ligand, 52 Å2, equates to that of the dataset as a

whole (51 Å2) but that it is higher than its surroundings hints at an

Table 1. Data collection and refinement statistics for the Streptococcus pyogenes GH38 a2mannosidase.

Data collection Se ‘‘Peak’’ Native Swainsonine

Resolution range (Å) 50–3.00 (3.11–3.00) 50–1.90 (1.97–1.90) 50–2.60 (2.69–2.60)

Space group P43212 P21 P43212

Unit cell dimensions

a, b, c (Å) 180.8, 180.8, 194.7 92.6, 88.5, 134.7 178.7, 178.7, 198.2

a, b, c (u) 90, 90, 90 90, 109.0, 90 90, 90, 90

Completeness (%) 100 (100) 99.4 (99.1) 99.8 (100)

Rmerge 0.088 (0.24) 0.052 (0.45) 0.053 (0.39)

Redundancy 16.3 (16.6) 3.3 (3.0) 6.8 (7.0)

I/s(I) 20.0 (11.2) 14.4 (2.0) 25.7 (4.1)

Refinement n/a

Resolution range (Å) 50–1.90 (1.97–1.90) 50–2.60 (2.69–2.60)

Unique reflections 152396 93181

Rwork/Rfree (%) 17.8/ 20.5 18.7/22.3

Rmsd bond lengths (Å) 0.009 0.009

Rmsd bond angles (u) 1.1 1.1

Number of atoms

Protein 14433 14790

Ligand/ion 0/2 24/2

Solvent 995 417

Average B factors (Å2)

Protein 16 30

Ligand/ion —/29 50/72

Solvent 21 34

Rmsd B bonded-atoms (main-chain/side-chain/
ligand)

0.44/1.4/— 0.37/1.0/1.2

Ramachandran plot (%)

Most favored 96.1 96.3

Allowed 3.3 3.4

Outliers 0.6 0.3

PDB Code 2WYH 2WYI

doi:10.1371/journal.pone.0009006.t001
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occupancy ,1 for both swainsonine and the Zn2+ ion; the

unbiased Fobs-Fcalc density is, however, unambiguous, Figure 4c.

The active center of SpGH38 is located in a cleft at the bottom of

a broad surface channel between the a/b2 and b2-domains and

bordered by a short helical linker that joins the second and third

helices of the three-helical bundle domain. In apo-SpGH38 the

zinc ion is coordinated in T5-square-based pyrimidal geometry by

the OD1 moieties of D15 and D125, the NE2 nitrogens of H13

and H351, and a water molecule analogous to that characterized

for dGMII [14], Figure4c, d; Figure 5a. In the swainsonine

complex the position of the water molecule is occupied by the O2

hydroxyl oxygen of swainsonine. An additional contact is

established between the O3 hydroxyl oxygen of the five-membered

ring and zinc, which is now in an overall T6-octahedral

coordination arrangement. The O1 hydroxyl oxygen of swainso-

nine is stabilized through electrostatic interactions with side chain

oxygens of Y574 and D352 and further contributions from D15

and D352 stabilize the O3 and O2 hydroxyl oxygens of

swainsonine in the active centre, respectively (schematic diagram

in Figure 4d). These active centre interactions with hydroxyl

oxygens 1–3 of swainsonine correspond to analogous interactions

between dGMII and hydroxyl groups at positions 4, 3, and 2 of

a2mannose in the -1 subsite [17] (subsite nomenclature in Ref.

[43]), which helps to explain why swainsonine represents such a

useful inhibitor of a-mannosidase II.

In addition to the favorable electrostatic interactions discussed

previously, the position of F127 is conserved across a-mannosidase

II active centers. Additionally, swainsonine is stabilized through

stacking interactions of W18 with the five-membered ring,

suggesting that the two aromatic residues contribute to positioning

mannose into the correct orientation in the 21 subsite. Other

conserved active centre residues, D125 and D232 are in equivalent

positions to the catalytic nucleophile and general acid/base,

respectively, of dGMII. As with the Drosophila enzyme, it is likely

that R149 will encourage D125 to be ionized (as required for a

nucleophile). The hydrogen-bond from Y192 to D125 may also

stabilize the ionized form of D125. D232 will likely be neutral due

to negative charge repulsion from D125, as expected for the acid/

base.

The structure of SpGH38 is consistent with previous proposals

(notably [17]) concerning the chemical basis for catalysis with net

retention of anomeric configuration in this family. Thus one can

support a mechanism, Figure 5b, in which protonic assistance to

leaving group departure is given by D232 with electrophilic

migration of the anomeric carbon to form the covalent glycosyl-

enzyme intermediate. It seems likely that Zn2+ plays a role in

aiding distortion of the sugar towards the transition-state (as also

discussed for the Ca2+ in GH92 [10] and GH47 [44]

a2mannosidases). The covalent intermediate species was trapped

and observed on the Drosophila enzyme and shown to bind in a 1S5

(skew-boat) conformation [17]. Based on the stereoelectronic

requirements for an incipient oxocarbenium-ion, the 1S5 interme-

diate was thus interpreted as implying catalysis ‘‘around’’ the B2,5

boat conformation. Such a proposal is consistent with diverse work

on b2mannosidases in which b-linked substrate complexes have

been observed in the 1S5 conformation (for example [45,46,47]

and transition-state mimics ion B2,5 (Tailford et al. 2008), although

such proposals are objected to by one group [48]. Catalysis around

Figure 4. 3-D structure of SpGH38 and its swainsonine complex. (A) 3-D topology cartoon (divergent stereo) colored according to domains
with swainsonine in ball-and-stick. N-term (red: 1–294) 3-a (green: 295–392), b-1 (blue: 393–514,806–825), b22 (yellow: 522–805) and b23 (cyan:
825–901) (B) Surface representation of SpGH38 colored as for part (A). (C) Active centre and electron density for the Swainsonine/Zn2+ complex of
SpGH38 (divergent stereo). The map shown is the unbiased Fobs-Fcalc synthesis, contoured at 2.5 s, calculated with model phases prior to the
incorporation of Swainsonine/Zn2+ in any refinement. (D) schematic diagram of the interactions of swainsonine (shown in panel C) with H-bonds
.3.0 Å shown as dashed lines and residue numbers for the SpGH38 indicated. Arg149 makes a close contact to a swainsonine carbon (indicated with
an arrow) of 2.9 Å (spatially equivalent to an H-bond to mannose O6 of the true substrate).
doi:10.1371/journal.pone.0009006.g004
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this area of the conformational sphere has also been proposed,

recently, for inverting GH92 a2mannosidases [10]. The confor-

mation of the Michaelis complex in GH38 enzymes is more

difficult to address since the known 3-D structures of the Drosophila

enzyme are observed with a nucleophile-Ala variant with the 21

subsite sugar (in 4C1 chair conformation) occupying a position that

would not be possible on a wild-type enzyme [15]. Despite these

caveats, the +1 subsite is well-mapped in these complexes and lies

‘‘below’’ the plane of the 21 sugar in a position consistent with an

axial bond to the leaving group.

Basis for Apparent Substrate Specificity in SpGH38
In the 21 subsites, the Drosophila and SpGH38 enzymes are

extremely similar, reflecting the common recognition and catalysis

of a2mannosides, discussed above. The Drosophila GH38

a2mannosidase II is a dual specificity a21,3/a21,6 mannosidase

whereas, on disaccharide substrates and N-glycan models SpGH38

appears to display a21,3 mannosidase activity. The extended

binding sites of the Drosophila enzyme are indeed formed by

elements of structure not present in the less-decorated Strepto-

coccal enzyme. Ala189 at the end of a core b2strand makes a

structural divergence between the two enzymes in which the

Drosophila enzyme (Pro265) embarks on a long insertion to Arg314

compared to a much shorter loop region to Glu204 in the

Streptococcal enzyme. This extended loop region, together with

variations elsewhere (notably 408–413) and a long N-terminal

extension provide for considerably more developed leaving group

subsites, and likely more sophisticated leaving group recognition,

in the Drosophila enzyme compared to SpGH38. Furthermore,

although the loops from (SpGH38) 757–773 (equating to

approximately 859–883 in Drosophila a2mannosidase II) are of

similar length, they vary markedly in orientation with elements of

the SpGH38 sequence, notably W764 clashing into the +1/+2

subsites of the Drosophila 1,6 linked substrate complex (PDB pdb

code 3bvw) – but making far less extensive clashes with the

Drosophila 1,3 linked substrate complex (pdb code 3bvv), Figure 6.
Within this region lies D763 of the SpGH38 whose, side-chain

interacts would interact with the 2-OH of the +1 subsite

mannoside, if one compares with the a21,3 linked complex of

the Drosophila enzyme. In the bovine and Drosophila enzymes the

equivalent interaction is achieved via the main-chain carbonyl

group of R876 (Drosophila numbering) with O2 (dist ,2.7 Å). In

addition, the substrate binding cleft is more tightly constricted in

the SpGH38, at this position, with just 6.2 Å between the catalytic

acid/base (E and the putative O2 interacting D763 carboxylate

oxygen compared to 7.5 Å for the comparative constriction in the

Drosophila enzyme; a feature used in this latter case to

accommodate the different a21,3 and a21,6 linked substrates.

It is thus possible that the carboxylate of D763 could also make

specific, productive interactions with a21,3 linked mannoside

(O2) compared to an a21,6 linked substrate and that binding of

the latter is hindered both by a tighter ‘‘collar’’ and the location of

W764, but such speculation requires the analysis of complexes of

the Streptococcal enzyme. As yet, we have not been able to obtain

‘‘leaving group’’-containing complexes. One possible reason for

this may be the insertion of the b21 domain into the active centre

of the dimer mate in the crystal forms observed here. In particular,

Arg484 from this loop stacks with W764 discussed above, thus

reducing accessibility to the +1 subsite in-crystal. Given the high

KM (27 mM) for the disaccharide, it would seem likely that a more

extended substrate is favored in vivo but it is difficult to speculate

more on the exact nature of these addition subsites at this point.

Summary
We have shown that The S. pyogenes ORF spy1604 encodes an

a21,3 mannosidase that is active on disaccharides, some aryl

glycosides and can also effectively deglycosylate human N-glycans

in vitro. This, coupled to the presence of a gene encoding an N-

Figure 5. Conservation of GH38 reaction mechanism. (A) Conserved active-centre constellation (here -1 subsite only) between the SpGH38
(grey), bovine bLAM (cyan) and the Drosophila GH38 a2mannosidase (blue). (B). GH38 a2mannosidases are known to act with net retention of
anomeric configuration; a mechanism in which a glycosyl-enzyme intermediate is flanked by oxocarbenium-ion like transition-states. The
intermediate has been trapped by the Withers and Rose groups [17] and shown to bind in a 1S5 skew-boat conformation which in the absence of
evidence to the contrary might imply a transition-state close to a B2,5. Pseudo-Michaelis complexes published on the Drosophila a2mannosidase II
show the 21 sugar in a 4C1 chair conformation but these have been obtained on a nucleophile-alanine variant so their conformational relevance to
catalysis is unclear [15].
doi:10.1371/journal.pone.0009006.g005
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acetyl glucosaminidase (Spy1600) on the operon (an enzyme

known to break b2linked N-acetylglucosaminides [37]) would

suggest a role, in vivo, in the utilization of human glycan-derived

carbohydrates as a nutrient source. It is known, for example, that

other Streptococcal species can utilize N-glycans as their carbon

sources; Streptococcus oralis grown using N-glycosylated ribonuclease

B as the sole carbohydrate source produces a21,3/a21,6 and

b21,4 mannosidase activities to harness the N-glycans [49]. What

is less clear is the cellular location of these enzymes. The absence

of a secretion signal on SpGH38 and the GH84 hexosaminidase

suggests, in the absence of evidence to the contrary, an

intracellular location (although one cannot rule-out non-canonical

sortase-based extracellular display, as recently shown for Strepto-

coccus pneumoniae O-glycan degradation [50]). Streptococcus pyogenes

does produce at least one secreted N-glycan deglycosylation

enzyme. The most notably of these is EndoS, a family GH18

enzyme that is a key virulence factor in the organism [33], not least

because of its ability to deglycosylate host immunoglobulins [51]

leading to immune impairment and bacterial persistence. One

possible role for the GH38 a2mannosidase and GH84

b2GlcNAcase enzymes might therefore be in the subsequent

intracellular utilization of N-glycan oligosaccharides, derived from

the extracellular action of EndoS or related enzymes.

Materials and Methods

Gene Cloning
The sequence of full length S. pyogenes a-mannosidase II, coding

for SpGH38 residues 1-901, was amplified by PCR from genomic

DNA using KOD Hot Start DNA polymerase (Novagen) and

complementary gene-specific primers with additional 59 sequences

to facilitate ligation-independent cloning (LIC) as follows (with the

LIC overhangs underlined:

59-CCAGGGACCAGCAATGGCAACTAAAAAAGTACAT-

ATTATTTCACACAGTC-39,

59-GAGGAGAAGGCGCGTTATTGTTTCTTCCAAGCTA-

GAGTTAAAATTTCC-39

The DNA product was then treated with T4 DNA polymerase

in the presence of dATP to generate single-stranded 59 overhangs.

Subsequent treatment with BseRI resulted in complementary

overhangs necessary for incorporation into the modified Escherichia

coli expression vector pET28a, pET-YSBLIC [38]. LIC incorpo-

ration was facilitated by treatment with T4 DNA polymerase in

the presence of dTTP to generate pSpGH38. The pSpGH38

expression construct under control of a T7 promoter contains

SpGH38 fused to a 3C protease cleavable N-terminal His6-tag

(MGSSHHHHHHSSGLEVLFQGPA-SpGH38), where the rhi-

noviral 3C protease recognition site is shown in bold. The

SpGH38 sequence was analyzed with help of the CAZy database

[5] and BlastP [52]. Sequence alignments were conducted with

ClustalW [53].

Gene Expression and Protein Purification
E. coli BL21:DE3 cells harboring pSpGH38 were cultured in

Luria broth supplemented with 50 mg mL21 kanamycin at 37uC
to mid-exponential phase (A600 ,0.6). The temperature was

reduced to 16uC for 1 h at which time recombinant SpGH38 was

induced by the addition of 0.2 mM isopropyl 1-b-D-thiogalacto-

pyranoside and incubated for sixteen additional hours. Pelleted

cells were resuspended in 50 mM NaH2PO4, 300 mM NaCl,

pH 7.5 (buffer A), disrupted through sonication, and the clarified

supernatant loaded onto a nickel-immobilized HiTrap Chela-

tingTM 5 mL column pre-equilibrated with buffer A on an

ÄKTA Explorer (Amersham Biosciences) FPLC. The lysate-

loaded column was washed extensively with buffer A supple-

mented with 20 mM imidazole and 50 mM imidazole, in step-

wise fashion, and SpGH38 eluted with 500 mM imidazole.

Eluted fractions were passed to a Sephacryl S-200 gel-filtration

column pre-equilibrated with 25 mM Tris, 150 mM NaCl,

pH 7.5 for further purification. Fractions containing the a-

mannosidase were identified by SDS-PAGE, pooled and

concentrated using a 10 kDa MWCO Vivaspin 20 centrifugal

concentrator. Swainsonine-complexed crystals were obtained

from protein cleaved with 0.1 mg mL21 3C protease at 4uC
overnight, that was subsequently dialyses into 25 mM Tris

(pH 7.5) prior to concentration.

Aryl Mannoside Kinetics and Determination of Inhibitor Ki

Values
The activity of SpGH38 against 4-nitrophenyl-a-D-mannopyr-

anoside (PNP-Man) or 2,4-dinotrophenyl-a-D-mannopyranoside

(DNP-Man) were determined at 37uC in 50 mM NaH2PO4,

pH 6.8, containing 1 mg mL21 bovine serum albumin and

Figure 6. Substrate specificity in SpGH38. An overlap of the Drosophila GH38 a2mannosidase II complexes [15] with a21,3 (green bonds) and
a21,6 linked ligands (blue bonds) with the SpGH38 structure (grey surface) focussing on the +1 subsite (the -1 subsites are essentially identical, Fig.
5A). Features which may contribute to 1,3 specificity include the position of W764, the interactions afforded by D763 and the tightness of the
‘‘sphincter’’ formed by D763 and the catalytic acid/base D232. The figure is shown in divergent (‘‘wall-eyed’’) stereo.
doi:10.1371/journal.pone.0009006.g006
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substrate concentrations ranging up to 1.6 and 4.0 mM,

respectively. 4-Methylumbelliferyl a-D-mannopyranoside assyas

were conducted at 37uC in 100 mM MOPS, pH 7.0, containing

0.1 mM ZnSO4 and 1 mg mL21 bovine serum albumin,

respectively. The total reaction volume was 500 ml. Methylum-

belliferone (MU; e365 = 2.996108 M21 cm21 at pH 7.0) derived

from MU-Man hydrolysis was measured continuously by a

fluorimeter with an excitation wavelength of 365 nm and an

emission wavelength of 440 nm. Swainsonine (obtained from

GlycoFineChem, New Zealand) inhibition assays were carried out

using the a21,3 mannobiose substrate with mannose detection as

described below. The inhibition reactions were carried out with

a21,3-mannobiose as substrate and a range of inhibitor

concentrations that spanned the Ki, which was calculated using

the following equation:

vo

vi

~
1

Ki

:½I�z1

where n0 and ni are the rates of the reaction in the absence and

presence of inhibitor, respectively. Under conditions where [S] , ,

KM, the fractional decrease in rate thus yields the Ki for a

competitive inhibitor. A graph plotting v0/vi on the y-axis against

the concentration of inhibitor on x-axis will give a gradient of 1/Ki,

and an intercept of 1.

D-Mannose Detection Assay
SpGH38 specificity for a21,2-, 1,3-, 1,4- or 1,6-linked

mannobiose was determined using a four enzyme coupled assay

based on the Megazyme International kit for D-mannose

detection, deploying ATP and NADP+. Reactions were con-

ducted at 37uC in 100 mM MOPS (pH 7.0), containing 0.1 mM

ZnSO4, 1 mg mL21 BSA, and 0.2 mM SpGH38. Briefly,

SpGH38 liberated mannose was phosphorylated to mannose-

6-phosphate by hexokinase (HK) which was subsequently

converted to fructose-6-phosphate through the action of

phosphomannose isomerase (PMI). Fructose-6-phosphate was

then isomerized to glucose-6-phosphate by phosphoglucose

isomerase (PGI) and finally, oxidized to gluconate-6-phosphate

by glucose-6-phosphate dehydrogenase (G6P-DH). The G6P-

DH NADP+ cofactor is concurrently reduced to NADPH, which

was monitored at 340 nm using an extinction coefficient of 6223

(M21?cm21). The enzymes were individually obtained from

Sigma Chem. Co. and the concentrations (5U final in each case)

were selected such that disaccharide cleavage was the rate

limiting step in the reaction.

Enzyme Activity on High Mannose N-glycans, Mass
Spectrometric Analysis of the Reaction Products

High mannose N-glycans (2–2.5 mg) were incubated with 2 mM

SpGH38 at 37uC overnight in 50 mM MOPS, pH 7.0,

containing 0.1 mM ZnSO4 and 1 mg mL21 bovine serum

albumin. The reaction products were lyophilized overnight, and

then submitted to MALDI-TOF for analysis after permethyla-

tion. The procedure for preparing Man5GlcNAc2 is as follows:

2.5 mg of Man9GlcNAc2 (obtained from Dextra Laboratories,

Reading UK) was incubated with 10 mM BT3990 at 37uC in

50 mM MOPS, pH 7.0 overnight. The reaction was stopped by

adding Phenol: Chloroform: Isopropanol (25:24:1), then the

upper water phase was transferred to a clean Eppendorf tube and

lyophilized overnight.

SpGH38 Crystallization Data Collection and Structure
Determination

Crystallization conditions for two crystal forms of recombi-

nant SpGH38 have been established corresponding to P21 (apo)

and P43212 (SeMet derivative and swainsonine complex) crystal

systems. Both forms were obtained at 19uC in equal volumes of

protein and reservoir solution. The P21 crystal form of apo-

SpGH38 was crystallized in sitting drop setup by mixing 12 mg

mL21 protein with 100 mM Tris, pH 8.5, 1.5 M (NH4)2SO4

and 12% v/v glycerol with the reservoir solution acting as the

cryo-protectant. The P43212 crystal form was obtained in

hanging drop format from 15 mg mL21 3C cleaved SpGH38

mixed with 3% v/v glycerol, 54% v/v Tacsimate (pH 7.0) and

2% v/v polyethylene glycol 6000; for this form appropriate cryo-

protection was afforded through increasing the Tacsimate

concentration to ,70% v/v. Crystals of the swainsonine

complex form were obtained by soaking P43212 SpGH38

crystals for ,16 h in mother liquor supplemented with 2 mM

swainsonine.

Diffraction data for SpGH38 selenomethionine derivative,

apo, and swainsonine complex forms were collected at

beamlines ID29-2, ID14-2, and ID14-1, respectively, of the

European Synchrotron Radiation Facility. Data were processed

with either the HKL2000 suite [54] or iMosflm/Scala [55,56].

The structure of SpGH38 was solved by MAD phasing at the

peak energy of 12.659 keV of a selenomethionine derivative

using 0.5u oscillation for 200u and at a remote wavelength

(energy 12.710 keV) for 180u. SHELXC and SHELXD [57]

were used for locating selenium sites and initial density

modification with autoSHARP [58]. Refinement of heavy atom

positions, density modification and initial SpGH38 model

building was conducted with RESOLVE [59]. A single

SpGH38 molecule was then used as a molecular replacement

model with the 1.9 Å native dataset in PHASER [60], followed

by cycles of maximum-likelihood refinement using REFMAC

[61] interspersed with manual corrections of the models using

COOT [62]. Other computing used the CCP4 suite [63], unless

otherwise stated. Apo and complexed structures of SpGH38

were solved by molecular replacement using PHASER [60].

Data processing and refinement statistics are presented in

Table 1. Structural figures were drawn with PyMol (DeLano

Scientific LLC).
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